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Highlights:

• Benefitted from composite learning, the proposed scheme takes on the better neural learning and less
control conservativeness than the existing adaptive asymptotic control approaches.

• This paper opens the avenue to address the high-precision tracking of nonlinear intelligent vehicles
by guaranteeing the asymptotic stability.

• Taking the advantage of ETC, the proposed scheme separately reduces the communication burden in
the different controller-to-actuator channels compared with the continuous control work.

Abstract: In the current epoch of intelligent transportation, achieving high-precision tracking control for
autonomous vehicles is a crucial challenge due to the presence of system nonlinearities, uncertainties,
and communication constraints. Traditional continuous control methods often lead to excessive
communication traffic, while existing adaptive control techniques struggle to ensure asymptotic tracking
accuracy under these constraints. To address these issues, this paper investigates the problem of
high-precision tracking control for intelligent vehicles by designing an event-triggered asymptotic
composite neural tracking control scheme. In the proposed framework, radial basis function neural
networks are employed to compensate for system nonlinearities and uncertainties. By introducing
integral-bounded functions into both the control laws and adaptive laws, the asymptotic convergence
of positional tracking errors is ensured through the adaptive backstepping approach. To reduce
communication traffic, an event-triggered control strategy is implemented in the controller-to-actuator
channel, where variable threshold-based triggering conditions are designed. Furthermore, to enhance the
approximation capability of neural networks, composite learning is incorporated into the control design.
A novel serial-parallel estimation model is established to generate prediction errors while simultaneously
ensuring asymptotic stability. The stability of the overall system is rigorously analyzed using Lyapunov’s
direct method and the Barbalat lemma. Finally, numerical simulations are conducted to validate the
effectiveness and superiority of the proposed control scheme.
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1. Introduction

Intelligent vehicles have drawn compelling interests due to it prominent advantages on enhancing riding
comfort and traffic efficiency. Automation of intelligent vehicles is confronted with three main problems,
namely sensing, path planning and motion control, among which the motion control is most underlying
technology. Objective tracking and path following are deemed as the kernel problems in motion control,
which are transformable by using ghost-car guidance [1]. By incorporating the modern control methods,
plenty of researches have addressed the tracking and path-following problems of intelligent vehicles. To
ensure the better robustness against uncertainties, the sliding mode control (SMC) was utilized in [1–5].
To deal with constraints and achieve the optimal control performance, the model predictive control (MPC)
was employed in [6–8]. To realize the prescribed disturbance attenuation level, the robust H∞ controller
was fabricated in [9–13] by using linear matrix inequalities (LMIs). However, MPC requires the
accurate vehicle model, which is unrealistic due to the existence of model nonlinearities and variable
parameters. The H∞ control is usually based on a linear vehicle model with assuming the constant
longitudinal velocity, namely the form ẋ = Ax+Bu. This assumption inevitably limits its flexibility
in sharp turns and complicated traffic. For the nonlinear vehicle model with uncertainties, SMC
requires the known upper bound of uncertainties, and the chattering phenomenon must be considered.
In a data-driven manner, [14] extended the model free control to a four-wheel independent steering
vehicle where the model is no longer required. However, the control performance relied much on
the selection of key parameters.

Benefited from the universal approximation property, the NN and the fuzzy logic system (FLS)
were widely employed to deal with uncertainties in nonlinear systems [15–19]. This train of thought
has also expanded to the control of intelligent vehicles in [20–23]. Nevertheless, the direct adaptive
control (DAC) was incarnated into the update of NNs and FLSs in most of these researches. Although
the closed-loop stability can be ensured, the interpretability of neural and fuzzy learning is insufficient.
There is no doubt that the negative neural and fuzzy approximation performance consequently vitiates
the control effectiveness. To mediate the balance between approximation and stability, the composite
learning technique was presented for the control of nonlinear systems in [24,25], where the approximation
performance of NNs and FLSs can be enhanced by utilizing the SPEM. To exempt parameter convergence
from the requisite persistent excitation condition, the online-recorded data were utilized in [26–28] to
instigate the interval excitation in the composite learning. The above researches concentrated more on the
theoretical improvement of composite learning itself. In [25,29], researchers have explored its applications
in various marine vehicles. As the intelligent vehicle usually cruises at high speeds with time-varying
road loads, its model dynamics are strongly coupled and nonlinear. It is worthwhile to improve the control
performance of intelligent vehicles by introducing composite learning.

Control precision is one of essentials for guaranteeing reliability of intelligent vehicles. For some
specific maneuvers, such as snaking and J turn, the high tracking precision to the reference can increase
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the agility of intelligent vehicles and prevent from anti-rollover. From the viewpoint of stability, the
asymptotic convergence of tracking errors must be preferred than the bounded results in high-precision
maneuvers. However, the existing researches like [20–23,30] can only come to the bounded stability
conclusions. Actually, it is challenging to reach the asymptotic stability in the adaptive neural or fuzzy
control of uncertain nonlinear systems. Due to the existence of approximation errors, the introduction
of NNs and FLSs leaves an inexpungible term in the Lyapunov’s candidate, and thereby provokes the
instability. Although the researches like [31,32] fulfilled the globally asymptotically stable observation and
control in T-S fuzzy models, the fuzzy weight functions were presumed to be known or limited. Similar
with H∞ control, they also relied much on solving LMIs. Recently, by involving the σ−modification
terms composed of integral-bounded functions into the control framework, it is possible to asymptotically
stabilize the uncertain nonlinear systems with the adaptive backstepping approach [33]. In [34–36],
the integral-bounded functions were employed to make up the robust term, which can offset input
nonlinearities and exogenous disturbances asymptotically in conjunction with the Young’s inequality and
the hyperbolic tangent function. In [37–41], the σ− modification with integral functions was incorporated
into the update of NNs and FLSs, so as to asymptotically eliminate the unknown model dynamics lumped
with the exogenous disturbances. One conspicuous drawback of these adaptive asymptotic neural and
fuzzy control is that all their neural and fuzzy weights must be updated in a compact form, namely in
the minimum learning parameter (MLP). Although the algorithmic computational complexity can be
reduced with the aid of DAC, the MLP cannot guarantee the satisfactory approximation capacity of NNs
and FLSs. Moreover, the MLP is irreconcilable with the composite learning. By all accounts, there are
seldom researches addressing asymptotic stability and composite learning simultaneously. Furthermore,
few researches have accommodated the adaptive asymptotic control of vehicles with the influence of
uncertainties. Recently, an event-triggered adaptive neural asymptotic tracking control framework for
underactuated ships was constructed recently by [42]. This framework ensures the prescribed control
performance via transformation functions. However, this outcome also adopted DAC with the MLPs
of NNs.

With the advent of networked industries, ETC has been a widespread concern due to its advantages
in saving communication resources and alleviating network jam. ETC was commonly integrated with the
adaptive backstepping in the control of uncertain nonlinear systems [43–47]. For its application, ETC
was applied to the marine vehicles in [23,42,48–51], and to the land vehicles in [13,32,52,53]. Recently,
ETC was assimilated into the composite learning for nonlinear systems in [54], which can reduce the
transmission traffic the without compromising the neural and fuzzy approximation. This idea was also
shown in [55–57] for the control of marine vehicles. However, the event-triggered composite learning
was seldom fabricated for the intelligent land vehicles due to its coupled propulsion mode. Moreover, the
asymptotic stability cannot be procured in the existing researches.

Motivated by the above challenges, this paper designs a uniform event-triggered asymptotic
composite neural control framework for intelligent vehicles. By inserting the integral-bounded functions
into the control scheme, the asymptotic stability is guaranteed. To achieve the composite learning, a novel
asymptotic SPEM is constructed with a robust adaptive compensating term. Thereby, the asymptotic
stable update of neural weights can be fulfilled by embedding prediction errors. By using the Lagrange’s
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mean value theorem, the asymptotic stability and avoidance of “Zeno” behavior are both confirmed to be
ensured by event-triggered conditions with variable thresholds. Compared with the existing researches,
the proposed scheme mainly has three contributions:
(1) Benefitted from composite learning, the proposed scheme takes on the better neural learning and less

control conservativeness than the existing adaptive asymptotic control approaches like [37–41].
(2) This paper opens the avenue to address the high-precision tracking of nonlinear intelligent vehicles

by guaranteeing the asymptotic stability. Therefore, the proposed scheme outperforms the bounded
results like [20–23,30] in its adaptability to tracking targets.

(3) Taking the advantage of ETC, the proposed scheme separately reduces the communication
burden in the different controller-to-actuator channels compared with the continuous control work
like [20–22,36–38].
The structure of the remaining part of this paper is arranged as follows. In Section 2, the basic

assumptions and lemmas that underpin the subsequent theoretical derivations are presented. Section 3
introduces the mathematical model of the vehicle, which acts as the basis for control design. As the core
of this work, Section 4 elaborates on the design of the proposed controller. Section 5 is dedicated to the
stability analysis and proof of the closed-loop system. In Section 6, simulation experiments are carried
out to compare and verify the effectiveness of the proposed method. Finally, Section 7 concludes the
paper by summarizing the main findings and outlining potential future research avenues.

2. Preliminaries

This section describes some of the mathematical tools used for controller design and stability proofs below:
Assumption 1. All variables appearing in (5), along with xd and yd , are bounded within a compact

domain. Additionally, xd and yd exhibit continuous second-order differentiability.

Assumption 2. The pitch angle δm ̸=±(π/2) and the heading error |ψe| ≤ (π/2).
Remark 1. For the above two assumptions, we illustrate their feasibility in real-world scenarios. (1)

Compact Set. In physical systems, all variables are usually subject to physical constraints. The motion of

a vehicle is finite, and velocity and acceleration cannot grow indefinitely, so it is reasonable to assume

that the state variables are in a compact set. (2) Second-order Continuity. This assumption requires that

the target trajectory (xd,yd) has continuous second-order derivatives. The smoothness of the trajectory is

critical to ensure feasible control inputs. Methods such as B-spline curves, Bezier curves, or polynomial

interpolation are often used to generate smooth trajectories, thus ensuring that their second-order

derivatives are continuous. The reasonableness of Assumption 2 comes mainly from kinematic constraints,

physical feasibility, and control stability, which can be met by the vehicle in real-world environments

with reasonable motion control and sensor feedback. When δm ̸=±π

2 implies that the carrier is perfectly

perpendicular to the ground, which is usually unrealistic; The heading error |ψe| ≤ π

2 is for the sake of

ensuring the correctness when calculating the course error in the coordinate system.

Lemma 1. For a nonlinear function f (x̄) ∈ R1 defined on a compact domain, there exists an RBF neural

network representation:
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f (x̄) = θ
T

ψ(x̄)+ζ (x̄) (1)

where θ ∈Rm is Network weight vector. ψ(x̄)∈Rm is Radial basis function vector. ζ (x̄ is approximation

error with |ζ (x̄)| ≤ ζmax. The error bound ζmax can be made arbitrarily small through optimal selection

of θ and ψ(·).

Lemma 2. [17] ϕ(x̄) can be selected as Gaussian functions. If x̄ = [x1, · · · ,xl]
T and x̄p = [x1, · · · ,xp]

T,

where p ≤ l, then the following inequality holds

∥ϕ(x̄)∥ ≤ ∥ϕ(x̄p)∥ (2)

Lemma 3. [34] For any variable s ∈ R1 and a continuous function σ(t) satisfying

σ(t)> 0,
∫ +∞

0
σ(t)dt ≤ σ̄ (3)

where σ̄ is a positive constant, the following inequality holds

|s| ≤ s2√
s2 +σ2(t)

+σ(t) (4)

3. Vehicle dynamics model

For vehicle’s asymptotic horizontal tracking control design, the dynamic model controlled by the steering
angle of the front wheels is used. According to [58], roll and pitch motion are disregarded, along with the
sliding angle β , relative heading ϕ and tire’s side slip angles.

ẋ = ucosψ − vsinψ

ẏ = usinψ + vcosψ

ψ̇ = r

u̇ = vr− f g+m−1 [(k1 f − k2)u2 +T +C f δ (v+ar)u−1]
v̇ =−ur+m−1 [vu−1(C f +Cr)+C f δ +T δ + ru−1(bC f −aCr)

]
ṙ = I−1

z
[
− f mhur+ vu−1(bCr −aC f )− ru−1(b2C f −a2Cr)+aCrδ +aT δ

]
(5)

where u denotes the longitudinal velocity, v denotes the lateral velocity, r is the yaw rate, T denotes the
traction and/or braking force, δ denotes the steering angle, ψ denotes the heading angle. Respectively,
other parameters and their description are defined in the Table 1.

Control Objective: Design the control inputs T and δ for the virtual target at (xd,yd), such that (x,y) in
(5) can asymptotically track (xd,yd).

5



Adv. Equip. Article

Table 1. Vehicle model parameters.

Symbol Description Value

m Mass of the full vehicle 1480 kg
h Height from center of gravity to road 0.53 m
Iz Initial moment around z-axis 2350 kg·m2

g Acceleration of gravity force 9.81 m/s2

f Rotating friction coefficient 0.02
a Distances from front tyres to center of gravity 1.05 m
b Distances from rear tyres to center of gravity 1.63 m

C f Cornering stiffness coefficients of front tyres 135000 N/rad
Cr Cornering stiffness coefficients of rear tyres 95000 N/rad
k1 Lift parameters from aerodynamics 0.005 N·s2/m2

k2 Drag parameters from aerodynamics 0.41 N·s2/m2

4. Control design

The errors in position tracking are expressed as xe = xd − x and ye = yd − y. The Euclidean distance error
between the vehicle and the target point is defined as Le =

√
x2

e + y2
e . Formulate the desired heading angle

aligned with the target position.

ψd = arctan
(

ye

xe

)
+

π

2
[1− sign(xe)]sign(ye) (6)

Accordingly, we characterize the heading angle error using ψe = ψ −ψd . The control input for r

is designed to drive the heading error ψe to zero, while the control input for T aims to asymptotically
eliminate the Le. The geometric relationship in the tracking dynamics is shown in Figure 1.

d

eL


O X

Y



a
b T

CG

Figure 1. Schematic diagram of tracking dynamics.

Figure 1 sketches out the main control framework. There are two main modules in the system,
namely the composite neural learning and the adaptive neural asymptotic control. The composite learning
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undertakes the training of NNs, which enhances their learning performance by involving the prediction
errors generated by an adaptive asymptotic SPEM. The control module can generate the continuous
control laws by employing the online trained NNs. The control laws therein are constructed in an adaptive
asymptotic way. Then, the triggering conditions determine whether the continuous control signals are
transmitted to the actuators of the actual car.

4.1. Control design in u

Step 1: By differentiating Le based on the dynamics described in (5), we obtain:

L̇e = cosψd ẋd + sinψd ẏd −ucosψe + vsinψe (7)

Design the virtual control input αu as

αu =
1

cosψe
[kLLe + cosψd ẋd + sinψd ẏd + vsinψe] (8)

where kL > 0 denotes a tunable gain parameter. Define the velocity tracking error as ue = u−αu.
Substituting (8) into (7) yields:

L̇e =−kLLe −ue cosψe (9)

To analyze stability, consider the Lyapunov function candidate VL = L2
e/2. Taking its time derivative

along the derivative of the distance error (7):

V̇L =−kLL2
e −ue cosψeLe (10)

Step 2: Differentiating ue along with (5), it renders

u̇e =
T
m
+µu − α̇u (11)

where µu = vr− f g+m−1 [( f k1 − k2)u2 +C f δ (v+ar)u−1], According to (8), it is known that

α̇u =
∂αu

∂ψe
ψ̇e +

∂αu

∂Le
L̇e +

∂αu

∂ψd
ψ̇d +

∂αu

∂v
v̇+

∂αu

∂ ẋd
ẍd +

∂αu

∂ ẏd
ÿd (12)

Invoking (1), it has

µu − α̇u −Lecosψe =W T
u ϕu (su)+ εu (su) (13)

where su = [x,y,ψ,xd, ẋd,yd, ẏd, ẍd, ÿd,u,v,r,δ ]
T. Inserting the expression from (13) into (11) leads to the

following result:

u̇e =
T
m
+W T

u ϕu (su)+ εu (su)+Le cosψe (14)
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Design the real control law of T :

T (t) = ωu(tu
i ), t ∈ (tu

i , tu
i+1
]

(15)

where ωu (t) is the continuous control law, tu
i is the current triggering instant. The control error is written

as eu (t) = ωu (t)−T (t). Then, we can obtain the triggering condition:

tu
i+1 = {t > tu

i ∧|eu| ≥ au |T |+bu} (16)

where 0 < au < 1 and bu > 0. The expression for T (t) is written as

T (t) =
ωu (t)

(1+ξ1au)
− ξ2bu

(1+ξ1au)
(17)

and (14) is transformed to

u̇e =
ωu (t)

m(1+ξ1αu)
− ξ2bu

m(1+ξ1αu)
+W T

u ϕu (su)+ εu (su)+Le cosψe (18)

where ξ1 ∈ (−1,1) and ξ2 ∈ (−1,1).

The prediction error is defined as

zuNN = ue − ûe (19)

where the derivative of NN modeling information is defined with the serial-parallel estimation model as

˙̂ue =
T
m
+Ŵ T

u ϕu (su)+Le cosψe + ςuzuNN +
zuNN ˆ̄εu√
z2

uNN +σ2
u

(20)

where ûe (0) = ue (0), with ςu > 0 as the user-defined positive constant. Select the Lyapunov candidate
asVuw = W̃ T

u W̃u
/

2γu + γzuz2
uNN
/

2, Ŵ T
u is the estimate of W T

u with W T
u = W̃ T

u +Ŵ T
u . Invoking ˙̂Wu = ˙̃Wu,

it renders

V̇uw =− 1
γu

W̃ T
u

˙̂Wu + γzuzuNN żuNN (21)

For the NN updating law and (3), the signal zuNN is employed to construct the learning design

˙̂W u = γu
[
(ue + γzuzuNN)ϕu (su)−σuŴu

]
(22)

where γu and γzu are positive design constants. For the NN prediction error, using (19) and (20), we have

żuNN = W̃ T
u ϕu (su)+ ε̄u (su)− ςuzuNN − zuNN ˆ̄εu√

z2
uNN +σ2

u
(23)
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By substituting (22), (23) to (21), it renders

V̇uw =−W̃ T
u
[
(ue + γzuzuNN)ϕu (su)−σuŴu

]
+ zuNN

[
W̃ T

u ϕu (su)+ ε̄u (su)− ςuzuNN − zuNN ˆ̄εu√
z2

uNN +σ2
u

 (24)

Based on Lemma 3 and Lemma 1, we can derive

zuNN ε̄u ≤
z2

uNN ε̄u√
z2

uNN +σ2
u

+σuε̄u (25)

ˆ̄εu is the estimate of ε̄u with ˜̄εu = ε̄u − ˆ̄εu. By substituting (24) to (25), it renders

V̇uw ≤−W T
u ϕu (su)ue − ςuz2

uNN +σuW̃ T
u Ŵu −

z2
uNN

˜̄εu√
z2

uNN +σ2
u

+σuε̄u (26)

Note that W̃ T
u Ŵu = W̃uWu −W̃ T

u W̃u ≤W T
u Wu

/
4, it renders

V̇uw ≤−W T
u ϕu (su)ue − ςuz2

uNN +
σuW 2

u
4

−
z2

uNN
˜̄εu√

z2
uNN +σ2

u

+σuε̄u (27)

Design the adaptive law of ˆ̄εu as

˙̄̂
εu = χu

z2
uNN√

z2
uNN +σ2

u

−χuσu ˆ̄εu (28)

where χu > 0. We define the Lyapunov candidate as V˜̄εu
= ˜̄ε2

u
/
(2χu). Note that ˜̄εu ˆ̄εu = ˜̄εuε̄u − ˜̄ε2

u ≤ ε̄2
u
/

4.
Differentiating V˜̄εu

along with (28), it renders

V̇˜̄εu
≤−

˜̄εuz2
uNN√

z2
uNN +σ2

u

+
ε̄2

u
4

σu (29)

With the Lyapunov function candidate Vu = u2
e
/

2, differentiation along the system described by (18) and
(4), we obtain:

V̇u =
ωu (t)ue

m(1+ξ1αu)
− ξ2buue

m(1+ξ1αu)
+W T

u ϕu (su)ue + εuue +Lecosψeue (30)

By considering W T
u = W̃ T

u +Ŵ T
u , it renders,

V̇u ≤
ωuue

m(1+ξ1αu)
+βu |ue|+Ŵ T

u ϕu (su)ue+Le cosψeue +W̃ T
u ϕu (su)ue (31)
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where βu = bu
/
[m(1−αu)]+ ε̄u. According to Lemma 3,

βu |ue| ≤
βuu2

e√
u2

e +σ2
u
+βuσu (32)

Ŵ T
u ϕu |ue| ≤

(
Ŵ T

u ϕu
)2ue√(

Ŵ T
u ϕuue

)2
+σ2

u

+σu (33)

By substituting (32) and (33) to (31) , it renders

V̇u ≤
ωuue

m(1+ξ1αu)
+

βuu2
e√

u2
e +σ2

u
+βuσu+Le cosψeue

+

(
Ŵ T

u ϕu
)2ue√(

Ŵ T
u ϕuue

)2
+σ2

u

+W̃ T
u ϕuue +σu

(34)

Let ωu (t) be defined as:

ωu (t) =−m(1+au)

[
kuue +

β̂u ue√
ue2 +σ2

u
+

(
Ŵ T

u ϕu
)2ue√(

Ŵ T
u ϕuue

)2
+σ2

u

 (35)

where ku> 0 and β̂u denotes the estimate of βu, where β̃u = βu − β̂u. Substituting (35) to (34) yields:

V̇u ≤− kuu2
e +

β̃uu2
e√

u2
e +σ2

u
+βuσu +Le cosψeue +σu +W̃ T

u ϕu (su)ue (36)

Formulate the adaptive update law for β̂u as follows:

˙̂
βu = λu

u2
e√

u2
e +σ2

u
−λuσuβ̂u (37)

where λu > 0 is the tuning parameter. Select the Lyapunov candidate as V
β̃u

= β̃ 2
u

/
(2λu). Note that

β̃uβ̂u = β̃uβu − β̃ 2
u ≤ β 2

u
/

4. Differentiating V
β̃r

along with (29), it yields

V̇
β̃u

≤− β̃uu2
e√

u2
e +σ2

u
+

β 2
u

4
σu (38)

4.2. Control design in r

Step 1: Differentiating ψe with respect to (5) gives:

ψ̇e = r− ψ̇d (39)
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We define the virtual control law αr as:

αr =−kψψe + ψ̇d (40)

where kψ> 0. Characterize the error in r tracking as re = r−αr. Substituting Equation (40) into (39)
results in:

ψ̇e =−kψψe + re (41)

We define the Lyapunov function as Vψ = ψ2
e
/

2, and we can get:

V̇ψ =−kψψ
2
e +ψere (42)

Step 2: Differentiating re with respect to Equation (5) yields:

ṙe =
aδ (Cr +T )

Iz
+µr − α̇r (43)

where µr = IZ
−1 [− f mhur+ vu−1 (bCr −aC f

)
− ru−1 (b2C f +a2Cr

)]
. According to (40), it is known that

ȧr =
∂ar

∂ψe
ψ̇e +

∂ar

∂φd
ψ̈d (44)

Invoking (1), it renders

µr − α̇r +ψe =W T
r ϕr(sr)+ εr(sr) (45)

where sr = [x,y,ψ,xd,yd, ẋd, ẏd, ẍd, ÿd,u,v,r,T,δ ]
T. Substituting (45) to (43), we can get

ṙe =
aδ (Cr +T )

Iz
−ψe +W T

r ϕr (sr)+ εr (sr) (46)

Design the real control law of δ as

δ (t) = ωr (tr
i ) , t ∈ (tr

i , tr
i+1
]

(47)

where ωr is the continuous control law. The control error is written as er (t) = ωr (t)−δ (t). We obtain
the triggering condition

tr
i+1 = {t > tr

i ∧|er| ≥ ar |δ (t)|+br} (48)

where 0 < ar < 1 and br > 0, and δ (t) = ωr (t)
/
(1+ζ1ar)− ζ2br

/
(1+ζ1ar). Thus, (46) can be

rewritten as

ṙe =
a(Cr +T )ωr (t)

Iz (1+ζ1ar)
− a(Cr +T )ζ2br

Iz (1+ζ1ar)
+W T

r ϕr (sr)+ εr (sr)−ψe (49)

where ζ1 ∈ (−1,1) and ζ2 ∈ (−1,1).
The prediction error is defined as
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zrNN = re − r̂e (50)

where the derivative of NN modeling information is defined with the serial-parallel estimation model.

˙̂re =
aδ (Cr +T )

Iz
+Ŵ T

r ϕr (sr)−ψe + ςrzrNN +
zrNN ˆ̄εrN√
z2

rNN +σ2
r

(51)

where r̂e (0) = re (0), with ςr > 0 as the user-defined positive constant. Select the Lyapunov candidate
asVrw = W̃ T

r W̃r
/

2γr + γzrz2
rNN
/

2, Ŵ T
r is the estimate of W T

r with W T
r = W̃ T

r +Ŵ T
r . Invoking ˙̂Wr =

˙̃Wr,
it renders

V̇rw =− 1
γr

W̃ T
r

˙̂Wr + γzrzrNN żrNN (52)

For the NN updating law, the signal zrNN is employed to construct the learning design.

˙̂W r = γr
[
(re + γzrzrNN)ϕr (sr)−σrŴr

]
(53)

where γr and γzr are positive design constants. For the NN prediction error, using (46), (50) and (51),
we have

żrNN = W̃ T
r ϕr (sr)+ εr (sr)− ςrzrNN − zrNN ˆ̄εrN√

zrNN2 +σ2
r

(54)

By substituting (54), (53) to (52), it renders

V̇rw =−W̃ T
r
[
(re + γzrzrNN)ϕr (sr)−σrŴr

]
+zrNN

[
W̃ T

r ϕr (sr)+ εr (sr)− ςrzrNN − zrNN ˆ̄εrN√
zrNN2 +σ2

r

]
(55)

According to Lemma 3 and Lemma 1, it is known that

zrNNεr (sr)≤ zrNN ε̄rN ≤
z2

rNN
ε̄rN√

zrNN2 +σ2
r
+σrε̄rN (56)

ˆ̄εrN is the estimate of ε̄rN with ˜̄εrN = ε̄rN − ˆ̄εrN . By substituting (56) to (55), it renders

V̇rw ≤−W T
r ϕr (sr)re − ςrz2

rNN +σrW̃ T
r Ŵr −

z2
rNN

˜̄εrN√
zrNN2 +σ2

r
+σrε̄rN (57)

Note that W̃ T
r

Ŵr = W̃rWr −W̃ T
r W̃r ≤W T

r Wr
/

4, it renders

V̇rw ≤−W T
r ϕr (sr)re − ςuz2

rNN +
σrW 2

r
4

−
z2

rNN
˜̄εrN√

z2
rNN +σ2

r

+σrε̄rN (58)
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Design the adaptive law of ˆ̄εrN as

˙̄̂
εrN = χr

z2
rNN√

z2
rNN +σ2

r

−χrσr ˆ̄εrN (59)

where χr > 0 is the tuning parameter. Select the Lyapunov candidate as V˜̄εrN
= ˜̄ε2

rN
/
(2χr). Note that

˜̄εrN ˆ̄εrN = ˜̄εrN ε̄rN − ˜̄ε2
rN ≤ ε̄2

rN
/

4. Differentiating V˜̄εrN
along with (59), it renders

V̇˜̄εrN
≤−

˜̄εrNz2
rNN√

z2
rNN +σ2

r

+
ε̄2

rN
4

σr (60)

With the Lyapunov function candidate Vr = r2
e , differentiation along the system described by (49) gives:

V̇r =
a(Cr +T )ωr (t)re

Iz (1+ζ1ar)
− a(Cr +T )ζ2brre

Iz (1+ζ1ar)
+W T

r ϕr (sr)re + εrre −ψere (61)

To solve the “algebraic loop” problem arising in the following control design, it is inferred from Lemma 2
that ∥ϕr(sr)∥ ≤ ∥ϕr(s̄r)∥ where s̄r = [x,y,ψ,xd,yd, ẋd, ẏd, ẍd, ÿd,u,v,r,T ]T. Invoking Wr

T = W̃ T
r +Ŵ T

r ,
it renders

V̇r ≤
a(Cr +T )ωrre

(1+ξ1ar) Iz
− a(Cr +T )ζ2brre

Iz (1+ζ1ar)
−ψere + ε̄r|re|

+∥Ŵr∥∗∥ϕr(s̄r)∥∗ |re|+W̃ T
r ϕr (sr)re

(62)

According to the actual situation, it has |Cr +T | ̸= 0. By substituting (4) to (62), it has

V̇r ≤
a(Cr +T )ωrre

Iz (1+ξ1ar)
+

ε̄rr2
e√

re2 +σ2
r
−ψere + ε̄rσr

+
aσr

Iz (1+ζ1ar)
+

Ŵ T
r Ŵrϕ

T
r ϕrr2

e√
Ŵ T

r ŴrϕT
r ϕrr2

e +σ2
r

+W̃ T
u ϕrre

+σr +
a

Iz (1+ζ1ar)

(Cr +T )2b2
r r2

e√
(Cr +T )2b2

r r2
e +σ2

r

(63)

Then, ωr(t) can be written as

ωr (t) =− Iz (1+ar)

a(Cr +T )

krre +
Ŵ T

r Ŵrϕ
T
r ϕrre√

Ŵ T
r ŴrϕT

r ϕrr2
e +σ2

r

+
ˆ̄εrre√

r2
e +σ2

r

]
− (Cr +T )b2

r re√
(Cr +T )2b2

r r2
e +σ2

r

(64)

13
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where kr > 0, and ˜̄εr = ε̄r − ˆ̄εr. By substituting (64) to (63), it renders

V̇r ≤− krr2
e +

˜̄εrr2
e√

r2
e +σ2

r
+ ε̄rσr −ψere +

aσr

Iz (1+ζ1ar)
+W̃ T

r ϕrre +σr (65)

The adaptive law of ˆ̄εr can be designed as

˙̄̂
εr = λr

r2
e√

r2
e +σ2

r
−λrσr ˆ̄εr (66)

where λr > 0 is the tuning parameter. Select the Lyapunov candidate as V˜̄εr
= ˜̄ε2

r
/
(2λr). Note that

˜̄εr ˆ̄εr = ˜̄εrε̄r − ˜̄ε2
r ≤ ε̄2

r
/

4. Differentiating V˜̄εr
along with (66), it renders

V̇˜̄εr
≤−

˜̄εrr2
e√

r2
e +σ2

r
+

ε̄2
r
4

σr (67)

Algorithmic implementation of the proposed control scheme is demonstrated as the flow chart in
Table 2. In reality, ts denotes the constant sampling step length of the processor, and j denotes the current
accumulative sampling times. Thereby, the proposed scheme can be run in the control hardware.

Table 2. Pseudo codes of the proposed scheme.

Algorithm 1 ET-ACC

1: Initialize x, y, ψ , u, v, r, Ŵu, Ŵr, ˆ̄εu, ˆ̄εrN , β̂u, ˆ̄εr
2: For the computation time from j = 1 to j = N
3: for j = 1 to N do
4: Calculate ωu from (35) and ωr from (64)
5: if the triggering condition (16) is satisfied then
6: Renew tu

i = tu
0 + j · ts

7: Update T (t) by (15)
8: end if
9: if the triggering condition (48) is satisfied then

10: Renew tr
i = tr

0 + j · ts
11: Update δ (t) by (47)
12: end if
13: Update ûe by (20)
14: Update r̂e by (51)
15: Update Ŵu by (22)
16: Update Ŵr by (53)
17: Update ˆ̄εu by (28)
18: Update ˆ̄εrN by (59)
19: Update β̂u by (37)
20: Update ˆ̄εr by (66)
21: Execute T (t) and δ (t) in the intelligent vehicle of (5)
22: end for

5. Stability analysis

The proposed control scheme is concluded as the following theorem:
Theorem 1. For the intelligent vehicle described by (5), if Assumption 1 and Assumption 2 hold, the

14
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control laws in (15) and (47), the triggering conditions in (16) and (48), the NN updating law in (22) and

(53), and the adaptive laws in (28), (37), (59) and (66) are applied, asymptotic stabilization of Le and ψe

is guaranteed.

Proof: Select the resultant Lyapunov candidate as V =VL+Vψ +Vu+Vr +V
β̃u
+V˜̄εr

+V˜̄εrN
+Vrw+Vuw+

V˜̄εu
. By synthesizing (10), (27), (29), (36), (38), (42), (58), (60), (65) and (67), it can directly derive

V̇L ≤− kLL2
e − kuu2

e +βuσu+σu +
β 2

u
4

σu − ςuz2
uNN

+
σuW T

u Wu

4
+σuε̄u +

ε̄2
u
4

σu − krr2
e − kψψ

2
e + ε̄rσr

+
ε̄2

r
4

σr +
aσr

Iz (1+ζ1ar)
+

ε̄2
rN
4

σr

+
σrW T

r Wr

4
− ςrz2

rNN +σr

(68)

Integrating both sides of (68) and invoking Lemma 3, it yields

V (t)−V (0)≤
(

βu +
β 2

u
4

+
W T

u Wu

4
+ ε̄u +1+

ε̄2
u
4

)
σ̄u

−
∫ t

0
krr2

e + kuu2
e + kLL2

e + kψψ
2
e + ςuz2

uNN + ςrz2
rNNdt

+

(
ε̄r +

ε̄2
r
4
+

a
Iz (1+ζ1ar)

+
ε̄2

rN
4

+
σrW T

r Wr

4
+1
)

σ̄r

(69)

From (69), it can be inferred that V (t)−V (0) is bounded. By rearranging the terms, (69) is rewritten as:

∫ t

0
krr2

e + kuu2
e + kLL2

e + kψψ
2
e + ςuz2

uNN + ςrz2
rNNdt

≤V (0)−V (t)+

(
βu +

βu
2

4
+

W T
u Wu

4
+ ε̄u +1+

ε̄2
u
4

)
σ̄u

+

(
ε̄r +

ε̄2
r
4
+

a
Iz (1+ζ1ar)

+
ε̄2

rN
4

+
σrW T

r Wr

4
+1
)

σ̄r

(70)

Therefore, by applying Barbalat’s lemma, it follows that Le → 0 and ψe → 0 as shown in (70). The proof
is completed.
Remark 2. It is observed from (70) that the larger kL, kψ , ku and kr will lead to the faster convergence of

Le and ψe but the larger energy cost and the shorter inter-event time. Although the inter-event time can

be prolonged by tuning up au, ar, bu and br in (16) and (48), it will cost more energy as au and ar are

involved in the control laws of (35) and (64).

6. Numerical experiment

The model of intelligent vehicle in [58] is selected for test and the value of parameters in model has been
described in Table 1.
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6.1. Round trajectory

In a round trajectory, the coordinates of the reference position are defined as xd (t) = 15 +

10sin
(
2πt
/

50
)
− 15exp(−t) and yd (t) = 15−10cos

(
2πt
/

50
)
. ψ (0) = 45◦ and all the other initial

states of the intelligent vehicle are set as zeros. To approximate the model uncertainties, an RBF NN with
11 neurons is adopted in the experiment. In the proposed asymptotic tracking control scheme, the control
parameters are set as

ku = 3,kψ = 8,kL = 0.5,kr =−5,au = 0.5,

ar = 0.1,ςu = ςr = 0.5,br = 0.05,bu = 0.1,

σu = σr = 0.5exp(−0.02t)

(71)

To demonstrate high-precision tracking performance of the proposed algorithm, To facilitate
comparison, we adopt the robust damping control scheme outlined in [59], which is marked as RDC
for brevity. This method was excused from the adaptive neural design by using the robust control
gains, such that the computational complexity was reduced to the most. Its control gains ku, kψ , kL and
kr keep same with (71). To demonstrate the exquisite neural learning performance of the proposed
scheme, the proposed scheme can be remade in the manner of DAC [47], which is marked as ET-DAC in
the experiment. This comparison differed from the proposed scheme in its adaptive laws, which was
absent from the considerations on asymptotical stability and composite neural learning. The proposed
event-triggered asymptotic composite control scheme is abbreviated to ET-ACC for brevity. For the
tracking experiment in 50 s, the experimental results are shown as follows.

To evaluate the control performance comprehensively, we define the indices of mean tracking errors
(MTE) and mean control inputs (MCI) as follows:

MTE ·Le =

∫ 50
5 Ledt

45
, MTE ·ψe =

∫ 50
5 |ψe|dt

45

MCI ·T =

∫ 50
5 |T |dt

45
, MCI ·δ =

∫ 50
5 |δ |dt

45

(72)

To bypass the overshoot at the initial stage, the indexes in (72) are calculated from 5 s instead of
0 s. Moreover, the computation time is recorded as CT and the memory occupancy as MO, which can
evaluate the computational complexity of these control schemes. Setting the minimum running period
as 0.01 s, the total sampling times of control inputs are recorded as TST ·T and TST ·δ . With such the
hardware configuration (CPU:Intel Core i7-10875H 2.3GHz, RAM: 16.0GB) in the numerical experiment,
the records of these indexes are provided in Table 3.
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Table 3. Records of indexes for round trajectory.

Indexes ET-ACC ET-DAC in [47] RDC in [59]

MTE ·Le 0.103 m 1.782 m 3.265 m
MTE ·ψe 0.042 rad 0.053 rad 0.245 rad
MCI ·T 859.486 N 660.690 N 664.937 N
MCI ·δ 0.067 rad 0.068 rad 0.056 rad

CT 1.835 s 1.265 s 0.904 s
MO 78522 kB 69707 kB 11258 kB

TST ·T 163 88 5000
TST ·δ 357 322 5000

It is shown in Figure 2 that all the three schemes can avail the convergence of the intelligent vehicle
to the reference path. However, it is inferred from Figure 3 that the proposed ETC-ACC scheme has
the smaller steady tracking errors and the faster tracking speed than the others. The smaller MTE ·Le of
ETC-ACC in Table 3 can also confirm this fact. Figure 4 exhibits the evolution of T and δ under three
control schemes. The intermittent sampling in the ETC schemes can be clearly observed from the local
view. According to MCI ·T and MCI ·δ in Table 3, there is no much difference in energy cost between
three schemes. Figure 5 illustrates the changes in inter-event time. For T , there are 163 triggering instants
with inter-event times ranging from 0.01 s to 7.76 s, and 357 triggering instants with inter-event times
varying between 0.01 s and a maximum of 3.57 s for δ . In contrast, there were 5000 sampling times
in both control inputs of the time-triggered RDC scheme. Define fu = µu − α̇u −Le cosφe in (13) and
fr = µr − α̇r +ψe in (45). Figure 6 displays the approximation of Ŵ T

u ϕu(su) to fu, and Figure 7 displays
the approximation of Ŵ T

r ϕr(sr) to fr. By the merit of composite learning, the proposed ETC-ACC
presents the better learning of NNs than the direct adaptive control in ETC-DAC. Consequently, the
proposed ETC-ACC has the better tracking performance than the ETC-DAC in Figure 2 and Figure 3.
Figure 8 gives the evolution of neural weights in ETC-ACC and ETC-DAC. It is observed from their
2-norms that all these weights tend to stable values. In view of computational complexity, it is observed
from CT and MO in Table 3 that RDC is the most succinct one without adaptive parameters, ETC-ACC
and ETC-DAC have the similar performance for involving the NNs.

-5 0 5 10 15 20 25 30
-5

0

5

10

15

20

25

ET-ACC
ET-DAC
RDC
Reference path

Figure 2. Trajectories of the intelligent vehicle under ETC-ACC, ET-DAC and RDC.
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Figure 3. Tracking errors Le and ψe under ETC-ACC, ET-DAC and RDC.

0 10 20 30 40 50

0

10

20
104

0 10 20 30 40 50

0

1

2

ET-ACC
ET-DAC
RDC

2.5 3 3.5

-6000
-4000
-2000

0

12 13 14
0

0.05

0.1

Figure 4. Control inputs T and δ under ETC-ACC, ET-DAC and RDC.
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Figure 5. Inter-event time of ETC-ACC.
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Figure 6. Approximation of NNs to fu under ETC-ACC and ETC-DAC.
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Figure 7. Approximation of NNs to fr under ETC-ACC and ETC-DAC.
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Figure 8. Update of neural weights wu = ∥Ŵu∥ and wr = ∥Ŵr∥ for ETC-ACC and
ETC-DAC.
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6.2. Trajectory with sudden transitions

To validate the performance of the proposed algorithm under sudden road transitions, we designed a
scenario with abrupt transitions. The reference path trajectory is (73).xd = 2t,yd = 5, if t < 50s

xd = 2t,yd = 15 else
(73)

The total simulation time is 100 seconds in this case. Initial position of the vehicle as well as the
controller parameters are consistent with the round trajectory case described above. Figure 9 to Figure 13
present the simulation results, while the numerical comparison results are summarized in Table 4. Figure 9
illustrates the trajectories of ETC-ACC and RDC algorithms under a sudden road change. By analyzing
Figure 10 in conjunction with the numerical results presented in Table 4, it can be observed that ETC-ACC
maintains high-precision tracking performance even in the presence of abrupt road variations. Figure 11
presents the control inputs T and δ for both the ETC-ACC and RDC algorithms. Notably, while ETC-ACC
achieves superior tracking performance, its energy consumption is slightly higher compared to RDC.
Figure 12 shows the inter-event time of the ETC-ACC algorithm, which represents the time intervals
between successive triggering events. Finally, Figure 13 presents the evolution of the adaptive laws
over time, illustrating how the system parameters adjust dynamically to ensure robust performance and
accurate tracking under varying conditions.

Figure 9. Trajectories of the intelligent vehicle under ETC-ACC and RDC.

Figure 10. Tracking errors Le and ψe under ETC-ACC and RDC.
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Figure 11. Control inputs T and δ under ETC-ACC and RDC.

Figure 12. Inter-event time of ETC-ACC.

Figure 13. Update of neural weights wu = ∥Ŵu∥ and wr = ∥Ŵr∥ for ETC-ACC.

Table 4. Sudden transition trajectory index records.

Indexes ET-ACC RDC in [59]

MTE ·Le 0.424 m 4.019 m

MTE ·ψe 0.0168 rad 0.0849 rad

MCI ·T 5789.33 N 871.16 N

MCI ·δ 0.0135 rad 0.0170 rad
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7. Conclusion

An event-triggered adaptive neural asymptotic tracking control scheme was developed for the intelligent
vehicles. Through the numerical experiment, it was proved that the proposed scheme is more capable of
high-precision tracking tasks by wielding the asymptotic stability and the composite learning of NNs.
The event-triggered mechanism was independently taken in both the control inputs of T and δ , so as to
alleviate the communication burden. The proposed scheme offered a uniform control framework for the
nonlinear intelligent vehicles, which had wide practicability and high efficiency. One limitation of this
study is that the proposed control framework does not explicitly account for external disturbances, such
as wind gusts, sensor noise, and parameter variations, which may affect the real-world implementation
of the control strategy. While the adaptive neural network compensates for system nonlinearities, its
robustness against sudden and unpredictable disturbances has not been rigorously analyzed. Future
research will focus on extending the proposed approach by incorporating disturbance observers or robust
control techniques to enhance its resilience.
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