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Abstract: Detecting cyberattacks is critical for maintaining the security and integrity of 

industrial control systems (ICSs). This study introduces a machine learning approach for 

identifying cyberattacks on the Secure Water Treatment (SWaT) plant testbed. The dataset, 

sourced from the Singapore University of Technology and Design, includes data from 51 

sensors and actuators. The research employs a Long Short-Term Memory (LSTM) network 

alongside traditional machine learning algorithms like Random Forest (R.F.), Support Vector 

Machine (SVM), and K-Nearest Neighbour (KNN) to classify cyberattacks. The LSTM 

model outperformed the other methods, achieving a test accuracy of 98.02% (cyberattack: 

97.80%, non-attack: 98.30%). Given the imbalanced nature of the dataset, additional metrics 

such as precision, recall, and F1 score were evaluated, further confirming the LSTM model’s 

robustness compared to traditional algorithms. This research demonstrates the LSTM 

network’s effectiveness in enhancing cybersecurity for ICSs and underscores the need for 

proactive strategies in detecting and mitigating cyber threats. 

Keywords: cyberattack detection; water treatment plant; machine learning; long short-term 

memory (LSTM) 

1. Introduction 

Cyberattacks are carried out by cybercriminals who use unauthorized access to internet-connected 

systems with the intent of stealing, damaging, or altering valuable information. The most 

prevalent threat actions include malware, ransomware, denial of service, DNS tunneling, 

backdoor trojan, SQL injection, zero-day exploit, and phishing. Cyberattacks often have 

illegal or political motives, such as espionage or intellectual property theft, targeting sectors 
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with high financial value and reputational stakes. Industries such as healthcare, finance, and 

government have been particularly affected, with significant financial repercussions. For 

instance, the average cost of a data breach in healthcare and financial services is $7.13 million 

and $5.86 million, respectively [1]. Cybercrime costs the global economy approximately $1 

trillion annually, which is over 1% of global GDP [2]. 

Recent high-profile cyberattacks highlight the severity and range of threats. The Dark 

Side ransomware group disrupted the USA’s Colonial Pipeline, demanding a $4.4 million 

ransom paid in bitcoin [3]. Similarly, a cyberattack on an Oldsmar, Florida water treatment 

facility temporarily raised sodium hydroxide levels to dangerous levels [4]. Another attack 

targeted Iran’s Shahid Rajaei port, disrupting operations for three days [5]. 

Industrial Control Systems (ICSs) are particularly vulnerable due to their critical role in 

infrastructure. Protecting these systems requires rapid detection and response to cyber threats. 

Security Operations Centers (SOCs) and advanced technologies like Artificial Intelligence 

(A.I.) and machine learning are increasingly employed to enhance cybersecurity measures. 

A.I. techniques, especially machine learning, are pivotal in identifying and mitigating cyber 

threats efficiently. For instance, A.I. algorithms can analyze user and event behavior, 

improving anomaly detection in ICS [6]. 

The increasing frequency of cyberattacks on ICSs, such as water treatment plants, 

highlights the need for robust detection mechanisms. A notable example is the Stuxnet worm, 

which targeted Iran’s nuclear facilities, underscoring the potential for cyberattacks to cause 

physical damage to critical infrastructure [7]. Similarly, a disgruntled contractor in 

Queensland, Australia, used radio commands to control systems at a waste plant, causing 

significant environmental damage [8]. These incidents demonstrate the urgent need for 

advanced cybersecurity measures to protect ICSs. 

This study introduces a machine learning-driven method for identifying cyberattacks on 

the Secure Water Treatment (SWaT) testbed, an essential industrial control system (ICS). 

The research utilizes a Long Short-Term Memory (LSTM) network in combination with 

conventional machine learning techniques such as Random Forest (RF), Support Vector 

Machine (SVM), and K-Nearest Neighbour (KNN) to categorize cyber threats. The dataset 

used for this analysis was obtained from the Singapore University of Technology and Design 

and comprises data from 51 different sensors and actuators. For time-series-based prediction, 

our operational data from the SWaT plant was set inherently sequential, with long-term 

dependencies that are vital for accurate anomaly detection. While traditional RNNs can 

handle sequential data as a time-series network, they often struggle with the vanishing 

gradient problem when working with long sequences [9]. This limitation affects their 

capacity to learn and retain information over extended periods, which is crucial for detecting 

complex and subtle cyberattack patterns that may unfold over longer durations. In contrast, 

LSTMs are specifically designed to tackle this issue. Their unique cell state and gating 

mechanisms enable them to effectively preserve information across lengthy sequences, 

making them better suited for capturing the temporal dependencies within the SWaT plant’s 

operational data [10]. This capability is critical for accurately identifying and responding to 

potential cyberattacks, which might appear as subtle deviations from normal operational 
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behaviour over time. Therefore, LSTM networks is considered here as a robust RNN 

networks for their superior ability to capture long-term dependencies, their resistance to the 

vanishing gradient problem, and their proven effectiveness in time-series analysis, all of 

which are essential for robust cyberattack detection in Swat industrial control systems [11]. 

Our research contributions: 

• We conducted a comprehensive classification of cyberattacks and normal conditions 

in water treatment plants. By employing both traditional machine learning 

algorithms and LSTM networks, and utilizing the SWaT dataset from the iTrust 

Centre for Research in Cyber Security, we were able to identify the most effective 

model for cyberattack classification in these critical systems. 

• We significantly enhanced the usability and reliability of the SWaT dataset through 

extensive preprocessing. This included time zone conversion, automated labeling, 

handling of missing values, categorical data encoding, feature scaling, and 

addressing class imbalance. These improvements make the dataset more robust for 

machine learning applications in ICS security. 

• Our feature importance analysis identified the most significant variables impacting 

cyberattack detection in water treatment plants. This contribution provides valuable 

insights for prioritizing critical sensors and actuators in real-world ICS security 

implementations, potentially improving the efficiency and effectiveness of 

cyberattack detection systems. 

2. Literature review 

Several studies have been conducted on a SWaT testbed dataset to identify the cyberattacks 

on ICSs. In the realm of cyberattack detection for ICSs like the SWaT plant, both traditional 

and machine learning methods have been explored. Traditional methods such as signature-based, 

anomaly-based, and rule-based detection systems have been widely used for threat and anomaly 

detection but face limitations in adaptability and effectiveness against novel threats [9].  

Signature-based detection operates by matching network traffic or system behavior 

against predefined patterns or signatures of known threats. The system generates an alert 

when a match is found in the database. This approach is highly effective for identifying 

known threats but has significant limitations when it comes to detecting new or evolving 

attacks, particularly zero-day attacks, as it relies solely on previously identified patterns [12]. 

Anomaly-based detection systems focus on monitoring the behavior of systems or 

networks to detect deviations from established normal patterns. These systems typically use 

statistical models, machine learning algorithms, or heuristic methods to define “normal” 

behavior and identify anomalies. While they are effective at spotting unknown threats, they 

often have high false positive rates because unusual but harmless behavior may be mistakenly 

flagged as malicious [13,14]. 

Rule-based detection systems use predefined rules and heuristics, often developed from 

expert knowledge, to identify potentially malicious activities. These rules define specific 

conditions under which actions should be considered suspicious. However, the rigidity of 
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rule-based systems makes them less adaptable to new and evolving threats, and creating and 

maintaining these rules requires significant manual effort [15,16]. 

In contrast, machine learning approaches have shown significant promise in recent years. 

Supervised learning techniques have demonstrated high accuracy for both known and 

unknown attacks, though they require extensive labeled datasets [17]. Unsupervised learning 

methods excel in detecting novel attacks and offer better adaptability, but may need fine-tuning 

to balance false positives and negatives. Some researchers have proposed innovative 

approaches like the Graph Intrusion Detection (GID) framework for detecting cyberattacks 

on Industrial Internet-of-Things (IIoT) devices [17]. Hybrid approaches, such as the 

HybridRobustNet (HRN), which integrates various deep learning and machine learning 

algorithms, have shown improved detection accuracy and resilience against evolving attack 

patterns. The SWaT testbed, a scaled-down replica of a water treatment plant, has been 

instrumental in studying attack vectors and developing protection strategies for industrial 

facilities [18, 19]. Experiments using the SWaT dataset have been conducted to evaluate 

various detection models, including a one-class neural network supervised anomaly detection 

method [17]. Some studies have explored fusion approaches that combine design-based and 

data-driven methods to leverage the strengths of both traditional and machine learning 

techniques [20]. Despite the advantages of machine learning approaches, challenges remain 

in their implementation, particularly in terms of computational complexity and the need for 

large, representative datasets [19]. 

Recent research works have highlighted the advancements in machine learning for 

cyberattack detection, particularly within ICSs. Comprehensive studies have shown that 

machine learning techniques, such as anomaly detection and supervised learning, 

significantly enhance the identification and mitigation of cyber threats in ICS environments. 

For instance, a review by Koay et al. [21] discussed the current vulnerability landscape in 

ICSs and surveyed the advancements of machine learning-based methods, emphasizing their 

benefits and limitations in terms of detection accuracy and attack variety. Similarly, the study 

by Dehlaghi-Ghadim et al. [22] focused on the development of an anomaly detection dataset 

for ICSs, providing valuable insights into the effectiveness of machine learning techniques 

in identifying anomalies and improving cybersecurity measures in industrial settings. These 

studies underscore the importance of leveraging advanced machine learning methodologies 

to address the evolving landscape of cyber threats in industrial environments. 

Recent studies have explored the use of automated deep learning methods to enhance 

intrusion detection in ICSs. For instance, synchronous optimization of parameters and 

architectures by genetic algorithms with convolutional neural network blocks has been 

proposed to secure the IIoT [23, 52]. This method optimizes both parameters and architectures, 

demonstrating significant improvements in detection accuracy and computational efficiency. 

Similarly, a differential evolution-based convolutional neural network has been designed for 

intrusion detection in ICSs, offering an automatic architecture design method that enhances 

the robustness and accuracy of intrusion detection [24]. Additionally, the use of slow-

movement particle swarm optimization algorithms for scheduling security-critical tasks in 

resource-limited mobile edge computing has shown promising results, enabling the automatic 
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design of efficient and effective detection models [25]. These advancements highlight the 

potential of integrating genetic algorithms with deep learning techniques to address the 

evolving challenges in ICS security. 

Kravchik and Shabtai designed a study to detect cyberattacks in ICSs using the 

convolutional neural network method [26]. Their study implies that dimensional convolutional 

neural networks are considerably smaller and faster to train; however, they can beat a more 

extensive coordination process when it regards anomaly detection in ICSs. Research has been 

developed by USA researchers to perceive the knowledge about water supply in the USA as 

critical infrastructure as well as the emerging technology solutions to improve the security of 

this vital infrastructure [27]. Improved detection rates, higher detection accuracy, and 

affordable processing and telecommunication costs can all be achieved through the adoption 

of innovative methods such as various machine learning algorithms. So, researchers have 

tried to build precise security mechanisms for the system’s security using a machine learning-

based intrusion detection system (IDS), which is software that monitors a computer system 

or network for contagious activity and policy violations [28]. A group of researchers from 

India suggested using a cloud-based machine learning technique to classify an attack into a 

cloud-based machine learning platform because conventional machine learning techniques 

are unable to support huge dataset processing efficiently. Using the NSL KDD Cup99 dataset, 

the authors describe an attack categorization methodology where the prototype is trained 

using Microsoft’s Azure Machine Learning (Azure ML) platform and is focused on the 

Multiclass Decision Forest Machine Learning Algorithm [29]. Some researchers analyzed 

the way of adversarial learning to approach supervised models by producing competitive 

stimuli using the Jacobian-based Saliency Map attack and examining categorization 

characteristics, and they focused on how such inputs can allow controlled models with 

adversarial training to be more reliable. In their paper, they have used an authentic power 

system dataset to carry out the experiment [30]. Researchers from Turkey used eight machine 

learning techniques in their approaches to display cybercrimes in two separate models and 

estimate the effect of the specified parameters on the identification of the cyberattack 

technique and the offender. They also stated that findings from their experiment could 

demonstrate that the likelihood of a cyberattack lowers as the victim’s education and wealth 

level rises, and their developed model will help to detect cyberattacks and make the struggle 

against them easier and more successful [31]. Researchers from South Korea experimented 

with the process of collecting data based on several incidents which have been accumulated 

from five small and medium companies. Moreover, for the categorization of events and 

prioritized-based activities, they constructed a model to utilize text mining approaches such 

as n-gram, bag-of-words, and machine learning algorithms [32]. A paper by UAE and Jordan 

researchers elaborated on the machine learning and deep learning techniques implementation 

in the cybersecurity area, as well as these two techniques’ effects, drawbacks, and future in 

cybercrime-related areas [33]. Researchers from Tunisia and Saudi Arabia conducted a 

survey to assume cybersecurity attacks using deep learning techniques, where they provided 

a set of novel LSTM, RNN (Recurrent Neural Network), and MLP (Multilayer Perceptron) 

based forecasting models that use a lately accessible dataset called CTF to prevent the sort 
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of violence that could emerge. They also added in their paper that the model yielded 

promising results when CTF was used, particularly for the LSTM model, which had an F1 

score larger than 93% [34]. Furthermore, Saudi Arabian scientists assessed several machine 

learning techniques, used a new dataset called Bot-IoT to identify IoT network assaults fast 

and efficiently, and then applied seven several machine learning algorithms in the 

implementation phase [35]. Several researchers from Japan analyzed various features to 

identify which feature would be the best to detect cyberattacks quickly; eventually, they 

identified ten major features which are the most prominent. Additionally, they mentioned 

two programs, SVM and PCA (Principal Component Analysis), which is employed to select 

the feature, and R.F., which helps to build the classifier [36]. USA and Canadian researchers 

published a paper where they suggested a stacked autoencoder (SAE) oriented deep learning 

system to produce machine-learned attributes against transmission SCADA threats to 

supplement more high-quality features for machine learning-based threat monitoring. In their 

paper, they have provided machine-learned features which significantly enabled more 

accurate detection against SCADA breaches in power transmission systems, according to 

simulations using data from an elevated smart grid testbed [37]. A group of South African 

researchers tried to answer specific research questions and illustrate current trends, 

difficulties, risks, and responsibilities in the water utility industry in terms of cybersecurity. 

In their paper, they featured the major technical guidelines presented by the Water 

Information Sharing and Analysis Centre (Water ISAC) to assist water services and vital 

infrastructure stakeholders in blocking cyberwarfare strikes to contribute significantly by 

displaying crucial features for attempting to influence effective information security 

deployment in the water utilities [38]. Researchers from Bangladesh and Australia advanced 

a brief about cybersecurity data science in their paper, where data were acquired from 

relevant cybersecurity resources, and they used algorithms to augment the newest statistics 

methods in order to provide further security management strategies. In order to analyze 

cybersecurity, they built a multi-layered machine learning-based framework [39]. A paper 

published by researchers from China, Saudi Arabia, Algeria and France explained the 

feasibility of a deep learning model as well as the functional relevance of the cyberattack 

detection phase by using the R.F. procedure, which enables quite computationally efficient 

models to identify suspicious invasions of privacy which have already overcome customary 

IDSs and to recognize phishing software affecting SCADA systems. They mentioned in their 

paper about using authentic data sources from standard laboratory SCADA systems, a two-line 

three-bus power transmission system, and a gas pipeline to assess the proposed method’s 

efficiency, which surpassed standalone deep learning algorithms and state-of-the-art 

algorithms such as KNN, R.F., Naive Bayes, Adaboost, SVM, and OneR [32]. In research 

papers, some researchers compared and contrasted several machine learning algorithms as 

well as explained the practical consequences of implementing machine learning systems as a 

replacement to traditional power technical systems in their paper [40–46]. Researchers from 

the USA proposed using machine learning-based security mechanisms in order to detect the 

presence and define the characteristics of cyberattacks efficiently, and they suggested retrieval 

actions that should be implemented after detecting cyberattacks to minimize the implications 
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and proposed a machine learning-based provincial renovation methodology to provide 

approximate provincial monitoring system based on completely fabricated government 

assessments. They ensured in their paper that before appropriate measurement, if results are 

installed back online, then it will provide consistent functioning of the system [45,46]. 

Several researchers proposed employing four well-known machine learning techniques: 

C4.5, Bayesian Network (BayesNet), Decision Table (D.T.), and Naive Bayes to predict 

which host will be attacked based on historical data. BayesNet estimates the overall 

generalization ability of 91.68%, according to controlled research [47]. 

In this research, we classify cyberattacks in the SWaT plant using a time-series LSTM 

network and traditional machine learning algorithms KNN, SVM, and R.F. We have 

considered the cyberattack dataset of 51 sensors and actuator information for cyberattack 

classification. Automated tuning of LSTM model hyperparameters is performed in this 

research to achieve accurate model performance. Also, traditional machine learning models 

are tuned, and the result is compared with the LSTM model result to identify the best-performing 

model for real-time implementation. We also compare other performance metrics like 

precision, recall, and F1 score among different models to evaluate the performance of models 

for imbalanced dataset samples between attack and non-attack data. 

3. Data summary and pre-processing 

Data collection started at the SWaT testbed on 20 July 2019 at 12:33 PM (GMT+8) and lasted 

for four hours. The plant’s normal run without attacks started at 12:35 PM to 02:50 PM. The 

plant faced six attacks that were launched between 03:08 PM and 04:16 PM. The plant’s stop 

time was at 4:35 PM. The total number of samples collected is 14,997 for 51 sensors and 

actuators [48]. The dataset collected contains 14,997 samples; 1987 samples represent attack 

data, and 13,011 samples are normal data. 

We cleaned the timestamp column in the original dataset and converted the time zone to 

GMT+8; we used a Python script to perform the task. The dataset is unlabeled, so we also 

labeled the dataset based on the start time and end time of the attacks. A new column was 

added to the dataset that represents the target (label), and we used a Python script to automate 

the labeling process. We also handled the missing values and encoded the categorical data 

using the one-hot encoding (OHE). Also, we scaled the input features into a (0, 1) ratio based 

on the mean and variance of the training data. Finally, we split the dataset into three subsets 

for training, evaluation, and testing. The dataset is imbalanced, so for more reliable classification 

accuracy results, we unsampled the attack data (minority class) using the scikit-learn resample 

library. We also performed a feature importance analysis to find the most significant features 

that impact the target variable. 
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4. Methodology 

4.1. Conventional machine learning-based (SVM)  

Our SVM model was implemented using the scikit-learn library; we used the SVM 

algorithms along with cross-validation to train the model; the input features were fed to the 

model in the traditional way, and all input data points (features), which equal to the number 

of sensors, at single time t were fed to the model. The values of the hyperparameters are 

shown in Table 1 shows. The highest accuracy achieved using this model was 82.8%. Table 2 

shows different accuracy metrics. 

Table 1. SVM hyperparameters. 

Model Hyperparameter Value Range Optimal Value 

SVM 

Kernel = RBF RBF, Poly, Linear RBF 

C [0.1, 1, 10, 100, 1000] 100 

γ (kernel coefficient) [1, 0.1, 0.01, 0.001, 0.0001] 0.001 

Table 2. SVM performance. 

Model Accuracy Precision Recall F1 score 

SVM 82.8% 81% 86% 83% 

4.2. Conventional machine learning-based (KNN) 

The second approach we employed was the sliding window technique, as illustrated in Figure 1. 

Given the time-series nature of the data, we applied a sliding window approach with a 

specified length w. Input features were transformed into vectors of length w. Each sliding 

window was labeled based on a threshold value: if the number of log entries indicating an 

attack exceeded half of the entries, the window was labeled as an attack; otherwise, it was 

labeled as normal. 
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Figure 1. KNN rolling window model. 

We used statistical metrics—minimum, maximum, mean, and standard deviation—for 

feature engineering and extraction. These new input features were then fed into the model for 

training. Hyperparameters k, window size w, and threshold t were optimized using the grid 

search approach, as shown in Figure 2. The tuned hyperparameters are summarized in Table 3. 

The KNN model achieved a 93% accuracy using the rolling window technique, which is 

significantly higher than the accuracy achieved with the SVM approach. Table 4 displays 

various performance metrics for the KNN model. 

 

Figure 2. Hyperparameter k tuning. 

During the hyperparameter tuning phase, we evaluated new hyperparameter values for 

the KNN model, specifically window size w and threshold t. For instance, setting the window 

size to 50 and the threshold to 25 means each window consists of 50 data points, and it is 

labeled as an attack if it contains 25 or more attack data points. Different values for window 

size and threshold resulted in varying levels of accuracy. Generally, reducing the www value 
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increased accuracy but lowered precision and F1 score, indicating overfitting. Therefore, we 

selected trade-off values for w and t that achieved the best balance between accuracy and F1 score. 

The ROC (receiver operating characteristic) curve for both SVM and KNN indicates that 

the KNN Rolling Window approach achieved higher accuracy. This improvement is 

attributed to the consideration of the periodic nature of the data, similar to the LSTM 

approach. Figure 3 illustrates the ROC curve for both SVM and KNN models. 

Table 3. KNN hyperparameters. 

Model Hyperparameter Value Range Best Value 

KNN 

k [1, 2, 3, …, 28, 29, 30] 7 

w (window size) [10, 20, 30, 40, 50, 60] 20 

t (threshold) [5, 10, 15, 20, 25, 30] 10 

Table 4. KNN Rolling Window performance 

Model Accuracy Precision Recall F1 score 

KNN Rolling Window 93% 69% 85% 76% 

 

Figure 3. ROC curve. 

4.3. LSTM-based 

Our LSTM model was implemented using the Pytorch framework. We sequenced the data 

based on the time sequence window. It is challenging to guess accurate sequence dimensions, 

batch size, layer number, and other hyperparameters. Here, the random search 

hyperparameter optimization approach was used to adjust model hyperparameters. To 

optimize the random search hyperparameter, we use the Optuna Python package with our 

Pytorch-based coding framework [49]. The optimal hyperparameter values for the LSTM 

model were determined through a systematic random grid search approach. We defined a 

range of values for each hyperparameter, including hidden layer size (15–70), layer 

dimension (1–5), batch size (15–400), dropout (0.1–0.9), sequence length (10, 20, 40, 60), 
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number of epochs (10–70), and learning rate (0.001–0.01). Each trial’s hyperparameter 

values were stored and assigned a trial identifier. To train each model, we set 100 random 

search trials with a 2-hour duration. The trial with the greatest validation accuracy indicates 

its hyperparameter values as the best-performing hyperparameter value combination once all 

trials have been completed. A random grid of all possible combinations of these 

hyperparameter values was created, and the LSTM model was trained and evaluated on the 

training and validation data for each configuration. The performance metric (e.g., accuracy, 

F1 score) was tracked for each configuration, and the combination that yielded the best 

performance was identified as the optimal hyperparameter values. This process was repeated 

for a specified number of iterations or until a stopping criterion was met, resulting in the best 

hyperparameter values presented in Table 5: hidden layer size of 30, layer dimension of 5, 

batch size of 47, dropout of 0.17044, sequence length of 20, 59 epochs, and a learning rate 

of 0.00676. This systematic approach to hyperparameter tuning allowed us to explore a wide 

range of configurations and identify the optimal settings for the LSTM model to achieve the 

highest performance on the given dataset. Hyperparameters are shown in Table 5. The 

architecture of the LSTM model, used for classifying cyberattacks in the SWaT dataset, is 

shown in Figure 4. 

Table 5. Random grid of hyperparameter values for LSTM hyperparameter tuning. 

Hyperparameter Value Range Best Value 

Hidden layer size 15–70 30 

Layer dimension 1–5 5 

Batch size 15–400 47 

Dropout 0.1–0.9 0.17044 

Sequence 10, 20, 40, 60 20 

n-epochs 10–70 59 

Learning rate 0.001–0.01 0.00676 

We further adjusted our learning rate by implementing a cyclical learning rate tuning 

method, which has recently proven to be highly effective [50]. This alternative approach to 

learning rate tuning explores a range of values between defined boundary rates. After initially 

setting the learning rate using random hyperparameter optimization, it is fine-tuned through 

the cyclical learning rate method. This process enhances precision in selecting the learning 

rate, a crucial hyperparameter for finding global optima in gradient descent. Additionally, 

determining the number of epochs is critical in neural network modeling, as too many epochs 

can push the loss function gradient beyond its global optima, leading to overfitting. 

Conversely, too few epochs can cause underfitting by not fully reaching the global optima. 

Both overfitting and underfitting hinder proper model optimization and, consequently, its 

performance on test data. We applied an early stopping criterion of 35 epochs [51] to fine-tune 

the number of epochs. If the model’s validation accuracy does not improve over 35 

consecutive epochs, training stops, and the epoch with the highest validation accuracy is 

selected as the optimal one. This approach allows the random grid search to run more 
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efficiently by quickly discarding trials with redundant epoch numbers and fine-tuning the 

epoch count more accurately. 

The input features for training the LSTM models, using data from all 51 sensors and 

actuators in the SWaT dataset, are fed into a five-layer LSTM model with a batch size of 47. 

The first layer’s input feature count is 51 (representing all sensor and actuator features), with 

30 hidden neurons, which are then passed forward as input to the subsequent layers, each 

also using 30 hidden neurons. The dataset, recorded at 60 Hz, produces 60 data points per 

second. Hyperparameter tuning identified 20 as the optimal sequence length, meaning we 

used a dataset of 0.33 seconds as a single package. Consequently, the input tensor dimension 

is [20,47,51], where 47 represents the batch size, 20 is the sequence length, and 51 is the 

number of input features. The hidden dimension is [20,30,47], with 30 representing the 

number of hidden neurons. 

The LSTM layers utilize the ReLU activation function, and the hidden neurons have a 

dropout rate of 0.17. The models are optimized using the Adam optimizer. The final layer is 

a fully connected (F.C.) layer, which outputs the values Y1 and Y2 corresponding to the two 

output classes: attack and non-attack. The probabilities of an event being an attack or not are 

calculated using the logarithm of the SoftMax function on the output values. 

Table 6 shows details of the accuracy metrics of LSTM model. The overall accuracy of 

the LSTM model was 98.02%. 
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Figure 4. LSTM model architecture on classifying cyberattacks using SWaT dataset. 

Table 6. LSTM accuracy by class. 

Model Overall Accuracy Accuracy by Class 

LSTM 98.02% 
Normal Attack 

97.8% 98.3% 

5. Comparison of model performances 

To identify the best-performing algorithm, we need to use evaluation metrics. Since we have 

an imbalanced dataset, accuracy is not enough to identify the best model. Therefore, we used 

other metrics such as precision, recall, F1 score, and AUC values. 

In this paper, we implemented machine learning and deep learning algorithms to detect 

cyberattacks on the SWaT testbed datasets. We used three powerful models, KNN, SVM, 

and LSTM, to train and build the classifiers. The hyperparameters were tuned as described 
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in the previous section, and the performance of LSTM outperformed SVM and KNN models. 

Figure 5 shows the LSTM model performance, and Figure 6 shows a comparison between 

the traditional machine learning models and LSTM model with respect to the accuracy, 

precision, recall, and F1 score. 

 

Figure 5. Performance measures of LSTM model. 

 

Figure 6. Performance comparison between traditional machine learning and LSTM model. 

After analyzing Figure 6, we find that LSTM outperforms the KNN and SVM model’s 

accuracy (82.80% and 93%, respectively) and achieved 98.02% accuracy. As the dataset is 

imbalanced, where there are much fewer attack data samples in comparison to regular data 

samples, we analyze other performance measures: precision, recall, and F1 score to evaluate 

models’ performance with imbalanced samples. The precision score of LSTM (97%) is found 

to be higher than the precision score of SVM (81%) and KNN (85%). This indicates that the 

number of accurately classified attack samples in comparison to the total number of attack 

samples is higher with the LSTM model than with the other traditional models. Recall score, 

in another name, the sensitivity score of LSTM score (98%), is found to be higher than the 

recall score of SVM (86%) and KNN (85%). This shows that the number of accurately 

classified attack samples in comparison to the total number of samples classified as an attack 

is also higher with the LSTM model than with other traditional models. The F1 score of 
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LSTM score (97%) is also found to be higher than the precision score of SVM (83%) and 

KNN (76%). 

Building upon the performance analysis of KNN, SVM, and LSTM models, it is crucial 

to consider additional factors that influence model selection for cyberattack detection in ICSs. 

While LSTM demonstrates superior performance across all metrics, we must also evaluate 

the models’ computational requirements, interpretability, and adaptability to evolving threats. 

LSTM’s superior performance can be attributed to its ability to capture temporal 

dependencies in time-series data, which is particularly relevant for the sequential nature of 

ICS operations. This advantage allows LSTM to detect subtle anomalies that might indicate 

a cyberattack, even when the attack pattern evolves over time. However, LSTM models 

typically require more computational resources and longer training times compared to 

traditional machine learning algorithms like KNN and SVM. 

On the other hand, KNN and SVM offer advantages in terms of interpretability and lower 

computational overhead. These characteristics can be crucial in resource-constrained 

environments or when rapid deployment is necessary. SVM, in particular, shows promising 

results with 93% accuracy, suggesting it could be a viable alternative in scenarios where the 

additional performance gain of LSTM does not justify the increased complexity. 

Considering the critical nature of water treatment plants and the potential consequences 

of undetected cyberattacks, the significant performance improvement offered by LSTM 

(98.02% accuracy) over KNN (82.80%) and SVM (93%) makes it the recommended choice 

for this application. The higher precision, recall, and F1 scores of LSTM further solidify its 

position as the most suitable model, especially given the imbalanced nature of the dataset. 

However, it is important to note that model selection should always consider the specific 

constraints and requirements of the deployment environment. In scenarios where 

computational resources are limited or real-time performance is critical, a carefully tuned 

SVM model might provide a reasonable trade-off between accuracy and efficiency. 

6. Discussion and future research 

Our comparative analysis underscores the effectiveness of machine learning techniques, 

particularly LSTM networks, in detecting cyberattacks within industrial control systems 

(ICSs) like water treatment plants. The superior performance of LSTM, especially when 

compared to traditional algorithms such as KNN and SVM, highlights the importance of 

capturing temporal dependencies in time-series data for accurate anomaly detection. 

LSTM’s high accuracy, precision, recall, and F1 scores (98.02%, 97%, 98%, and 97%, 

respectively) demonstrate its capability to effectively distinguish between normal operations 

and attack scenarios, even when dealing with imbalanced datasets. This is a crucial advantage, 

as real-world ICSs often have skewed distributions of attack and normal data samples. 

However, performance metrics alone should not dictate the choice of model. 

Considerations such as computational complexity, interpretability, and adaptability to 

evolving threats are also important. While LSTM delivers the best overall performance, its 
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higher computational demands and longer training times might be challenging in resource-

limited environments or when rapid deployment is required. 

On the other hand, KNN and SVM offer lower computational costs and greater 

interpretability, making them suitable alternatives in certain cases. SVM, in particular, 

achieved a commendable 93% accuracy, suggesting that it could be a viable option when the 

additional performance benefits of LSTM do not justify the increased complexity. 

It’s crucial to recognise that the effectiveness of these models can vary depending on the 

specific characteristics of the ICS, the nature of the cyberattacks, and the quality of the 

training data. Continuous monitoring and evaluation are essential to ensure the chosen model 

remains effective against evolving threats. 

Future research should explore ensemble methods that leverage the strengths of different 

machine learning algorithms to strike a balance between performance, computational 

efficiency, and adaptability. Additionally, incorporating attack information, domain 

expertise, and feedback during model training could further improve the accuracy and 

interpretability of the cyberattack detection system. The study can be expanded in several 

ways: by implementing other machine learning and deep learning models to compare and 

evaluate accuracy, by further refining the accuracy of the applied models, by developing the 

models using real-life ICS datasets, and by extending AI. capabilities to identify which sensor 

has been attacked. 

There are three primary limitations in this study: the lack of publicly available ICS 

datasets, the use of artificially injected attacks rather than real-life ones that might have 

different characteristics, and the limited coverage of attack types and scenarios in the 

available dataset. 

In short, this study highlights the potential of machine learning techniques, particularly 

LSTM networks, in tackling the growing threat of cyberattacks on ICSs. While LSTM stands 

out as the recommended choice for water treatment plants based on our findings, the final 

decision should be guided by the specific requirements and constraints of the deployment 

environment. Continuous improvement and adaptation will be vital to maintain the 

effectiveness of these systems against evolving cyber threats. 

7. Conclusion 

ICSs are essential to a wide range of industries, including nuclear power, energy, and water 

treatment. In an era of increasing cyberattacks, securing these systems has become a critical 

challenge. This research demonstrated that machine learning, particularly LSTM networks, 

can substantially improve cyberattack detection compared to traditional methods like KNN 

and SVM. Our LSTM models, trained on real-time SWaT testbed data, showed superior 

performance with an accuracy of 98.02%, precision of 97%, recall of 98%, and an F1 score 

of 97%. These results highlight the model’s effectiveness in distinguishing between attack 

and non-attack conditions, providing a robust and reliable approach for ICS cybersecurity. 

Looking ahead, integrating advanced models like Transformer networks could further 

improve cyberattack classification accuracy by capturing complex temporal dependencies, 



Artif. Intell. Auton. Syst. Article 

17 

enhancing performance in real-world ICS environments. Additionally, applying transfer 

learning could allow models trained in one domain to adapt to various industrial sectors with 

minimal retraining, boosting both efficiency and scalability. Future research should focus on 

validating model performance across diverse cyberattack datasets that capture evolving and 

recent attack patterns from various industries, ensuring robust and adaptable solutions for 

ICS applications. Furthermore, implementing proactive cybersecurity strategies such as real-time 

anomaly detection and predictive analytics could help anticipate vulnerabilities before they 

are exploited. Hybrid models combining machine learning with domain-specific knowledge 

may also offer more effective and interpretable solutions, ensuring ICSs remain resilient 

against evolving threats. 
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