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Abstract: Speed measurement is essential for the development of Intelligent Traffic Systems
(ITS), and the adoption and enforcement of appropriate speed limits are among the most
effective strategies to improve road safety. This review offers an exhaustive exploration
of vehicle speed measurement methods and technologies within traffic applications. While
inductive loop detectors and radar are mature technologies in traffic speed measurement,
cameras are typically used to facilitate license plate recognition. This paper delves into the
principles and technologies behind traditional speed measurement systems such as inductive
loop detectors, wireless radar, LiDAR, and the Global Positioning System, alongside computer
vision-based speed measurement. It examines the evolution of computer vision, reviews
common datasets, and explores the feasibility of using cameras for direct speed measurement.
Furthermore, this paper evaluates the precision, cost, and practicality of these technologies and
discusses future research directions, providing crucial references and guidance for advancing
Intelligent Traffic Systems.
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1. Introduction

In 1993, the Intelligent Transportation Society of America introduced the concept of Intelligent
Transportation Systems (ITS) at the IVHS World Congress [1]. ITS leverages advanced
information technology, communication technology, and control technology to enhance the
efficiency, safety, sustainability, and convenience of transportation systems. It emphasizes
the critical role of real-time vehicle speed measurement as a key function of ITS. With
technological progress, vehicle speed measurement has rapidly evolved, transitioning from
traditional magnetic inductive loop detectors to radar Doppler systems, and now to computer
vision speed measurement, demonstrating a trend towards diversification [2].

The application of magnetic induction loops progressed following the discovery of electro-
magnetic induction. British physicist Michael Faraday discovered this phenomenon in 1831.
By the mid-20th century, these loops were employed in rail transport to monitor the speed
and position of trains. As automobiles became widespread and traffic management advanced,
their use expanded to other areas of traffic speed measurement. Recent improvements in
loop detector technology have made these systems one of the most extensively used vehicle
detection technologies due to their low cost, high reliability, and precision [3–5]. However,
because inductive loops are embedded in the roadway, they pose challenges in maintenance
and are vulnerable to damage.
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In 1935, British scientist Robert Watson-Watt developed the first radar, which significantly
advanced during World War II. Post-war, radar technology transitioned to civilian applications,
including traffic management and law enforcement for vehicle speed measurement. By the
1960s, developments in the aerospace industry greatly enhanced radar precision, extending
its operational wavelengths from short waves to millimeter waves, infrared, and ultraviolet.
By the 1980s, theoretical research in radar technology had advanced, forming significant
theories like radar matched filtering, statistical detection, and ambiguity functions [6]. Today,
traffic radar commonly uses the Doppler frequency shift method to calculate vehicle speeds.
This technology, which operates wirelessly, minimizes equipment wear and damage and is
unaffected by weather conditions, allowing it to function in the dark or under adverse weather
conditions. However, in environments with dense traffic across multiple lanes, distinguishing
and tracking multiple targets can become complex. Additionally, interference from other
electromagnetic devices can increase radar noise and complicate the accurate identification of
targets.

In 1960, Theodore Maiman at Hughes Laboratories developed the first operational laser,
which laid the foundation for the concept of Light Detection and Ranging (LiDAR). By the late
1970s, NASA had successfully produced an airborne oceanographic LiDAR system equipped
with scanning and high-speed data recording capabilities. In 1989, Jeremy Dunn of Laser
Technology Inc. introduced a police LiDAR system for traffic speed measurement and law
enforcement, significantly improving enforcement efficiency at that time [7]. This system
operates by emitting a laser pulse towards a target, capturing the reflected laser, and measuring
the time interval. The speed of the target is then calculated by analyzing the time difference
between consecutive laser pulses in relation to the speed of light. LiDAR is also critical
for acquiring depth information, playing a significant role in 3D scene reconstruction and
high-precision mapping [8]. However, LiDAR’s performance can be severely affected by
adverse weather conditions such as rain, fog, and snow, which scatter the laser beams, and the
high production costs of LiDAR limit its large-scale deployment.

The GPS system was initiated by the U.S. Department of Defense in 1970, with its
first satellite launched in February 1978, and became fully operational in 1994. Apart from
the U.S. GPS, other countries have subsequently developed their own satellite navigation
systems, including Russia’s GLONASS, Europe’s Galileo, and China’s Beidou. In 1983, the
U.S. decided to declassify the civilian signal of the original GPS system, thereby offering
global civilian GPS navigation services and promoting the development and application of
civilian GPS receivers. By the 1990s, nearly every car manufacturer had begun to explore and
test GPS for navigation and speed measurement capabilities. In 1990, Mazda released the
first vehicle with an integrated GPS system, and by the 21st century, vehicle navigation and
speed measurement based on the Global Positioning System had become a standard feature in
vehicles. The Global Positioning System calculates the receiver’s position using signals from
multiple satellites and the time differences between them, and the receiver’s average speed
is then determined from the positional changes over time intervals [9]. GPS is known for its
excellent speed measurement accuracy but is susceptible to signal interference from buildings
and is only suitable for measuring the speed of the device itself.

In 1959, neurophysiologists David Hubel and Torsten Wiesel conducted vision experi-
ments on cats, discovering that neurons in the primary visual cortex are sensitive to moving
edges. This discovery, revealing the columnar structure of visual processing in the brain,
would later influence the development of convolutional neural networks four decades later.
In 1965, Lawrence Roberts published "Machine Perception of Three-Dimensional Solids,"
describing the process of deriving three-dimensional information from two-dimensional im-
ages. This work fostered the development of edge detection algorithms and three-dimensional
reconstruction techniques, providing foundational insights for the field of computer vision.In
the realm of speed measurement, two prevalent methods for detecting moving objects in video
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sequences are frame differencing and optical flow. Frame differencing was first proposed by
Lucas-Kanade in 1981 [10], and optical flow was introduced by Horn-Schunck in the same
year [11]. These methods start by processing consecutive frames through frame differencing,
optical flow, or background subtraction [12] to extract the motion pixels of the objects. The 3D
coordinates of the scene’s targets are then calculated using pre-calibrated camera parameters,
and the object’s speed is determined by analyzing the time differences.Since Alex Krizhevsky,
Geoff Hinton, and Ilya Sutskever won the ImageNet competition in 2012, deep learning has
brought significant breakthroughs to computer vision. The advent of R-CNN in 2014 pushed
object detection algorithms towards an end-to-end approach[13], reducing manual intervention
in image recognition. As the fields of computer vision and deep learning have evolved, the
measurement accuracy of visual speed measurement now complies with the national standards
for electronic speedometers (<=±5% or ±5 km/h), and extensive domestic and international
highway camera speed measurement experiments have confirmed the feasibility of computer
vision-based speed measurement [14]. Unlike systems based on inductive loops or radar,
computer vision speed measurement technology primarily relies on standard cameras and
computing platforms, which can extract rich information from images and are relatively easy to
deploy and expand, facilitating software upgrades and functionality enhancements. However,
variations in lighting, weather conditions, and transitions from day to night can affect image
quality, subsequently impacting the accuracy of speed measurement.

This investigation focuses on comparing various sensors’ speed measurement methods
and technologies, including fixed and vehicle-mounted speed measurements. It analyzes the
research directions of speed measurement over different periods in chronological order, catego-
rizes the speed measurement methods and technologies used, and assesses the characteristics
and advantages of vehicle speed measurement in the visual field. The paper also evaluates the
performance of current technical literature results.

The structure of the paper is as follows: Section 2 provides an overview of common vehicle
speed measurement methods and introduces the principles behind various speed measurement
techniques. Section 3 introduces existing measurement technology indicators and evaluation
methods, comparing the performance of different speed measurement technologies. Finally,
Section 4 concludes the paper and looks forward to future research directions in the speed
measurement field.

2. Speed measurement technology principles

2.1. Inductive loop

Inductive loops are currently the most mature method for vehicle speed measurement. They
employ two methods to detect vehicle speeds. One method involves embedding the loops either
underground or directly beneath the object being measured, utilizing changes in the signals
from two induction coils triggered by the object to calculate the vehicle’s speed [3, 5, 15, 16].
Specifically, when a vehicle passes over an inductive loop, the metal chassis of the vehicle
intersects the magnetic lines of force. According to the principle of electromagnetic induction,
this interaction induces a signal at the ends of the coil that exhibits regular changes in amplitude
and phase. This induced signal is then processed to determine the vehicle’s relative position
and speed. The principle behind this technique is illustrated in Figure 1.

The other method involves using sensors installed on the axle, which calculate speed
based on changes in electrical signals caused by the Hall effect as the vehicle’s wheels drive
a speed-measuring gear [17]. This approach offers the advantage of obtaining speed data in
real-time and represents a new direction in research within the field of inductive loop speed
measurement. It is commonly used for measuring the speed of trains. The process of this
method is illustrated in Figure 2.
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Figure 1. Process diagram of vehicle speed measurement using a dual inductive loop system.

Figure 2. Flowchart of the induction signal demodulation and lookup table approach.

Due to the maturity of inductive loop technology and its accuracy in speed measurement, it
is often used as a reference standard for vehicle speed in research fields to assess the accuracy
of other speed measurement technologies [18].

2.2. Wireless radar

Wireless radar, particularly millimeter-wave radar, is commonly used for motor vehicle speed
measurement. The application of radar in speed measurement often employs the Doppler
principle [19]. The Doppler frequency shift can be represented by the following formula:

fd =±2vcosθ

λ
(1)

fd is the Doppler frequency shift, v is the relative velocity between the wave source and the
receiver, θ is the angle of deviation in their relative position, and λ is the wavelength. The
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sign is positive when the wave source is approaching the receiver, and negative when it is
moving away.

The error in Doppler radar speed measurement generally does not exceed 1% [6]. The
typical installations for radar speed measurement are as follows: Roadside inclined installation
is commonly used for experimental or temporary road speed measurement setups[6, 20–24].
This method is convenient for installation and removal but can be prone to obstruction and
interference in high traffic volumes. Another method involves mounting the radar on overhead
gantries or signal frames [25–28], which reduces the impact of vehicle obstruction but is
more challenging to install. Additionally, it requires frequency modulation to separate the
speeds of different vehicles [26]. The final method is vehicle-mounted installation [17, 29–31],
typically used for measuring the vehicle’s own speed from the bottom. However, this approach
can be significantly affected by environmental interference [29]. A dual radar design at the
vehicle’s bottom can enhance measurement accuracy, with differential common error control
keeping the error within 1% [30, 31]. There are also front-mounted radars for measuring the
relative speed of vehicles ahead [19, 32]. In addition to Doppler frequency shift-based speed
measurement, indirect speed measurement using the echo principle is also employed.

R =
ctr
2

(2)

R is the distance between the radar and the target, c is the speed of light, and tr is the time
difference between the emission of the radar signal and the receipt of the echo signal. Speed is
measured based on the relative position change of at least two echoes [33, 34]. The deviation
can be greater than 10%, and it is generally not used for speed measurement. Instead, it is
commonly applied in autonomous driving for vehicle or object detection [35, 36].

2.3. LiDAR

Similar to radar, LiDAR (Light Detection and Ranging) speed measurement also uses Doppler
frequency shift and reflection time methods. Given LiDAR’s capability to effectively reflect
the contours of objects and assess distances, it is primarily used in the field of autonomous
driving. Mounted around the vehicle, it identifies objects in the vicinity and can be used for 3D
modeling of the surrounding environment. A common speed measurement method uses the
centroid of the point cloud clusters as the vehicle’s position. As a vehicle passes the LiDAR
sensor, the centroid’s relative position changes frame by frame. By analyzing these changes,
the speed of other vehicles can be estimated with an error within 2 km/h [37, 38]. There are
also methods that modulate the LiDAR to achieve Doppler frequency shift speed measurement,
with an error margin around 4% [39–41]. Commonly used LiDAR speed guns emit multiple
laser signals and estimate the target’s speed based on the reflection time, with a speed error
within 2 km/h [42].

Multi-object recognition from point clouds is a crucial step in vehicle speed measurement.
With the advancement of artificial intelligence in autonomous driving, approaches for object
detection using point cloud data are categorized into three types. The first category [43–45]
follows the methodology of PointNet [46] by directly extracting features from raw point cloud
data. The second approach converts point cloud data into 2D Bird’s Eye View (BEV) images.
Although this top-down projection loses height information and may distort object shapes,
it reduces computational load [47–49]. The third category involves replacing sections of
the point cloud with voxels and then using 3D convolution to extract features, although this
transformation can lead to some loss of information [50–54]. As shown in Figure 3.

The first category involves point cloud convolution prediction, focusing on how to sample
high-quality target point cloud information. PointNet++ [55] addresses issues related to
point cloud density by optimizing feature extraction using the Farthest Point Sampling (FPS)
algorithm and Multi-Scale Grouping (MSG), simultaneously employing a feature pyramid
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structure to merge shallow and deep features. 3DSSD[56] also improves the sampling method
of point clouds. Its Fusion-FPS (F-FPS) filters out background points while retaining more
foreground points, removing the Feature Propagation layer to accelerate model computation.

The second category is 2D BEV prediction, where a major challenge is how to retain 3D
spatial information in 2D effectively. In the PointPillars network [57], the Pillar Feature Net
concept preserves the average height information of point clouds while projecting them onto
a plane, followed by object detection using CNN+SSD, achieving a good balance between
speed and performance. RT3D [58] encodes three-dimensional point cloud information and
projects it into a BEV image for object detection, managing to process point cloud scan data
in real-time.

The third category is 3D voxel prediction, focusing on two research objectives: reducing
the computational overhead of 3D convolution to speed up processing and obtaining better
voxel information to improve accuracy. VoxelNet [59] uses voxels to segment the point cloud
in space, randomly sampling data within each voxel to save on computational costs, and uses
3D convolution to extract feature information for regression and classification, providing an
effective framework for 3D point cloud recognition. Recognizing that point clouds are often
distributed on a single directional surface of objects, the Fully Sparse TRansformer (FSTR)
introduces a Gaussian weighting algorithm that optimizes traditional sparse voxel center point
sampling methods[60]. It enhances model performance by better predicting target center
points and refining denoising queries. This method shifts the uniform distribution of noise to a
Gaussian distribution, more closely simulating real data distributions. The model is trained to
ignore this added noise, thus predicting target bounding boxes more accurately.

Figure 3. LiDAR object detection process.

In addition to model categorization, there are several universal methods for enhancing
accuracy. One such method is proposed by CenterPoint [61], which introduces an anchor-free
center point prediction approach. This method locates the center of an object and uses the
central features to regress to a complete 3D bounding box, improving accuracy in both 2D
BEV prediction and 3D voxel prediction. Given that the distribution of background data in
point clouds far exceeds that of the foreground, and that a vast amount of irrelevant information
can be detrimental to model performance, Real-Aug [62] approaches this issue from a data
scale perspective. It proposes an effective data augmentation technique that generates synthetic
foreground point cloud data while ensuring realistic scene logic, thereby enhancing the model’s
ability to predict foreground targets more accurately. FocalFormer3D [63] uses a Muti-stage
Heatmap to identify false-negative samples from a previous phase as challenging samples
for focused training in the subsequent phase, while ignoring true positives. This approach
helps reduce the model’s interference from extensive background information, allowing it to
concentrate more on locating foreground objects.
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2.4. Global Navigation Satellite System (GNSS)

GNSS speed measurement is typically used for measuring a vehicle’s own speed. There are
four main GNSS speed measurement methods: position differencing, raw Doppler observation,
pseudorange differencing, and carrier phase differencing. Position differencing can achieve
high positioning accuracy, usually at the sub-meter level or even higher. The actual accuracy
depends on various factors, including the distance between the base station and the rover, the
accuracy of the base station, the performance of the receiver, and environmental conditions.
Typically, pseudorange relies on the relative differences between receivers at different locations
receiving signals from at least four of the same satellites, calculating the spatiotemporal
information (x,y,z, t) of the target’s position, and using these differences to estimate the
target’s motion speed. This method usually achieves sub-meter accuracy and is suitable for
low-cost receivers [64]. Position differencing technology can achieve several times to several
tens of times the accuracy of single receiver positioning, providing more precise and reliable
positioning results [9]. Compared to other methods, the original Doppler shift can directly
estimate the speed. The mathematical model for the original Doppler shift can be expressed
as:

D = e
(
v− v j

)
+b′+ ε (3)

Compared to other methods, raw Doppler frequency shift can directly estimate speed. The
mathematical model of raw Doppler can be represented as follows: D is the Doppler frequency
shift observation value, e represents the direction cosines of the line connecting the receiver and
the satellite

[
ex ey ez], v and v j are the velocities of the receiver and the satellite, respectively,

b′ represents the drifts of the receiver clock and the satellite clock, and ε is the observation
noise caused by various error factors such as satellite clock errors, ionospheric errors, and
tropospheric errors. In open terrain without interference, raw Doppler observation speed
measurement can achieve centimeter-level accuracy [65]. However, in practice, accuracy might
be affected by environmental interference and the precision of the receiver. Generally, raw
Doppler observation speed measurement can provide relatively accurate speed measurements
within a sub-meter range [66]. Carrier phase differential speed measurement involves receiving
carrier signals from satellites and using the corresponding receiver module to demodulate the
signals, extracting the phase information of the carrier signals and comparing it with locally
generated reference signals to measure the carrier signal phase information. The processing
of this information can achieve millimeter-level accuracy [64]. Signal precision is enhanced
from noise through Kalman filtering [67]:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (4)

Pk|k−1 = FkPk−1|k−1Fk
T +Qk (5)

Kk = Pk|k−1Hk
T (HkPk|k−1Hk

T +Rk)
−1

(6)

x̂k|k = x̂k|k−1 +Kk
(
zk −Hkx̂k|k−1

)
(7)

Pk|k = (I −KkHk)Pk|k−1 (8)

The formulas (4) and (5) represent the prediction equations: where formula (4) is the pre-
dictive state estimation equation x̂k|k−1 predicting the state at time k without considering the
measurement zk , Fk is the state transition matrix, Bk is the control input matrix, and uk is
the control input. Formula (5) is the predictive error covariance, Pk|k−1 is the corresponding
predictive error covariance, and Qk is the process noise covariance matrix. Formulas (6), (7),
and (8) represent the update equations: Formula (6) is the Kalman gain, Kk is the Kalman gain,
Hk is the observation matrix, and Rk is the observation noise covariance matrix. Formula (7)
updates the state estimation, and formula (8) updates the error covariance. Using differential
techniques with these four measurement technologies can eliminate common errors such as
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satellite clock errors, ionospheric delay errors, and tropospheric delay errors to a certain extent,
stabilizing speed measurement accuracy at the centimeter or millimeter level [68]. Professional
GNSS speed measurement devices can serve as a standard reference for speed.

2.5. Computer vision

Computer vision for speed measurement typically involves two stages, As shown in Figure 4.

Figure 4. Computer visual vehicle speed measurement flowchart.

Accurate camera calibration is crucial for speed measurement, as the transition from a
two-dimensional pixel coordinate system to a three-dimensional world coordinate system
determines the precision of speed measurement. The transformation formula for a pinhole
camera from a two-dimensional plane to three-dimensional coordinates is:u

v
1

=

 fx 0 cx
0 fy cy
0 0 1

(R|t)


X
Y
Z
1

 (9)

(u,v) are the pixel image coordinates of the target point, fx and fy are the camera’s focal
lengths,cx,cy are the optical centers of the image, and(R|t) is the external parameter matrix,
including the rotation matrix R and the translation matrix t, used to transform points from the
world coordinate system to the camera coordinate system, (X ,Y,Z) are the coordinates of the
target point in the world coordinate system.

Because the external parameter matrix varies with the scene, calibration for speed mea-
surement in a monocular setup generally falls into two categories: direct scene calibration and
reference object calibration. Scene calibration [69] refers to direct calibration in the specific
scene. The other method involves objects within the line of sight that have standard or known
lengths, from which feature points are extracted to calculate the camera’s external parameters.
Since depth information cannot be directly obtained in a monocular setup, it is necessary to
use the orthogonal relationships within the scene and the vanishing points of lines to establish
a three-dimensional coordinate system.First, it’s essential to detect the "rectangular areas"
contained in the image. By using the parallel relationships of the edges of these "rectangular
areas," the vanishing points of the lines are determined. Calibration is then performed based on
the orthogonal relationships of the adjacent edges of the "rectangular areas" and the properties
of the vanishing points. Since the projection of actual rectangular areas in the scene onto the
image plane usually results in irregular quadrilaterals, the key to detection lies in identifying
the corresponding areas in the image based on the known orthogonal and parallel relationships
in the actual scene. The corresponding area in the image is the "rectangular area." In vehicle
speed measurement, the most commonly used reference is the lane’s dashed lines, which
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usually adhere to uniform standards [70, 71]. Another good option for establishing a coor-
dinate system is using license plates [72]. There are also techniques for real-time automatic
calibration of the scene, but these involve significant computational effort [73].

v =
∆S
∆T

(10)

Speed measurement typically uses virtual loops as triggers. The principle of virtual loop
speed measurement is divided into two types: measuring the time difference as vehicles pass
through virtual loops twice to estimate speed [74, 75], and schemes using virtual frames for
multi-lane detection [70, 76], as well as methods using multiple virtual loops [74] to enhance
robustness. In Dahl M’s experiment, it was proven beneficial to increase the accuracy of speed
measurement by increasing the number of intrusion lines; using the same method, increasing
from two to four lines reduced the error from 1.92% to 1.17% [77]. Speed is determined by
timing the changes in the vehicle’s position relative to the virtual loop over a fixed time [78].

In contrast to the pseudo-three-dimensional coordinates obtained with a single camera,
binocular recognition can derive true three-dimensional coordinates through the triangulation
of target points using two cameras.

p = MP = K (I 0)P (11)

p′ = M′P = K′ (R t)P (12)

The target point’s pixel coordinates in the first camera are denoted as p, with M representing
the projection matrix, and K as the camera’s internal parameters. P is the three-dimensional
coordinate, with p′ , M′ , K′corresponding to the second camera’s parameters. The task then
transforms into solving the fundamental matrix F for pixel correspondence. The poles e and e’
of the two images are aligned on the same line, and the transformation matrices H and H’ are
minimized as shown in Equation (13).

∑
i

d
(

H pi,H
′p

′
i

)
(13)

Image resampling corrects the images to parallel views, as illustrated in Figure 5.

Figure 5. Binocular vision depth estimation.

Finally, the depth information of the target is confirmed by calculating the disparity
between the two views, as represented in Equation 14.

pu − p
′
u =

B · f
z

(14)
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To enhance the robustness of parameters or target points, a series of fitting algorithms such
as RANSAC, Levenberg-Marquardt method to minimize reprojection error, or least squares
method are often used. These algorithms fit multiple points’ data to eliminate erroneous points
and obtain highly robust data.

There are two main types of methods commonly used in target recognition tasks: tradi-
tional image processing algorithms and artificial intelligence image processing. In traditional
processing algorithms, the frame differencing method calculates the difference between corre-
sponding pixel points in two adjacent frames of a video sequence. If the difference exceeds a
set threshold, it is considered that motion is present, and the corresponding pixel points are
extracted as moving targets [79, 80]. In the field of traffic, where cameras are often fixed,
improved algorithms such as background subtraction are commonly used. This method first
obtains a background model, then calculates the difference between the current frame and the
background model, and extracts different pixel points as moving targets. Popular algorithms
include Gaussian Mixture Model for background modeling and Vibe background modeling,
among other improved Gaussian background modeling methods. However, background mod-
eling algorithms have obvious limitations, such as the inability to eliminate shadows from
objects. They often need to be used in conjunction with shadow removal algorithms, like
those based on HSV or RGB color spaces, to remove shadows and obtain accurate motion area
images [81]. Another method is optical flow, which identifies objects with similar optical flows
by comparing the optical flow of consecutive frames. Common methods include Lucas-Kanade
(LK) optical flow and pyramid optical flow. Although optical flow can accurately capture
information about moving objects, its disadvantage is that it requires a constant background
light and can only detect small-range moving objects, with effectiveness decreasing as the
calculation range increases.

When AlexNet achieved first place in the object classification domain of the ImageNet
LSVRC-2012 competition with a Top5-error metric exceeding the second-place contender by
more than 10% [82], it sparked widespread adoption of deep learning in computer vision, as
shown in Figure 6. The proposed techniques in the paper, including ReLU, Local Response
Normalization, Dropout, data augmentation, and GPU-accelerated neural network training,
have become foundational in modern computer vision. VGGNet [83] introduced the concept
of receptive fields, demonstrating that multiple 3 × 3 convolutional kernels could achieve
the effect of a larger kernel with fewer computations. GoogLeNet [84] employed a multi-
branch structure to provide the network with more receptive field choices. The use of auxiliary
classifiers during training enhanced gradient signal propagation in backpropagation, facilitating
better training information dissemination. ResNet [85], a milestone deep learning network in
computer vision, introduced a residual structure to address the problem of network degradation
in deep networks. This innovation enabled deep learning networks to achieve human-level
classification capability [86], and it marked the first implementation of a deep learning network
with over 1000 stacked layers.

After R-CNN demonstrated the feasibility of convolutional neural networks (CNNs) for
object detection, deep learning-based object detection started to emerge as a new research
direction. Within this framework, image classification networks act as the backbone for tasks
such as object detection, semantic segmentation, and instance segmentation, facilitating the
extraction of image features. R-CNN uses the Selective Search algorithm to generate a series
of candidate boxes, then employs AlexNet as the backbone network to classify these boxes and
identify objects within the images. In Faster R-CNN [87], a Region Proposal Network (RPN)
is utilized, leveraging shared convolutional features to rapidly generate candidate regions,
thus avoiding the time-consuming process associated with the Selective Search algorithm
and significantly improving detection speed.Subsequently, YOLO enhanced image detection
speed using a grid scanning method to calculate confidence levels, albeit with a compromise
in accuracy. SSD adapted YOLO’s approach of transforming detection into regression and
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also incorporated the anchor mechanism from Faster R-CNN. However, unlike Faster R-CNN,
where anchors are precisely adjusted at each position, SSD, similar to YOLO, creates anchors
on a grid, ensuring both speed and accuracy. DETR [88] utilizes the features of the Transformer
architecture, employing an encoder to extract feature information and a decoder to directly
output the categories and positions of 100 targets. These 100 items (default values) are then
refined through Hungarian bipartite matching in the decoder, optimizing the prediction boxes
layer by layer. Unmatched predictions are labeled as ’no object’.

Figure 6. Best model of the year in the ImageNet large scale visual recognition challenge.

Table 1. Comparison of Deep Learning Object Detection Algorithm Performance.

Algorithm/
Standard

YOLOv8
(You Only

Look Once)

Cascade Mask R-CNN
(Region-based
Convolutional

Neural Networks)

SSD
(Single Shot

MultiBox
Detector)

Transformer

Processing
speed

Fast Moderate Faster Moderate

Bounding box
accuracy

High High Moderate High

Parameters Moderate High Moderate High
Recognition
accuracy

High High Moderate High

As shown in Table 1,YOLO and SSD generally outperform Cascade Mask R-CNN and
Transformer models in terms of computational speed. However, Cascade Mask R-CNN and
Transformer models excel in the precision of bounding boxes and the detection of small objects.
Most models can achieve relatively high accuracy in recognizing target types. With iterative
updates, deep learning algorithms have improved in bounding box precision and the ability to
detect small targets, but the actual performance of these models still correlates directly with
their total parameter count.

Transformers, initially proposed by Google for natural language processing tasks [89],
are now applied in the field of image recognition. Due to their powerful self-attention
mechanism and parallel computing nature, Transformer architectures have been widely used
in various fields. The self-attention mechanism of Transformers can perform functions similar
to CNNs under specific constraints [90]. Vit-transformer [91] and Swin-transformer [92]
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are examples of Transformers specialized for image domains. With datasets larger than
100M, Transformer models exhibit stronger learning characteristics than CNN networks [91].
Moreover, since Transformers were originally designed for natural language processing, they
also have inferential capabilities in image processing. They can perform image processing
functions such as de-raining [93–95], de-fogging [94–96], image restoration [95, 97], and
pixel enhancement [95, 97, 98]. The processed images are clearer for object recognition tasks.
Additionally, Transformers have shown effective results in semantic recognition of videos [99]
and target ID matching [100]. making them a versatile tool in advanced image processing and
analysis.

In recent years, the Transformer model DETR [88] for image detection has evolved rapidly.
Deformable DETR [101], inspired by deformable convolution [102], introduces a deformable
attention module in the Transformer. This module utilizes a deformable attention mechanism
to gather more sampling points, enabling the model to focus on key object features during
training and improve convergence efficiency. This structure has enhanced the convergence
of DETR from 500 epochs to just 50 epochs. Conditional DETR [103] posits that the slow
convergence of DETR is due to the queries needing to simultaneously learn content and spatial
aspects, making it challenging for the model to converge. To address this, the authors propose
a unique spatial embedding using a concatenation rather than addition approach, allowing the
model to focus on different tasks to expedite convergence, improving model efficiency to 108
epochs.DAB-DETR [104] builds on Conditional DETR by further refining the queries with
four-dimensional coordinate initialization, optimizing them at every layer of the decoder. DN-
DETR [105] follows the four-dimensional coordinate approach of DAB-DETR, addressing
inconsistent matching across decoder layers by training each decoder detection directly with
Ground Truth (GT). It also incorporates Denoising training to minimize inconsistencies caused
by Hungarian matching between different decoders. DINO [106] inherits ideas from DAB-
DETR [104] and DN-DETR [105]. Firstly, it modifies the task of predicting real boxes at every
layer in DAB-DETR to use cross-attention as a shortcut for learning relative offsets. Secondly,
considering that most decoder predictions in practical environments are negative samples, it
introduces high-noise negative sample prediction tasks on top of DN-DETR, enhancing the
model’s ability to differentiate between positive and negative samples.

Co-DETR [107], the current state-of-the-art (SOTA) model in image detection, contends
that the original DETR suffers from inefficient query matching and an insufficient number
of positive samples, which hampers model training. Similar to GoogLeNet [84], it utilizes
multiple auxiliary heads to accelerate training. However, it differs by using varied detection
heads trained together, including Faster-RCNN [87], ATSS [108], and RetinaNet [109], further
enhancing the accuracy of the SOTA model DINO-Deformable-DETR [106].

Due to the requirements for model size and real-time performance, there is limited
literature on using Transformers for vehicle speed measurement. However, Zhao Y et al.
proposed the RT-DETR [110] network, a hybrid model combining CNNs with Transformers,
addressing the slow detection speed of Transformer models. Thus, using Transformers for
vehicle speed measurement is a promising research direction.

In object detection tasks, a well pre-trained model can more rapidly assimilate new task
features. By transferring models trained on datasets such as COCO to vehicle recognition
tasks, models can more quickly master vehicle feature information [111]. Therefore, the
following datasets might be used to train a deep learning network for vehicle recognition, as
shown in Table 2.
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Table 2. Overview of the vehicle detection dataset.

Dataset Application
domain

Resolution
sampling rate Number Information

Microsoft COCO [112] Image 640*480
330,000 images
(37.57 GiB)

80 Labels
Bounding box

BrnoCompSpeed [113] Speed camera
1920*1080
50Hz

18 h (180GiB)

Three angle
of viewsCars’
Video-time
and Speed

UTFPR-HSD [114]
Traffic
video/image

1920*1080
25Hz

15664 frames
(10GiB)

6 Labels
Frame and
numbers

QMUL junction [115] Traffic video
360*288
25Hz

1h(324MiB) None

Vehicle Speed
Measurement
(UTFPR) [116]

Speed camera
1920*1080
30Hz

20h(30GiB)

License plate‘s
B-box Car
duration
frames speed

KITTI [117] Traffic images 1240*370
30,000 images
(180GiB)

Calib
9 Labels
bounding box

kinetics-700 [118] Videos
452*256
30Hz

650,000 videos
(700GiB)

700 Labels
Duration times

The FLIR Thermal
Starter Dataset [119]

Thermal traffic
video/images

640*512
24Hz

26,442 frames
(3.5GiB)

15 Labels
Bounding box

HIT-UAV [120]
UAV Thermal
images

640*512
2898 frames
(814MiB)

5 Labels
Bounding box
Altitude and
Camera
perspective

nuScenes [121] Traffic images 1600*900
1.4 Million
(547.98GiB)

23 Labels
Bounding box

Waymo [122] Traffic images 1920*1280
12 Milion
(1TiB)

23 Labels
Bounding box

In addition to model self-improvement through transfer learning from larger training
sets, Hinton G et al. [123] have proposed a method known as knowledge distillation, which
involves training a smaller student model using a larger teacher model.This method combines
the results of the large model with actual outcomes to compute a weighted sum loss, effectively
aiding the training of the smaller model, as illustrated in Figure 7. Knowledge distillation
can enhance the performance of smaller models, reduce the resource consumption for model
deployment, and potentially accelerate inference speeds. For instance, eva-2 [124] utilizes the
previous generation multi-modal eva model [125] as a teacher model and, through knowledge
distillation [126], achieves better results on multiple vision task datasets while reducing
parameter size.

Figure 7. Knowledge distillation process.
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Supervised learning requires large amounts of calibrated data from various datasets,
whereas self-supervised learning does not require extensive specific task annotations. This
approach can enhance model performance and generalization capabilities in scenarios where
data annotation costs are high or annotated data is scarce. Self-supervised methods also
significantly increase the amount of data that can be trained. After achieving good results
in supervised learning, large models are trained using self-supervised methods to leverage
massive amounts of data to learn the intrinsic structure and features of the data. For example,
GPT-3 [127] is a large model that has demonstrated strong generalization capabilities across
many tasks. Using large models like GPT or BERT can easily adapt to downstream tasks
through few-shot or zero-shot learning methods. These models, when effectively integrated
with other modules, can also be employed for image generation tasks, such as DALL-E [128].

Large vision models are an important trend in recent years, with the multi-modal large
vision model CLIP [129] consisting of an image encoder and a text encoder, trained on a
vast number of image-text pairs to understand image content and generalize to classify and
understand unseen images. The paper highlights that CLIP exhibits a stronger generalization
capability than ResNet101 trained on ImageNet, showing over 35% higher accuracy in image
classification across datasets such as ImageNet-R, ObjectNet, ImageNet-Sketch, and ImageNet-
A. Similarly, SAM [130] is a large vision model for image segmentation that uses "prompt"
technology for zero-shot or few-shot learning on new datasets and tasks. SAM has proven
extremely effective in zero-shot transfer learning, outperforming the previous RITM [131] on
most of the 23 datasets evaluated. By modifying the model structure to freeze the backbone
network, large models can effectively transition to downstream tasks. For instance, MedSAM
employs an Adapter mechanism to transfer SAM to the medical field, achieving state-of-the-art
(SOTA) results in most medical tasks [132]. In the field of autonomous driving, A recent
line of studies [133, 134] utilizes SAM to segment foreground and background scenes on
roads to aid in point cloud computation. RegionSpot [135] combines SAM and CLIP by using
cross-attention between objects segmented by SAM and the image features of CLIP to regress
on segmentation categories.

For the objects identified, the subsequent task is object detection. The first method involves
detecting the identified objects using the centroids of their contours [70, 136]. While this
can reduce the computational load and improve operational speed during detection, centroids
are more susceptible to occlusion. More commonly, corner detection algorithms are used
for object detection, such as the Harris corner detection algorithm and the SIFT corner
detection algorithm. Corners typically have distinct features on objects, exhibiting significant
grayscale changes compared to surrounding areas, such as on vehicle contours, headlights,
or the corners of license plates. Effective detection of target objects can be achieved through
matching these corners [78, 116, 137, 138].The second method [139–143] involves using
the Hungarian algorithm to match vehicle identification frames on two frames that have
undergone recognition algorithms, which can also effectively detect targets. The third method
is based on deep learning [144–150], utilizing Convolutional Neural Networks (CNNs) for
object detection, and association networks such as Graph Convolutional Networks (GCN) or
sequence networks (RNN, LSTM) for detecting objects across different frames. The success
of Transformers in sequence and image tasks has demonstrated their capabilities in the field of
object detection. Using an encoder for image detection and a decoder for sequence detection
shows promising results.

2.6. Multi-sensor fusion

In complex applications such as autonomous driving, data fusion can improve the accuracy
of object detection and the reliability of speed measurement. Multi-sensor fusion techniques
ensure performance that is on par with or even surpasses that of the optimal single sensor
under most conditions [151]. One of the earliest multi-sensor fusion techniques used in the
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transportation sector is the integration of Inertial Measurement Units (IMU) with Global
Positioning Systems (GPS), where GPS usually provides precise location data in open spaces
but suffers from decreased accuracy in signal-obstructed environments. Meanwhile, IMUs
can accumulate errors over time without external correction. Dynamic data fusion through
algorithms such as the Kalman Filter and Particle Filter greatly enhances the reliability of
positioning [152].

In terms of environmental perception, commonly used sensors include LiDAR, Radar, and
cameras. Multi-sensor fusion includes Camera-LiDAR (CL), Camera-Radar (CR), LiDAR-
Radar (LR), and Camera-LiDAR-Radar (CLR) fusion approaches. The advancement in the
field of artificial intelligence has also facilitated progress in multi-sensor fusion, as shown in
Figure 8, with deep learning enabling deep-level feature fusion of LiDAR point clouds, camera
images, and Radar point clouds to enhance object detection performance. For example, the
single-sensor SOTA model FocalFormer3D [63] achieves an mAP of 70.5%, which is weaker
than the CL fusion SOTA model BEVFusion4D [153] with an mAP of 76.8%.

Figure 8. The proportion of autonomous driving research based on deep learning multi-sensor fusion
over the past five years.

Camera-LiDAR-Radar Fusion, CLR fusion allows the model to incorporate the character-
istics of three different sensors. Ratheesh Ravindran et al. [154] proposed a CLR multi-sensor
fusion Bayesian Neural Network (BNN) model. This model quantifies the uncertainty of
predictions from various sensors by training on the probability distribution of the model’s
parameters. It also demonstrates the effectiveness of different sensor fusion outcomes through
ablation studies and finds that, in most cases, CL fusion performs better than CR fusion,
though CR fusion outperforms CL in adverse conditions like rain, snow, and high winds.

Camera-LiDAR Fusion, LiDAR offers better imaging resolution than Radar, allowing
for better differentiation of vehicle features in dense traffic, while also compensating for the
errors in depth information calculated from camera images. There are two models named
BEVFusion [155, 156], each employing different fusion strategies. Liang T et al. [155] use
a decision-level fusion strategy, processing point cloud and image data separately before
merging results with a fusion module trained on three prediction maps, allowing the model
to continue functioning if one sensor fails, hence increasing robustness. Liu Z et al. [156]
extract features from images and LiDAR and merge them on the BEV for faster processing.
TransFusion [157] uses a cross-attention mechanism at the feature level, merging key point
cloud data guided by images to generate initial prediction maps, then combining critical image
information for decision-level fusion to produce final results.

Camera-Radar Fusion, Although Radar is less expensive, less affected by environmental
factors, and capable of long-range detection, its image resolution is low and the collected
point clouds are sparse. It generally assists in image processing during feature fusion. In
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HVDetFusion [158], First, model uses multi-camera fusion to identify candidate boxes for
targets, then filters out Radar point cloud data that deviates significantly from these boxes.
Lastly, spatial information about speed, direction, and position from Radar is integrated into the
candidate boxes to enhance accuracy. CRN [159] employs a multimodal variational attention
mechanism to fuse information from both sensors at the feature level, addressing the issue of
spatial misalignment during fusion.

LiDAR-Radar Fusion, Both sensors overlap significantly in functionality; their fusion
primarily aims to adapt to harsh environments and enhance the robustness of detection algo-
rithms. Bi-LRFusion [160] and CenterPoint-Ensemble [61] fuse features on both BEV and
Voxel, showing a 2%–3% improvement in mAP compared to models using only LiDAR.

3. Speed measurement performance

3.1. Development trends

By researching over a hundred pieces of domestic and international literature from different
periods, the following chart has been created to illustrate the development and changes in
various sensor technologies over time.

Figure 9. Different vehicle speed measurement technologies research trend chart.

Through Figure 9 classification, it can be observed that research in the field of motor
vehicle speed measurement using computer vision has shown a clear upward trend after 2014.
During this time, the RCNN model and Faster RCNN’s high accuracy in image recognition
sparked interest in the study of convolutional neural networks for image recognition [13, 161].
Currently, most researchers have a greater inclination towards exploring the field of visual
speed measurement.

3.2. Evaluation metrics

In the field of satellite speed measurement, commonly used evaluation metrics include RMS
(Root Mean Square). used to evaluate the deviation of speed prediction.

RMS =

√
∑

N
i=1 X2

i
N

(15)

Satellite positioning accuracy is crucial for subsequent speed measurements. CEP (Circular
Error Probable) is frequently used to assess model positioning accuracy in satellite applications.

CEP = k (σx +σy) (16)
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Here, k is a coefficient related to the confidence level and associated with the quantiles of the
normal distribution, and σ is the standard deviation of positioning errors. Different k values
correspond to different accuracies, with statistical measures ranging from small to large as
CEP, CEP95 (R95), and CEP99. These represent a circle with (µx,µy) as the center and CEP,
CEP95, CEP99 as radii, indicating the probability of points falling within the circle as 50%,
95%, and 99%, respectively.

In the field of computer vision image processing, common evaluation metrics for assessing
picture recognition accuracy include the following:

Precision =
TP

TP+FP
(17)

Recall =
TP

TP+FN
(18)

In vehicle testing, TP (True Positive) indicates the number of vehicles correctly identified, FP
(False Positives) refers to non-vehicles misclassified as vehicles, and FN (False Negatives)
represents vehicles misclassified as non-vehicles. Precision in image domain focuses on
accuracy, and Recall on the number of identifications. Many image detection datasets use IoU
(Intersection over Union) as an evaluation criterion. IoU is a metric for measuring the overlap
between two sets.

IoU =

∣∣Br ∩Bp
∣∣∣∣Br ∪Bp
∣∣ (19)

Br is the true Bounding box of the object, and Bp is the predicted Bounding box. The IoU
value ranges between 0 and 1, indicating the degree of overlap between two sets. An IoU of 1
means complete overlap, and 0 indicates no overlap. In object detection tasks, IoU is typically
used to evaluate the overlap between detection boxes and real target boxes to determine the
accuracy of detection. Common IoU thresholds are used to assess whether a detection box has
correctly identified a target.

AP =

1∫
0

max
r̃≥r

p(r̃)dr (20)

In object detection tasks, such as those based on the COCO dataset, Intersection over Union
(IoU) is commonly used to distinguish recognized objects, thereby calculating Precision and
Recall, and ultimately computing the mean Average Precision (mAP). Here, P(r) represents
Precision at Recall r. By averaging Precision-Recall curves across N categories, mAP is
obtained.

mAP =
1
N

N

∑
i=1

APi (21)

mAP is a commonly used metric in the field of object detection to evaluate model performance.
It comprehensively considers both Precision and Recall, and provides a unified measurement of
performance across different categories. This composite metric helps understand the model’s
performance across various categories, thus enabling a more comprehensive evaluation of
model performance.

The evaluation metric commonly used to assess the accuracy of speed estimation is the
Mean Absolute Error (MAE). Unless otherwise specified, this metric is generally adopted by
most speed measurement methods for evaluation.

MAE =
1
n

n

∑
n=1

|yi − ŷi| (22)

In terms of speed measurement evaluation standards, internationally, the Maximum Permissible
Error (MPE) is commonly used as the criterion for whether speed measuring equipment is
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qualified. The formula for the Maximum Permissible Error is as follows:

MPE =

{
±x , S ≤ 100km/h
≤ x%, S > 100km/h (23)

S represents the actual speed measurement, and x denotes the maximum allowable error range,
which varies by country (e.g., China adopts a value of 6, while many European countries use
3).

3.3. Performance comparison

After researching numerous publications, the following is a compilation of various speed
measurement techniques and methods proposed by different scholars, along with the accuracy
results obtained using the MAE (Mean Absolute Error) evaluation metric. As shown in Table
3.

Table 3. Comparative study of different vehicle detection and speed measurement techniques.

Author Vehicles detection Speed estimation
algorithm

Performance
(device position

speed rangemean error)

Sochoret al. [162]
Background Subtraction,
Faster-RCNN detect vehicle,
Kalman filter tracking

Detect distance within
time interval

Gantry,
60–110 km/h,
1.3%

Salehet al. [14] Optical flow tracking vehicles
Detection time at
the same distance
(four intrusion lines)

Gantry,
50–130 km/h,
2.17%

Alexanderet al. [163]
Background Subtraction,
Difference frame detection,
Mixture of Gaussian tracking

Detect distance within
time interval

Gantry,
No description,
3.86%

Chenget al. [76] Background Subtraction,
YOLOv4 detect vehicle

Detection time at
the same distance
(intrusion box)

Gantry,
30–120 km/h,
7.6%

Biswaset al. [137] Faster R-CNN detection,
CSRT tracking vehicle

Detection time
at the same distance
(a section of the way)

UAV,
No description,
4%

Keet al. [164]
Kanade-Lucas optical flow
tracking vehicle,
k-means Distinguish between
background and vehicle speed

Detect distance within
time interval
(five frames)

UAV,
60–90 km/h,
11.6%

Yanget al. [138]
Multi-Camera,
SSD detect License plate,
SURF tracking License plate

Detect distance within
time interval

Roadside,
30–60 km/h,
3.8%

Liu et al. [165] YOLOv3 detection,
Kalman tracking

Detect distance within
time interval(frame)

UAV,
30–80 km/h,
7.1%

Maduro et al. [166] Background Subtraction,
Kalman tracking

Detection time at
the same distance
(two intrusion lines)

Gantry,
50–100 km/h,
2%

Doğan et al. [167] optical flow Detect distance within
time interval(frame)

Roadside,
30–80 km/h,
1.9%

Czajewskiet al. [168]
SVM-classifer detect
license plate,
Adaptive thresholding
matching OCR tracking

Detection time at
the same distance

Gantry,
40–80 km/h,
4%

Li et al. [169]
YOLOv3 detect vehicle,
Optical flow tracking
background,
Kalman track vehicle

Detect distance within
time interval(frame)

UAV,
20–80 km/h,
1.28%
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Table 3. Cont.

Author Vehicles detection Speed estimation algorithm
Performance

(device position
speed range
mean error)

Luvizonet al. [116]
Motion History Image
concept detection,
KLT and SIFT track
vehicle license plate,
SVM identify license plate

Detect distance within
time interval

Gantry,
10–70 km/h,
3.4%

Zhang et al. [139]
Mask R-CNN detect vehicle,
SORT and Hungarian
algorithm tracking,
Wheel build 3D
bounding boxes

Detect distance within
time interval(frame)

Gantry,
No description,
4%

Zhang et al. [37]

SVM classification to detect
vehicles in point cloud data,
Unscented Kalman Filter
and Joint Probabilistic,
Data Association Filter
track vehicle centroid

Detect distance within
time interval(frame)

Roadside,
0–50 km/h,
3.2%

Du et al. [20]
Radar the principle of
interference with multiple
receiving antennas

Doppler velocity
measurement

Roadside,
50–130 km/h,
0.6%

Nie et al. [5] The loop sensor
velocity measurement

Detection time at
the same distance

Ground,
40–180 km/h,
3.8%

Ma et al. [66]
Dynamic PPP Parameter
Method and Carrier
Phase-Derived Doppler
Velocity Method

Detect distance within
time interval

Car,
0–70 km/h,
0.5%

4. Discussion

In this survey, we focused on the various sensor-based speed measurement methods that
have been developed in recent years. However, the study revealed that there are still some
shortcomings in the vehicle speed measurement technologies used in intelligent transportation
systems. Table 4 outlines the advantages and disadvantages of each speed measurement
method.

Table 4. Characteristics of different speed measurement methods

Technology Advantages Disadvantages

Inductive loop
1) Mature technology
2) Accurate speed measurement

1) Easily damaged by large
vehicles.
2) Installation or repair require
traffic interruption

Microwave radar

1) Excellent performance in
adverse weather conditions,
all-weather operation
2) Can detect multiple lanes
in a lateral manner
3) Long working distance
4) Accurate speed measurement

1) Large vehicles obstructing adjacent
lanes for small vehicles
2) The more lanes, the greater
the measurement error
3) Higher installation conditions
are required

Lidar

1) Easy and quick installation
2) High range resolution
3) Accurate detect vehicles
4) Accurate speed measurement

1) Only detect a single lane
2) Insufferable for bad weather
3) Costly to implement

GNSS
1) High precision
2) Real-time capability
3) Global coverage

1) The signal is susceptible to
environmental interference
2) Not suitable for traffic speed
measurement
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Table 4. Cont.

Technology Advantages Disadvantages

Computer vision

1) Provides visual images for
accident management
2) No need for road
construction disruption
3) Offers a wealth of traffic
management information
4) Can detect multiple lanes

1) Large vehicles obstructing
adjacent lanes for small vehicles
2) Highly susceptible to
environmental influences

Inductive loops, although widely used in traffic flow monitoring, are not sensitive to
small or non-metallic vehicles and are prone to malfunction in case of road damage or
water accumulation. LiDAR provides precise environmental mapping capabilities, but its
high cost and susceptibility to rain and fog affect measurement accuracy. Wireless radar,
while efficient in speed and distance detection, is susceptible to interference from building
reflections and other electronic devices in urban environments. GNSS systems work well
in open areas but suffer from signal blockage and multipath effects in densely built cities or
indoor environments, reducing their accuracy and reliability. Computer vision technology,
while excellent in vehicle recognition and tracking, is sensitive to lighting changes and requires
substantial computational resources for processing high-resolution videos, posing technical
challenges in real-time applications.

Through this research, vehicle speed was measured directly or indirectly using data from
various sensors, with each technology possessing unique strengths and challenges suited
for different application environments. There is an increasing trend towards adopting non-
intrusive speed measurement methods, which do not require physical modifications to the
infrastructure, Technologies such as computer vision and advanced radar systems are at the
forefront of this shift, offering flexible and scalable solutions that can be easily integrated
into existing traffic systems. Hybrid methods that blend multiple data sources hold immense
potential, multi-sensor fusion combines data from diverse sources such as cameras, radar, and
LiDAR, helping to overcome the limitations of individual sensors. Integrating sensors with
deep learning networks can further enhance the accuracy and robustness of predictions.

5. Conclusion

This paper introduces various speed measurement methods and technologies, including induc-
tive loops, LiDAR, wireless radar, GNSS, and computer vision, and analyzes their performance,
advantages, and disadvantages. An analysis of experimental details and results from over a
hundred domestic and international papers on speed detection technology shows that, with
the rapid development of artificial intelligence, research combining speed measurement meth-
ods like inductive loops, LiDAR, wireless radar, GNSS, and computer vision with artificial
intelligence is evolving swiftly.

Therefore, future research needs to focus on optimizing multi-sensor fusion technology,
developing low-cost and efficient sensors, and combining deep learning techniques for real-
time data processing. Addressing these issues through research will not only improve the
accuracy and reliability of speed measurement technology but also drive intelligent transporta-
tion systems to higher levels of automation and intelligence. These improvements will provide
more accurate tools for traffic management and a safer driving environment for autonomous
vehicles.

Acknowledgments

This work was supported in part by the Ministry of Education’s Industry-University Coopera-
tive Education Program with grant number 230706093313536.

20



Artif. Intell. Auton. Syst. Review

Conflicts of interests

The authors declare no conflict of interest.

Authors’ contribution

Conceptualization, Zhili Chen,Fang Guo and Longmei Luo; Writing—original draft prepa-
ration, Zhili Chen, and Fang Guo; Writing—review and editing, Fang Guo; Visualization,
Longmei Luo, and Zhili Chen; Supervision, Fang Guo; Funding acquisition, Fang Guo; Re-
sources, Fang Guo; Project administration, Fang Guo. All authors have read and agreed to the
published version of the manuscript.

References

[1] Dimitrakopoulos G, Demestichas P. Intelligent transportation systems. IEEE Veh.
Technol. Mag. 2010, 5(1):77–84.

[2] Adnan MA, Sulaiman N, Zainuddin NI, Besar TBHT. Vehicle speed measurement
technique using various speed detection instrumentation. In 2013 IEEE Business
Engineering and Industrial Applications Colloquium (BEIAC), Langkawi, Malaysia,
7–9 April 2013, pp. 668–672.

[3] Sun C, Ritchie SG. Individual vehicle speed estimation using single loop inductive
waveforms. J. Transp. Eng. 1999, 125(6):531–538.

[4] Yu R, Zhang G, Wang Y. Loop detector segmentation error and its impacts on traffic
speed estimation. Transp. Res. Rec. 2009, 2099(1):50–57.

[5] Ki YK, Baik DK. Model for accurate speed measurement using double-loop detectors.
IEEE Trans. Veh. Technol. 2006, 55(4):1094–1101.

[6] Klinefelter E, Nanzer JA. Automotive velocity sensing using millimeter-wave interfero-
metric radar. IEEE Trans. Microwave Theory Tech. 2020, 69(1):1096–1104.

[7] Adams J. Laser technology for effective and versatile traffic safety systems. Traffic
Technology International ’96. Annual Review Issue. Dorking, Surrey: UKi Media &
Events, 1996, pp. 139–141, 143–144 .

[8] Yang Y, Zhang Y, Wang Y, Liu D. Design of 3D Laser Radar Based on Laser Triangula-
tion. KSII Trans. Internet Inf. Syst. 2019, 13(5):2414–2433.

[9] Wang Q, Zhu J, Hu F. Ionosphere Total Electron Content Modeling and Multi-Type
Differential Code Bias Estimation Using Multi-Mode and Multi-Frequency Global
Navigation Satellite System Observations. Remote Sens. 2023, 15(18):4607.

[10] Lucas BD, Kanade T. An iterative image registration technique with an application to
stereo vision. In IJCAI’81: 7th international joint conference on Artificial intelligence,
Vancouver, Canada, 24–28 August 1981, pp. 674–679.

[11] Horn BK, Schunck BG. Determining optical flow. Artif. Intell. 1981, 17(1–3):185–203.
[12] Yang L, Li Q, Song X, Cai W, Hou C, et al. An Improved Stereo Matching Algorithm

for Vehicle Speed Measurement System Based on Spatial and Temporal Image Fusion.
Entropy 2021, 23(7):866.

[13] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Columbus, OH, USA, 23–28 June 2014, pp.
580–587.

[14] Javadi S, Dahl M, Pettersson MI. Vehicle speed measurement model for video-based
systems. Comput. Electr. Eng. 2019, 76:238–248.

[15] Pelegri J, Alberola J, Llario V. Vehicle detection and car speed monitoring system
using GMR magnetic sensors. In IEEE 2002 28th Annual Conference of the Industrial
Electronics Society. IECON 02, Seville, Spain, 5–8 November 2002, pp. 1693–1695.

21



Artif. Intell. Auton. Syst. Review

[16] Sebastiá JP, Lluch JA, Vizcaíno JRL. Signal conditioning for GMR magnetic sensors:
Applied to traffic speed monitoring GMR sensors. Sens. Actuators, A 2007, 137(2):230–
235.

[17] Zhao Y. Study on Train Speed Measurement Method Based on Multi-source Information
Fusion. Ph.D. thesis, Beijing Jiaotong University, 2022.

[18] Qiu TZ, Lu XY, Chow AH, Shladover SE. Estimation of freeway traffic density with
loop detector and probe vehicle data. Transp. Res. Rec. 2010, 2178(1):21–29.

[19] Iovescu C, Rao S. The fundamentals of millimeter wave sensors. Available: https:
//www.ti.com/lit/spyy005 (accessed on 27 January 2024).

[20] Du L, Sun Q, Cai C, Bai J, Fan Z, et al. A vehicular mobile standard instrument for
field verification of traffic speed meters based on dual-antenna Doppler radar sensor.
Sensors 2018, 18(4):1099.

[21] Du L, Sun Q, Bai J, Wang J. A verification method for traffic radar-based speed meter
with target position determination in road vehicle speeding enforcement. IEEE Trans.
Veh. Technol. 2021, 70(12):12374–12388.

[22] Jeng SL, Chieng WH, Lu HP. Estimating speed using a side-looking single-radar vehicle
detector. IEEE Trans. Intell. Transp. Syst. 2013, 15(2):607–614.

[23] Bai J, Li S, Zhang H, Huang L, Wang P. Robust target detection and tracking algorithm
based on roadside radar and camera. Sensors 2021, 21(4):1116.

[24] Jeng SL, Chieng WH, Lu HP. Estimating speed using a side-looking single-radar vehicle
detector. IEEE Trans. Intell. Transp. Syst. 2013, 15(2):607–614.

[25] Raja Abdullah RSA, Alnaeb A, Ahmad Salah A, Abdul Rashid NE, Sali A, et al. Micro-
Doppler estimation and analysis of slow moving objects in forward scattering radar
system. Remote Sens. 2017, 9(7):699.

[26] Roy A, Gale N, Hong L. Automated traffic surveillance using fusion of Doppler radar
and video information. Math. Comput. Modell. 2011, 54(1–2):531–543.

[27] Liu H, Teng K, Rai L, Zhang Y, Wang S. A two-step abnormal data analysis and
processing method for millimetre-wave radar in traffic flow detection applications. IET
Intel. Transport Syst. 2021, 15(5):671–682.

[28] Bai L, Yang J, Wang J, Lu M. An Overspeed Capture System Based on Radar Speed
Measurement and Vehicle Recognition. In Artificial Intelligence for Communications
and Networks: Second EAI International Conference, AICON 2020. 19–20 December
2020, pp. 447–456.

[29] Zhou YW. Research of multi-sensor integration system for train speed and position
measurement. Appl. Mech. Mater. 2012, 105:1920–1925.

[30] Du L, Sun Q, Cai C, Bai J, Fan Z, et al. A vehicular mobile standard instrument for
field verification of traffic speed meters based on dual-antenna Doppler radar sensor.
Sensors 2018, 18(4):1099.

[31] Zhou Y, Zhou Q, Zheng C, Zhang Q. Rail transit speed measurement method and error
analysis based on dual radar. Control Inf. Technol. 2021, (01):30–34.

[32] Torres-Guijarro S, Vazquez-Fernandez E, Seoane-Seoane M, Mondaray-Zafrilla JA. A
traffic radar verification system based on GPS–Doppler technology. Measurement 2010,
43(10):1355–1362.

[33] López AA, de Quevedo AD, Yuste FS, Dekamp JM, Mequiades VA, et al. Coher-
ent signal processing for traffic flow measuring radar sensor. IEEE Sens. J. 2017,
18(12):4803–4813.

[34] Cho HJ, Tseng MT. A support vector machine approach to CMOS-based radar signal
processing for vehicle classification and speed estimation. Math. Comput. Modell. 2013,
58(1–2):438–448.

[35] Liu Z, Cai Y, Wang H, Chen L, Gao H, et al. Robust target recognition and tracking
of self-driving cars with radar and camera information fusion under severe weather

22

https://www.ti.com/lit/spyy005
https://www.ti.com/lit/spyy005


Artif. Intell. Auton. Syst. Review

conditions. IEEE Trans. Intell. Transp. Syst. 2021, 23(7):6640–6653.
[36] Göhring D, Wang M, Schnürmacher M, Ganjineh T. Radar/lidar sensor fusion for car-

following on highways. In The 5th International Conference on Automation, Robotics
and Applications, Wellington, New Zealand, 6–8 December 2011, pp. 407–412.

[37] Zhang J, Xiao W, Coifman B, Mills JP. Vehicle tracking and speed estimation from
roadside lidar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13:5597–5608.

[38] Göhring D, Wang M, Schnürmacher M, Ganjineh T. Radar/lidar sensor fusion for car-
following on highways. In The 5th International Conference on Automation, Robotics
and Applications, Wellington, New Zealand, 6–8 December 2011, pp. 407–412.

[39] Log MM, Thoresen T, Eitrheim MH, Levin T, Tørset T. Using low-cost radar sensors
and action cameras to measure inter-vehicle distances in real-world truck platooning.
Appl. Syst. Innov. 2023, 6(3):55.

[40] Bonin TA, Choukulkar A, Brewer WA, Sandberg SP, Weickmann AM, et al. Evaluation
of turbulence measurement techniques from a single Doppler lidar. Atmos. Meas. Tech.
2017, 10(8):3021–3039.
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