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Abstract: The paradigm of Artificial Intelligence and Machine Learning has resulted in an 

amazingly diverse plethora of models operating in various environments and quite often 

exhibiting numerous successes. There is a growing spectrum of challenging application areas 

of high criticality where one has to meet a number of fundamental requirements. Those 

manifest evidently when Machine Learning constructs have to function autonomously and 

any decisions being rendered   entail far reaching implications. The carefully crafted learning 

process has to result with advanced models. Along with the developed models, they have to 

come hand-in-hand with credibility measures that are crucial to assess an extent to which the 

results generated by such measures are meaningful, trustworthy and credible.  

The credibility of the Machine Learning models becomes of paramount importance 

given the nature of application domains. Autonomous systems including autonomous 

vehicles, user identification (both using audio and video channels), financial systems (calling 

for sound mechanisms to quantify risk levels) require the ML system making classification 

or prediction decisions some level of self-awareness. Among others, this translates to forming 

sound answers to the following crucial questions emerging within the design process: 

How much confidence could be associated with the result? 

Could any action /decision be taken on a basis of obtained result?  

Given the reported level of credibility, is there any other experimental evidence one 

could acquire to validate the decision? 

In this study, we advocate that a general way to achieve such goals is to engage the 

mechanism of Granular Computing; subsequently, the granularity endowing the results are 

sought as a vehicle use to quantify the credibility level. Sustainable (or green) Machine 

Learning gives rise to the agenda of knowledge reuse, namely exploring possibilities of 

potential reuse of the already designed models in a spectrum of current environments where  
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computing overhead as one of the ways to contribute to the agenda of sustainable Machine 

Learning and discuss a crucial role of information granularity in this context. 

Keywords: sustainable machine learning; granular computing; awareness; knowledge 

transfer; credibility 

1. Introduction 

In the recent years, we have been witnessing a rapid progress of Machine Learning (ML), 

bringing a wealth of conceptual developments, impressive learning algorithms and far-

reaching applications. In a long run, however, there are some apparent roadblocks that very 

likely might negatively impact future developments, especially at the application side. Some 

of them are listed below: 

-Enormous computing overhead, 

-Limited interpretability and explainability [1], 

-Privacy and security issues 

-Brittleness of ML solutions 

-Credibility of solutions provided by ML models 

-Stability of models 

All of those challenges are related to each other to some extent and in numerous 

situations the design criteria are of conflicting character. As an example, one can point at a 

need to strike a sound trade-off between accuracy and interpretability where such 

requirements are linked with the aspects of brittleness and privacy. The direction of green AI 

has started to play a highly visible role [2,3–5]. 

While the above list is long, there are two items on this agenda that deserve particular 

attention, namely the credibility measures of ML constructs and ways to curb computing 

overheads. The credibility of ML models and confidence quantifying their results are also of 

paramount concern to any critical application especially in situations when dealing with 

autonomous systems [6,7–9] operating in critical environments where ideally one could 

anticipate that the constructed system should exhibit some degree of self- awareness.  If the 

credibility of result is low, instead of realising the decision/action, one may anticipate that 

the system should elicit additional knowledge before making a decision actionable.   

The energy consumption associated with the design of complex ML architectures is 

another highly visible challenge, which is not sustainable in a longer perspective. 

In this study, we focus on the two items from the above list that are of paramount 

relevance. The credibility (confidence) of results produced by ML constructs is inherently 

expressed in the form of information granules. Several development scenarios are carefully 

revisited including those involving constructs in statistics (confidence and prediction 

intervals), and granular parameters (fuzzy sets and interval techniques). We augment the 

commonly encountered and challenging paradigm of Federated Learning where the aspect of 

quality of the model and its results calls for a thorough assessment and quantification.  
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The study is structured into four sections. To make the presentation self-contained, we 

briefly recall the essentials of GrC. In Section 2, we elaborate on the credibility of models. 

Section 3 is focused on the ideas of transfer learning. Conclusions are offered in Section 4.  

2. Information granularity and the discipline of granular computing 

The terms information granules and information granularity themselves have emerged in 

different contexts and numerous areas of application. Granular Computing is quite often 

associated with the pioneering studies by Zadeh [10]. He coined an informal, yet highly 

descriptive and compelling concept of information granules.  In general, by information 

granules one regards a collection of elements drawn together by their closeness (resemblance, 

proximity, functionality, etc.) articulated in terms of some useful spatial, temporal, or 

functional dependencies. Subsequently, Granular Computing (GrC) is about representing, 

constructing, processing, and communicating information granules [11,12]. As a matter of 

fact, GrC is about realizing mechanisms of abstraction; the required level of abstraction is 

helpful in coping with complexities of real-world phenomena. 

The framework of Granular Computing along with a diversity of its formal settings 

offers a critically needed conceptual and algorithmic environment. A suitable perspective 

built with the aid of information granules is advantageous in realizing a suitable level of 

abstraction. It also becomes instrumental when forming sound and pragmatic problem-

oriented trade-off among precision of results, their easiness of interpretation, value, and 

stability (where all of these aspects contribute vividly to the general notion of actionability). 

There are numerous well-established formal frameworks of information granules; the 

commonly encountered include: 

-Sets (intervals) [6,13,14] 

-Fuzzy sets [15][16] 

-Shadowed sets [17] 

-Rough sets [18,19] 

-Random sets 

-Probabilities 

-Hesitant sets 

... 

There is an important direction of generalizations of information granules, namely 

information granules of higher type. The essence of information granules of higher type 

comes with a fact that the characterization (description) of information granules is described 

in terms of information granules rather than numeric entities. Well-known examples are 

fuzzy sets of type-2, granular intervals, or imprecise probabilities. For instance, a type-2 

fuzzy set [20] is a fuzzy set whose grades of membership are not single numeric values 

(membership grades in [0,1]) but fuzzy sets, intervals or probability density functions 

truncated to the unit interval. There is a hierarchy of higher type information granules, which 

are defined in a recursive manner. Therefore, we talk about type-0, type-1, type-2 fuzzy sets, 
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etc. In this hierarchy, type-0 information granules are numeric entities, say, numeric 

measurements. This idea is explored in the construction of granular models. 

3. Credibility of models 

There are two main challenges when it comes to the construction and an efficient deployment 

of ML architectures. They have to be carefully addressed: 

3.1. Development of ML models by optimizing some loss function 

There are a variety of learning schemes aimed at the minimization of the loss function. 

Typically, structural and parametric optimization tasks are envisioned. Structural 

optimization in which a number of hyperparameters are optimized focuses in the realm of 

population-based optimization or a prudent search strategy over a relatively limited search 

space. The parametric optimization involves some gradient-based optimization. 

3.2. Quantification of credibility of the model and its results  

This phase, although crucial to any applications addressing the need to express how much 

confidence could be associated with the constructed ML model, is less visible in comparison 

to the first one. Yet, the credibility of the ML model and its ensuing parameters is highly 

relevant implying the usefulness of the developed model and the credibility in the results.  

The issue of awareness about the quality of the model becomes more central and will play 

even more visible role given the scope of existing and future applications, especially those 

concerning critical and autonomous systems. 

A numeric result of prediction or classification does not carry any associated credibility 

measure. We advocate that the credibility can be associated with the numeric results by 

making its granular description, viz. by forming an information granule formed around the 

original numeric finding, Figure 1. The information granule delivers a well quantifiable result 

of credibility of the outcome and makes the user or associated system (e.g., an autonomous 

vehicle) aware about the quality of the result implying possible activity to be taken, in 

particular to take some action or rather to collect more experimental evidence. 

 

Figure 1. Augmenting numeric results by concept of information granularity. 
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It is worth noting that this line of thought invoking information granule has been studied 

in the past under some particular assumptions.  For instance, in linear regression analysis, the 

results are provided in terms of interval information granules guided by some probabilistic 

evidence and leading to confidence or prediction intervals. In case of nonlinear models, one 

has to consider more specialized approaches such as a delta method, mean-value estimation 

(MVE), and bootstrapping. 

Another alternative is to resort to Bayesian models and Gaussian processes, in particular. 

In these cases, the results of the model are probabilistic information granules. 

 From the architectural perspective, we can think of a granular embedding the original 

numeric ML model as illustrated in Figure 2. The embedding mechanism is endowed with a 

level of information granularity  which can be thought as a design asset whose optimization. 

From the algorithmic perspective, the embedding is realized by optimizing a certain 

performance index characterizing the quality of granular results when being confronted with 

the data. 

 

Figure 2. A granular embedding of ML model; emphasized is a level of information 

granularity treated as a certain design asset. 

Let us start with a numeric model M expressed as y = M(x; w) that has been designed in 

a supervised mode on the basis of pairs of input-output data (xk, targetk), k = 1,2, ..., N. Here 

x stands for the vector of input variables, w, dim(w) = m, denotes a vector of estimated 

parameters of the model, targetk is the output data for the corresponding xk.  

The parameters of the model w are elevated to a numeric counterpart in the following 

fashion 

w 
𝐺,𝜀
→  W                                                                       (1) 

i.e.,  

W = G(w,)                                                              (2) 

where the level of information granularity e gives rise to granular information granules W. 

Namely, if we admit information granules in the form of intervals, we have the following 

expressions 

M
x

Y

Level of 
information
granularity

G(M)
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wi 
𝜖
→[min(wi(1 + ),wi(1 − )), max(wi(1 + ),wi(1 − ))],  ≥0                           (3) 

wi 
𝜖
→[min(wi(1 + ),wi/(1 + )), max(wi(1 + ),wi/(1 − ))],  ≥0                          (4) 

The higher the value of  is the broader the interval information granule centered around 

the original numeric parameter wi. 

The level of information granularity  is optimized by evaluating the resulting 

information granule Y = G (M(x; w)) in terms of the coverage of data and its specificity. 

These two criteria are important descriptors of the quality of information granule produced 

by the model when confronted with numeric data. Coverage is a Boolean (or multivalued 

predicate in case of fuzzy sets) that returns 1 when the numeric datum is “covered” (included) 

in the information granule. Let the granule be an interval [a, b] and the numeric datum is y0. 

We have  

cov(y0, [a, b]) = 1 if y0 ∈[a, b], otherwise coverage returns zero,  cov(y0, [a, b]) = 0      (5) 

Obviously, we may wish that the coverage requirement is satisfied for all data. The 

higher the coverage, the better the model in terms of this criterion.  Specificity is a measure 

expressing the precision of the information granule. In general, it can be thought as a 

decreasing function g of the length of information granule. The length of the interval is 

computed as |b − a|. There are numerous examples of the function g. For instance,  

g (|b − a|) = 1 − |b − a|/range                                                     (6) 

where range is a calibration parameter. Another alternative is  

g(|b − a| = exp(−|b − a|)                                                        (7) 

with > 0 serving as scaling coefficient. The higher the specificity of information granule, 

the more relevant it is. Note that specificity of a single element is the highest, sp({y0}) = 1. 

Coverage and specificity are in conflict: to achieve higher level of coverage, one has to 

reduce specificity and vice versa. Figure 3 illustrates this relationship between coverage and 

specificity by displaying them for different values of .  

 

(a)    (b) 

Figure 3. Coverage–specificity optimization (a), and coverage–specificity relationship 

implied by different values of (b). 
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Consider a data set (either training, validation, or testing data). The value of the level of 

information granularity  is determined through the optimization of the granular results 

confronted with the numeric data. In the optimization, a product of coverage cov and specifity 

sp (which are essential descriptors of information granules). The optimization yields a certain 

compromise between these two conflicting criteria of coverage and specificity. With the 

increase of the values of , the coverage increases but results in lower values of specificity. 

The pertinent formulas are given as  

cov̅̅ ̅̅  = 
1

N
∑ cov(target

k
N
k = 1 ,Yk)                                                (8) 

sp̅ = 
1

N
∑ sp(𝑌𝑘

N
k = 1 )                                                                      (9) 

where the above measures are defined in (5)–(7) and averaged over the corresponding data. 

We aim to maximize both the measures as in the case of the principle of justifiable granularity. 

In other words, we have opt being a solution to the optimization problem where the product 

of coverage and specificity is maximized 

opt = arg max(cov()sp())                                                (10) 

The higher the product of coverage and specificity is, the better the generated granular 

results are. 

The level of information granularity could be more refined by admitting that each 

parameter of the model, w1, w2, ..., wm can be transformed to its granular counterpart by 

associating 1, 2,..., m with the corresponding parameters. 

wi 
𝐺,𝜀𝑖
→  Wi                                                                                             (11) 

= [1 2...m]. This yields the following optimization problem 

max(cov()sp())                                                       (12) 

and 

opt = arg max(cov()sp())                                                (13) 

The calculus of intervals with the algebraic operations follows the well-known formulas [1]. 

In case of monotonic functions, we have f[a, b]) = [f(a), f(b)] for increasing functions 

and f([a, b]) = [f(b), (a)] for decreasing functions.  In general case the extension principle is 

applied [7][12]. 

In rule-based models the parameters of the local functions in the conclusion are made 

granular. In the sequel the output is an information granule. Generally, a hierarchy of 

information granules is build, see Figure 4. 
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Figure 4. An emerging hierarchy of granular models distributed across information 

granules of increasing types of information granularity. 

4. Transfer learning  

The design of ML models calls for substantial computing overhead implying a significant 

energy consumption; recall that ChatGPT 3 required 936 MWh electricity. To secure further 

progress it becomes critical to pursue efficient ways to reuse already acquired knowledge 

(models). Transfer learning is a learning paradigm that is aimed at delivering the badly 

needed capabilities. While the idea has been around under different names such as learning 

by analogy, domain adaptation, pretraining..., its role in the current developments is highly 

relevant. In brief, transfer learning is about an extraction of previously acquired knowledge 

and applied to a new similar application. There are a number of other advantages motivating 

the consideration of transfer learning including situations where robustness is required.   

 

Figure 5. An essence of transfer learning. 

What should not be ignored in the overall framework of transfer learning, Figure 5, is a 

fact that the model (knowledge) transferred from an original environment (referred to as a 
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source domain Ds) to the new environment (target domain Dt) is no longer of the same quality 

as it enjoyed in the Ds. Intuitively, the more different Ds is from Dt, this adversely impact the 

quality of the constructed model located in Dt. This calls for a thorough assessment of M – 

we argue that M in Dt becomes inherently granular where the concept of information 

granularity plays a pivotal role.  

There are two main approaches in the development of the granular models in the Dt 

environment. 

4.1. Passive approach 

As visualized in Figure 6, the model M built in Ds is unchanged and directly positioned in Dt. 

In light of differences in Dt and Ds, the model M becomes granular G(M). The construction 

of G(M) follows the scheme discussed in Section 3. 

The quality of the resulting granular model can be expressed by computing the product 

cov*sp obtained for the optimal value of,  (cov*sp)opt = arg max(cov*sp). The lower the 

value of this product, the lower the quality of the transferred model.  This quality is related 

with the “distance” between Ds and Dt. The more distant the domains are, the lower the 

quality of the transferred model is up to the point that the passive approach is no longer 

feasible and one has to explore another alternative such as an active approach. 

 

Figure 6. Transfer learning: a passive approach. 

4.2. Active approach 

As the name stipulates, the model in Dt is constructed by benefiting from the navigation 

delivered by the granular model G(M). The main idea is displayed in Figure7. The model in 

Dt is designed on a far smaller data set (hence the reduction in the computing overhead) and 

its design is guided by the granular results produced by the granular manifestation of the 

model built on Ds and transferred to Dt.  
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Figure 7. Active transfer learning: a general scheme along with a navigation delivered by the 

granular model G(M) transferred from Ds. 

The minimized loss function is composed of the following two components: (i) the loss 

computed for M0 and data coming from Dt, and (ii) granular navigation hints coming from 

G(M)). Formally, it is expressed in the following form 

Q = ∑ ||𝑡𝑎𝑟𝑔𝑒𝑡𝑘 −𝑀
0(𝒙𝑘 , 𝒘)|| + 𝛼 ∑ [1 − 𝑐𝑜𝑣(𝑀0(𝒙𝑘𝑫𝑡𝑫𝑡

, 𝒘), 𝐺(𝑀(𝒙𝑘))] ∗ 𝑠𝑝(𝐺(𝑀(𝒙𝑘))   (14) 

Where is a hyperparameters controlling an impact coming from the granular model. 

Higher values of a stress higher reliance of the designed M0 on the model transferred from 

Ds. Subsequently the minimization of Q is carried out following the gradient-based 

optimization scheme 

w(iter + 1)=w(iter) − gradwQ                                                (15) 

The second term of (14) requires some clarification. Refer to Figure 8. The intent is to 

make the result M0(x) aligned (included in) G(M(x)) which implies that M0(x) is covered by 

GM(x)) which is expressed by the term cov(M0(x), G(M(x)). Hence in case of full coverage 

inclusion) the expression 1 − cov(M0(xk,w),G(M(xk)) attains zero. Specificity measure, 

sp(G(M(xk)), quantifies the credibility of the granular guidance provided by the transferred 

model. The lower the specificity, the lower the intensity of support delivered by the granular 

model. Because of the granular form of the second term in (14), it delivers some 

regularization mechanism that could be referred to as a granular regularization.  If for some 

data xk, the coverage and specificity are high, the guidance delivered by the granular model 

to construct the model M0 becomes higher. If the coverage term is the same for two data xk 

and xl, the corresponding regularization term achieves higher value for the data where the 

specificity of output of the model M is higher.  
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Figure 8. Granular regularization – computational details. 

 

Figure 9. Multi-source transfer learning. 

The generalization of the above scheme is the one in which there are several source 

domains, Figure 9, and from each of them the corresponding models give rise to their granular 

counterparts. Those is sequel are sought as granular navigation hints that are incorporated in 

the augmented loss function assuming the following form 

Q=∑ ||𝑡𝑎𝑟𝑔𝑒𝑡𝑘 −𝑀
0(𝒙𝑘, 𝒘)|| + 𝛼1∑ [1 − 𝑐𝑜𝑣(𝑀0(𝒙𝑘𝑫𝑡𝑫𝑡

, 𝒘), 𝐺(𝑀1(𝒙𝑘))]   ∗

𝑠𝑝(𝐺(𝑀1(𝒙𝑘)) + 

+2 ∑ 𝛼1∑ [1 − 𝑐𝑜𝑣(𝑀0(𝒙𝑘𝑫𝑡𝑫𝑡
, 𝒘), 𝐺(𝑀1(𝒙𝑘))] ∗ 𝑠𝑝(𝐺(𝑀1(𝒙𝑘)) + 

+...+ 

+p ∑ ∑ [1 − 𝑐𝑜𝑣(𝑀0(𝒙𝑘𝑫𝑡𝑫𝑡
, 𝒘), 𝐺(𝑀𝑝(𝒙𝑘))] ∗ 𝑠𝑝(𝐺 (𝑀𝑝(𝒙𝑘))                        (16) 

where 1, 2, ..., p are the hyperparameters associated with the granular models and the 

overall terms deliver a mechanism of granular regularization. 

5. Conclusions 

The conceptualization and comprehensive design of intelligent systems involving ML 

paradigms have been intensively pursued producing a list of successes. With the increasing 

spectrum of applications, quite often targeting critical domains with far reaching implications, 



Artif. Intell. Auton. Syst.  Article 

 12 

the development strategies have to include requirements of credibility assessment and ways 

of learning that are computationally sound. To address these two important issues, we have 

argued that concepts of abstraction realized in the setting of Granular Computing play is 

crucial role. The notion of credibility paving a way to realize self-awareness mechanisms in 

ML architectures and open new directions both in studies on autonomous systems and their 

applications. 
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