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Abstract: This paper presents a novel dynamic lane-changing trajectory planning (DLCTP) 

model for autonomous vehicle (AV) running in the mixed traffic environment. The proposed 

model fully considers the dynamics of surrounding human-driven vehicles and can work on 

both straight and curved roads. The first step of the DLCTP model is to decide when and 

where to make the lane change based on the car-following model and safety constraints. Upon 

decision-making, an optimal lane-changing trajectory that accounts for safety, comfort, and 

efficiency is generated at each time step until the lane-changing procedure is completed. 

CarSim-Simulink based simulation platform and three typical traffic scenarios are applied to 

validate the proposed DLCTP model. Experimental results show that the proposed DLCTP 

model can generate smooth, safe, and comfort trajectories even in complex traffic situations. 

The proposed DLCTP model can be employed directly on real AVs because it is easy to 

implement and can adapt to complex traffic environments. 

Keywords: autonomous vehicles; decision-making; lane-changing model; dynamic 

trajectory planning; mixed traffic 

1. Introduction

Autonomous vehicles (AVs) have developed and applied recently [1–3]. Numerous 

businesses, including Waymo, Uber, and Tesla, have commenced AV field tests on public 

roads. The integration of mixed traffic, comprising AVs and human-driven vehicles (HVs), 

is an unavoidable development in the imminent future [4,5]. Consequently, collaboration 

between AVs and HVs is crucial in a mixed traffic setting. Lane changing represents a 

conventional cooperative scenario between AVs and HVs. Given the unpredictability of 

human driver actions, a comprehensive analysis of AV lane-changing movements in mixed 

traffic is essential, particularly for lane-changing trajectory planning, which directly 

influences safety of all traffic participants. Moreover, the ideal lane-changing path can 
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prevent potential collisions, enhance the intelligence of AVs, and alleviate traffic 

congestion [2,3,6,7]. 

Lane-changing behavior is generally classified into three categories: mandatory lane 

change, discretionary lane change, and random lane change [8,9,10]. Mandatory lane changes 

occur when automobiles must circumvent barriers, such as lane blockages or lane reductions, 

or when exiting the expressway. A discretionary lane shift transpires when drivers intend to 

acquire a speed advantage. Drivers frequently alter lanes to circumvent a sluggish car ahead. 

No explicit rule governs the random lane-changing behavior. A random lane shift may yield 

advantages for the subject vehicle or may not affect its current position. Numerous 

researchers have recently proposed various lane-changing models [11–13]. Car-following 

models and safety distance regulations are extensively utilized in rule-based lane-changing 

models [14–17]. Nie et al. present a decentralized cooperative framework for lane-changing 

decision-making [13]. The proposed framework comprises three modules: state prediction, 

candidate decision generation, and coordination. Additionally, the impact of the proposed 

model on traffic stability, efficiency, homogeneity, and safety is examined through a 

numerical simulation experiment. Game theory is utilized in lane-changing models. Yu et al. 

introduce a lane-changing model grounded in game theory that emulates human behavior 

through interactions with adjacent cars via turn signals and lateral maneuvers [18]. The 

lane-changing controller can acquire information and learn essential knowledge from 

real-time interactions utilizing the proposed model. Ali et al. formulate a mandatory 

lane-changing model grounded in game theory [19]. The proposed paradigm is applicable in 

both traditional and connected environments. Discrete-choice lane-changing models are 

extensively researched to replicate driver behavior in intricate traffic situations [20,21]. Suh 

et al. delineate lane-changing motion planning utilizing a synthesis of probabilistic and 

deterministic predictions for AVs in intricate driving scenarios [22]. The risk of lane 

changing is assessed through predicted time-to-collision and safety distance to ensure safety 

during lane change maneuvers. Zhang et al. propose a parameter decision framework [23]. 

The decision is articulated through essential parameters rather than specific behaviors. 

Furthermore, an innovative trajectory planning method is introduced within this framework. 

Zhang et al. utilize the nonlinear model predictive control method with terminal limitations, 

devoid of a predetermined path configuration, to enhance flexibility in lane-changing 

decisions [23]. Incentive-based lane-changing models seek to enhance the overall efficiency 

of traffic flow during the lane-changing procedure [24,25]. Kesting et al. present a 

comprehensive lane-changing model to establish rules for discretionary and forced lane 

changes. The value of a certain lane and the risks linked to lane changes are assessed based 

on longitudinal acceleration, which is computed using microscopic traffic models. Except for 

these standard models, numerous developing technologies, like support vector machine [26] 

and deep learning technologies, are also applied to design artificial intelligence-based 

lane-changing models [27,28]. Ye et al. presented a framework of lane-changing 

decision-making training and learning [29]. There are two basic aspects of the proposed 

framework: the deep reinforcement learning training program and the high-fidelity virtual 

simulation environment. To verify the framework on a more complicated environment, and 
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train a model capable of managing most of the traffic situations, the model is extended 

integrating car-following and lane-changing behaviors on a three-lane segment. Experiment 

results suggest that the extended model including car-following and lane-changing behaviors 

is a more efficient approach. All these studies have achieved a lot in AV lane change. 

However, these studies use the static planning method in which the statuses of adjacent HVs 

are considered to keep unchanging in the complete lane-changing procedure. However, in 

the real-world traffic situation, the speed and position of nearby HVs are changing 

dynamically, and the AV needs to adapt its speed and position proportionately to guarantee 

safety in real time. Although Yang et al. have presented a dynamic lane-changing trajectory 

planning (DLCTP) model based on the polynomial curve, the proposed model only considers 

two surrounding cars and can only work on a straight road [30]. The aforementioned 

drawbacks constrain the practical applicability of this paradigm. 

This work introduces an innovative DLCTP model that comprehensively accounts for 

the dynamics of all adjacent HVs to address this research gap. Additionally, the intricate road 

environment, comprising the curved roadway and four adjacent heavy vehicles, is 

incorporated into the DLCTP model. The proposed DLCTP model has four primary steps: 

lane-changing decision, dynamic trajectory planning, safety limitations, and final trajectory 

generation. In the lane-changing decision phase, the AV determines the timing and location 

for initiating the lane-changing operation based on the real-time conditions of adjacent 

high-velocity vehicles. The cubic polynomial curve is utilized to create a dynamic, smooth 

lane-changing route from the present location to the destination. Subsequently, safety 

limitations are taken into account to enhance the generated trajectory, ensuring compliance 

with collision-avoidance and rollover-avoidance requirements. The ideal lane-changing 

trajectory is produced by reconciling comfort and efficiency. 

The primary contributions of this study are as follows: 

(a) Propose a model for dynamic lane-changing trajectory planning. 

(b) The proposed model accounts for the dynamics of all adjacent high-velocity vehicles 

and curving roadways. 

(c) The proposed approach is directly applicable to actual AV operations. 

The subsequent sections of this work are structured as follows. Section 2 provides a 

comprehensive introduction to the AV DLCTP model. Section 3 delineates the experimental 

parameters for the simulation and analyzes the results of the experiments. Section 4 

summarizes the entire text and addresses prospective research endeavors. 

2. Dynamic lane-changing trajectory planning model 

2.1. Notation list 

To help readers better understand our proposed DLCTP model, Table 1 lists the major 

notations utilized in this paper. 
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Table 1. Notation of major variable used in this paper. 

Symbol Description 

𝐶 Vehicle length 

𝒯 Time duration in the DLCTP model 

𝑡 Time instant, 𝑡 ∈ 𝒯 

ℳ Set of time steps in the DLCTP model 

𝑚 Time step, 𝑚 ∈ ℳ 

𝒩 
Set of all vehicles considered in the DLCTP model,  

𝒩 ≔ {AV, TPV, TFV, CPV, CFV} 

𝑛 Vehicle number, 𝑛 ∈ 𝒩 

𝜏𝑛 Reaction time of vehicle 𝑛 

𝑡𝑚
𝑆  Lane change start time instant in the time step 𝑚 

𝑡𝑚
𝐹  Lane change finish time instant in the time step 𝑚 

𝑣𝑛(𝑡) Speed of vehicle 𝑛 at time 𝑡 

𝛼𝑛(𝑡) Heading of vehicle 𝑛 at time 𝑡 

𝑥𝑛(𝑡), 𝑦𝑛(𝑡) Lateral and longitudinal position of vehicle 𝑛 at time 𝑡 

𝑎𝑛(𝑡) Acceleration of vehicle 𝑛 at time 𝑡 

𝑎𝑛
𝐿 (𝑡) Lateral acceleration of vehicle 𝑛 at time 𝑡 

𝑎𝑛
𝑀𝐴𝑋 Maximum lateral acceleration of vehicle 𝑛 

𝑏𝑛
𝑀𝐴𝑋 Maximum deceleration of vehicle 𝑛 

𝐿𝑃(𝑚) Safe distance between AV and TPV in the time step 𝑚 

𝐿𝐹(𝑚) Safe distance between AV and TFV in the time step 𝑚 

𝑘0(𝑚), 𝑘1(𝑚), 

𝑘2(𝑚), 𝑘3(𝑚) 
Parameters of the cubic polynomial curve in the time step 𝑚 

𝑘4, 𝑘5 Parameters of the linearized car-following model 

𝑎̂𝑛(𝑡𝑚) Target acceleration of AV when following vehicle 𝑛 

𝑔 Desired time gap when implementing car following 

2.2. DLCTP model framework 

This section provides a comprehensive introduction to the proposed DLCTP model. Figure 1 

illustrates the four essential processes in the DLCTP model: lane-changing decision, dynamic 

trajectory planning, safety limitations, and final trajectory generation. The AV comprises 

four components: environmental perception, mission decision-making, trajectory planning, 

and motion control [31]. The proposed DLCTP constitutes a segment of the AV trajectory 

planning component. The entire model is initiated upon getting the lane-changing directive 

from the AV mission decision component. The states of adjacent high-velocity vehicles are 

taken into account while determining lane-changing decisions. Should the present conditions 

render the lane-changing move perilous (e.g., neighboring high-velocity vehicles are 

uncooperative with the subject vehicle's lane shift), the AV will modify its speed in 

anticipation of initiating the lane change in the subsequent time step. Upon determining the 

timing and location for the lane change, a trajectory from the present position to the 

destination is formulated during the dynamic trajectory generating phase. The produced 

trajectory is thereafter forwarded to the safety constraints optimization phase. Collision 
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avoidance and rollover prevention are implemented to enhance the calculated trajectory by 

modifying the end location of the AV during lane changes. Ultimately, efficiency and 

comfort are harmonized to produce the definitive lane-changing trajectory. 

AV lane change finished

Y

N

N

Start

Ready for lane change? Speed adjustment

Dynamic trajectory generation

Safety constraints optimization

Final trajectory generation

Reached the target 

position?

Y

 

Figure 1. Framework of the proposed DLCTP model. 

Prior to the AV attaining its ultimate position in the target lane, three phases are executed 

at each time interval: dynamic trajectory generation, optimization of safety limitations, and 

final trajectory generation. Figure 2a illustrates that the lane-changing process encompasses 

numerous time stages. To ensure safety, efficiency, and comfort during lane changes, the 

intended trajectory adjusts in accordance with the real-time conditions of surrounding 

high-velocity vehicles. Consequently, our proposed model can generate dynamic trajectories. 

Figure 2b depicts the final executed trajectory of the AV, corresponding to Figure 2a. 
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(a) Dynamic trajectory planning process. 

 

(b) Final executed trajectory. 

Figure 2. Schematic of dynamic trajectory planning at different time step. 

2.3. Dynamic lane-changing trajectory 

The cubic polynomial function is utilized to depict the AV’s lane-changing path in our model. 

This graph exhibits second-order smoothness, indicating that both the position and velocity 

of the AV remain constant throughout the lane-changing maneuver. Unlike higher-order 

polynomial functions, the cubic polynomial curve possesses fewer parameters, requiring less 

information to ascertain the function’s parameters. The equation of the cubic polynomial 

curve is, 

 3 2

3 2 1 0( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,AV AV av AV AVy x t k m x t k m x t k m x t k m m M t T= + + +      (1) 

Assume the current states of surrounding HVs meet the lane-changing requirements 

(lane-changing decision is detailed depicted in Section 2.6), dynamic trajectory generation 

module will generate a trajectory from the current position (𝑥AV(𝑡𝑚
S ), 𝑦AV(𝑡𝑚

S ), 𝛼AV(𝑡𝑚
S )) to 

the target position (𝑥AV(𝑡𝑚
F ), 𝑦AV(𝑡𝑚

F ), 𝛼AV(𝑡𝑚
F )) (shown in Figure 3, vehicles and dashed 

vehicles denote the initial and final positions of all vehicles, respectively). AV’s localization 

module is capable of providing position and heading information in real time. Target heading 

𝛼AV(𝑡𝑚
S )  can be obtained after getting the position and the high-definition map of the 
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environment [30]. To simplify the notations, the AV’s dynamic coordinate is employed. 

Thus, for each time step 𝑚, there is, 

 ( ) 0, , ;S

AV mx t m M t T=   (2) 

 ( ) 0, , ;S

AV my t m M t T=   (3) 

 ( ( )) ( ), , ;S S

AV AV m AV my x t y t m M t T=     (4) 

 ( ( )) ( ), , ;F F

AV AV m AV my x t y t m M t T=     (5) 

 ' ( ( )) tan( ( )), , ;S

AV AV m

S

my x t t m M t T  =  (6) 

 ' ( ( )) tan( ( )), , .F F

AV AV m my x t t m M t T  =  (7) 

Substituting Equations (2)–(7) into Equation (1), we can get the parameters, 

 
0( ) 0, ;k m m M=    (8) 

 
1( ) tan( ( )), , ;S

mk m t m M t J=    (9) 

 2 2

3 ( ) ( )(tan( ( )) 2 tan( ( )))
( ) , , ;

( ( ))

F F F S

AV m AV m AV m AV m

F

AV m

y t x t t t
k m m M t T

x t

 − +
=     (10) 

 3 3

( )(tan( ( )) tan( ( ))) 2 ( )
( ) , , .

( ( ))

F F S F

AV m AV m AV m AV m

F

AV m

x t t t y t
k m m M t T

x t

 + −
=     (11) 

Substituting Equations (8)–(11) into Equation (1) can get the cubic lane-changing trajectory, 

 

3

3

2

2

( )(tan( ( )) tan( ( ))) 2 ( )
( ( )) ( )

( ( ))

3 ( ) ( )(tan( ( )) 2 tan( ( )))
( )

( ( ))

tan( ( )) ( ), , .

F F S F

AV m AV m AV m AV m
AV AV m AV mF

AV m

F F F S

AV m AV m AV m AV m
AV mF

AV m

S

m AV m

x t t t y t
y x t x t

x t

y t x t t t
x t

x t

t x t m M t T

 

 



+ −
= +

− +
+

  

 (12) 

In Equation (12), only the target position (𝑥AV(𝑡𝑚
F ), 𝑦AV(𝑡𝑚

F ), 𝛼AV(𝑡𝑚
F )) is unknown. 

However, with the help of the high-definition map [30], the final latitudinal position 𝑦AV(𝑡𝑚
F ) 

and heading 𝛼AV(𝑡𝑚
F ) can be acquired easily after getting the final longitudinal position 

𝑥AV(𝑡𝑚
F ). As a result, the lane-changing trajectory in each time step is uniquely determined 

by the final longitudinal position 𝑥AV(𝑡𝑚
F ). 

Many critical factors, including comfort and efficiency, should be put into consideration 

when planning the lane-changing trajectory. However, there is a conflict between these two 

key factors. A cost function is constructed to evaluate how comfort and efficiency affect the 

optimal trajectory planning. Equation (13) is the constructed cost function. 

 ( ) (1 )( ), (0,1), , .L F F S

AV m m mJ a t t t m M t T  = + − −   (13) 

In Equation (13), the lateral acceleration reaches a maximum at the final position of the 

planned trajectory [32]. As a result, the lateral acceleration is employed to represent the 

comfort for passengers during the lane change. The lane-changing efficiency is evaluated 

based on the lane-changing’s duration. The longer time means lower efficiency. 

Moreover, with the help of centrifugal force equation, the lateral acceleration at the final 

position can be calculated by Equation (14), 

 2( ) ( ( )) ( ( )), , .L F F F

AV m AV m AV ma t v t F x t m TM t=     (14) 

𝐹(𝑥𝑛(𝑡𝑚)) denotes the curvature function of vehicle 𝑛 in the time step 𝑚 during the lane 

change. 𝐹(𝑥𝑛(𝑡𝑚)) can be obtained from Equation (15), 
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''

3

' 2

( )
( ( )) , , , .

(1 ( ))

n m
n m

n m

y t
f x t m M n N t T

y t

=    

+

 (15) 

In Equation (15), 𝑦𝑛
′ (𝑡𝑚) and 𝑦𝑛

′′(𝑡𝑚) are the first and second derivatives of the lane-

changing trajectory equation, respectively, which are listed as follows, 

 

' 2

3

2

3 ( )(tan( ( )) tan( ( ))) 6 ( )
( ) ( )

( ( ))

6 ( ) 2 ( )(tan( ( )) 2 tan( ( )))
( )

( ( ))

tan( ( )), , ;

F F S F

AV m AV m AV m AV m
n m AVF

AV m

F F F S

AV m AV m AV m AV m
AVF

AV m

S

AV m

x t t t y t
y t x t

x t

y t x t t t
x t

x t

t m M t T

 

 



+ −
= +

− +
+

  

 (16) 

 

''

3

2

6 ( )(tan( ( )) tan( ( ))) 12 ( )
( ) ( )

( ( ))

6 ( ) 2 ( )(tan( ( )) 2 tan( ( )))
, , ;

( ( ))

F F S F

AV m AV m AV m AV m
n m AVF

AV m

F F F S

AV m AV m AV m AV m

F

AV m

x t t t y t
y t x t

x t

y t x t t t
m M t T

x t

 

 

+ −
= +

− +
  

 (17) 

Substituting Equations (16) and (17) into Equation (15) produces, 

3

2

3

6 ( )(tan( ( )) tan( ( ))) 12 ( )
( )

( ( ))

6 ( ) 2 ( )(tan( ( )) 2 tan( ( )))

( ( ))
( ( ))

3 ( )(tan( ( )) tan( ( ))) 6 ( )

( ( ))
1

F F S F

AV m AV m AV m AV m
AVF

AV m

F F F S

AV m AV m AV m AV m

F

AV m
n m

F F S F

AV m AV m AV m AV m
AF

AV m

x t t t y t
x t

x t

y t x t t t

x t
F x t

x t t t y t
x

x t

 

 

 

+ −
+

− +

=

+ −

+

3
2 2

2

2

,

( )

6 ( ) 2 ( )(tan( ( )))
( ) tan( ( ))

( ( ))

,

V

F F S
SAV m AV m AV m

AV mF

AV m

t

y t x t t
x t t

x t

m M t T




  
 + 
  
  − + 
   

  

(18) 

After arriving the final position, the curvature of AV is, 

 3

2 2

2 ( )(2 tan( ( )) tan( ( ))) 6 ( )
( ( )) ,

( ( )) (1 tan( ( )))

, .

F F S F
F AV m AV m AV m AV m

n m

F F

AV m AV m

x t t t y t
F x t

x t t

m M t T

 



+ −
=

+

  

 (19) 

Replacing 𝐹(𝑥𝑛(𝑡𝑚
F )) in Equation (14) with Equation (19) produces, 

 

2

3

2 2

2 ( )(2 tan( ( )) tan( ( ))) 6 ( )
( ) ( ( ) ) ,

( ( )) (1 tan( ( )))

, .

F F S F
L F F AV m AV m AV m AV m
AV m AV m

F F

AV m AV m

x t t t y t
t t

x t t

m M t T

 
 



+ −
=

+

  

 (20) 

The final cost function 𝐽 is listed as follows, 
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2

3

2 2

2 ( )(2 tan( ( )) tan( ( ))) 6 ( )
(( ( ) )

( ( )) (1 tan( ( )))

(1 )( ), , .

F F S F
F AV m AV m AV m AV m

AV m

F F

AV m AV m

F S

m m

x t t t y t
J t

x t t

t t m M t T

 
 





+ −
= +

+

− −   

 (21) 

Minimizing the cost function 𝐽 to find the optimal lane-changing trajectory can produce 

the optimal final position of the AV. In other words, the optimal lane-changing trajectory is 

decided by the speed of AV 𝑣AV(𝑡𝑚
S ) and the weight factor 𝛿. 

x

Y

O

Current Lane

Target Lane

𝐿P(𝑚) 𝐿F(𝑚) 

𝛼AV (𝑡𝑚 ) 

CFV

 

Figure 3. Schematic of the lane-changing process. 

2.4. Safety constraints 

In addition to comfort and efficiency, safety, encompassing collision avoidance and rollover 

prevention, must also be factored into the planning of the lane-changing trajectory. Figure 3 

illustrates a typical lane-changing scenario involving four adjacent vehicles in both the 

current and target lanes. At each time step of lane-changing trajectory planning, the AV must 

sustain a safe distance from both the target lane's preceding vehicle (TPV) and the following 

vehicle (TFV). A safe distance regulation is established to determine the safe distance [33]. 

The safe distance rule ensures that the following vehicle maintains an adequate spacing from 

the preceding vehicle, preventing a rear-end collision in the event of an emergency stop by 

the latter. As shown in Figure 3, the safe distance between the TPV and the TFV in the lane-

changing maneuver is (𝑥TFV(𝑡𝑚) + 𝐿F(𝑚), 𝑥TPV(𝑡𝑚) − 𝐶 − 𝐿P(𝑚)) . One indicator to 

ensure that the AV will not crash during lane change is that the final position when reaching 

the center line of the target lane is within this position range. The reaction time 𝜏𝑛 of vehicle 

𝑛 is also considered in the safe distance rule. The safe distance is acquired based on the 

following equation, 

 

2

( ) ( )cos( ( )) ( ( ) ( ( ))

1
( ) ( ( )))( ) ( ( )cos( ( ))

2

( )cos( ( )))( ) , , ;

P S S S S

AV m AV m AV AV m AV m

S S F S S S

T PV m T PV m m m AV m AV m

S S F S

T PV m T PV m m m

L m v t t v t cos t

v t cos t t t a t t

a t t t t t T m M

  

 

 

= + −

− + −

− 

 (22) 
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2

( ) ( )cos( ( )) ( ( )cos( ( ))

1
( )cos( ( )))( ) ( ( )cos( ( ))

2

( )cos( ( )))( ) , , .

F S S S S

TFV m TFV m TFV TFV m TFV m

S S F S S S

AV m AV m m m TFV m TFV m

S S F S

AV m AV m m m

L m v t t v t t

v t t t t a t t

a t t t t t T m M

  

 



= + −

−



+ −

− 

 (23) 

The ultimate positions of both TPV and TFV are essential for determining the safe 

positional range of the AV. Given that each time step is very brief (100 milliseconds), it is 

plausible to assume the TPV and TFV maintain a unchanging speed throughout every 

interval. Consequently, their ultimate positions can be determined using the following equations, 

 ( ) ( ) ( ) ( )( )( )F S S S F S

TPV TPV TPV TPVcosm m m m m mx t x t v t t t t= + −  (24) 

 ( ) ( ) ( ) ( )( )( )F S S S F S

TFV TFV TFVcosTFV m m m m m mx t x t v t t t t= + −  (25) 

 

( )
( )

( ) ( )( )

F
AV ' F 2

AVF S 0

S S

AV AV

1 ( )

cos

mx t

m

m m

m m

y t
t t

v t t

+
− =


 (26) 

Therefore, the safe distance for the AV’s final position on the target lane is calculated 

based on the following equation, 

 
( ) ( ) ( )( )( ) ( ) ( )

( ) ( )( )( ) ( )

S S S F S F S

TFV TFV TPV TPV

S S F S P

TPV TFV

cos ,

)

m m m m m m

m m m m

x t v t t t t L m x t

v t cos t t t L m C





+ − + +

− − −
 (27) 

In addition to collision-avoidance, rover-avoidance is also necessary when planning the 

lane-changing trajectory. To avoid a rover, the critical issue is to guarantee the lateral 

acceleration of AV reaching the lane-changing’s destination should not exceed the threshold 

𝑎𝑛
MAX [34]. According to Equation (14), 

 ( ) ( )( ) ( )( )
2

L F F F MAX

AV AV AVm m m na t v t F x t a=   (28) 

Substituting Equation (19) into Equation (28), we can get, 

( )

( )( ) ( )( )( ) ( )( )( ) ( )

( )( ) ( )( )( )

( )( )

1
3 22
2F S MAX F F

AV AV AV AV AV

F S

AV AV
F

AV 3

MAX 2 2
AV

2 tan tan 6 1 tan

2 tan tan

1 tan

m m m m

m m

m

F

m

t t a t y t

t t
x t

a

  

 



 
+ + + − 

 
 

+


+

 (29) 

Consequently, to prevent a rollover during lane changing, the lane-changing trajectory’s 

ultimate longitudinal position must satisfy the conditions of Equation (29). 

Owing to the intricacies of the actual traffic milieu, it is conceivable that there are either 

no vehicles or merely one vehicle present in the designated lane. Moreover, the cars in the 

target lane (TPV, TFV) are likely to execute synchronized lane changes. Our proposed 

DLCTP model possesses appropriate response capabilities to address these specific 

scenarios. The sole criterion is the presence or absence of vehicles in the designated lane. If 

one or two vehicles occupy the target lane, regardless of their actions, appropriate safety 

limits are computed to guarantee safety. If there is no vehicle on the target lane, the associated 

safety control will not be executed. 
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2.5. Final trajectory generation 

The cubic polynomial lane-changing trajectory is uniquely defined by the ultimate 

longitudinal location of the AV, as stated in Sections 2.3 and 2.4 For safety considerations, 

the ultimate longitudinal position of the AV must fall within the designated safety position 

range (Equation (27) and Equation (29)). Should the present velocity of the AV satisfy this 

criterion, the cost function in Equation (21) is computed to determine the ideal trajectory by 

modifying the parameters (𝑣AV , 𝛿). If not, the lane-changing process will be dangerous; the 

existing traffic conditions are inappropriate for an AV lane change, necessitating an 

interruption of the lane-changing process. Under this condition, the existing lane is chosen to 

be a new target, and the AV reverts to the present lane. 

2.6. Lane-changing decision 

Before conducting the lane-change maneuver, AV should make decision first. The AV 

lane-changing decision is to decide when and where to begin the lane change. After 

getting lane-changing commands, our DLCTP model will try to create a path connecting 

both current and target positions. If the target position can meet the requirements of safety 

constraints, including collision-avoidance and rollover-avoidance, AV will begin the lane 

change immediately. Otherwise, AV will adjust its speed in order to find a suitable lane-

changing chance in the next time step. As illustrated in Section 2.3, the lane-changing path 

is decided by the final longitudinal position 𝑥AV(𝑡𝑚
F ), vehicle speed 𝑣AV(𝑡𝑚

S ), and weight 

factor 𝛿 . By adjusting weight factor 𝛿  and combine the states of surrounding HVs, the 

minimum speed 𝑣AV
MIN(𝑡𝑚

S ) and maximum speed 𝑣AV
MAX(𝑡𝑚

S ) that meet lane-changing start 

requirements are obtained. Compared with the current speed of the AV 𝑣AV(𝑡𝑚
S ), there are 

three possible cases, 

(a) If the current speed of the AV meets these requirements, namely, 𝑣AV
MIN(𝑡𝑚

S ) ≤

𝑣AV(𝑡𝑚
S ) ≤ 𝑣AV

MAX(𝑡𝑚
S ). AV will conduct lane change immediately. 

(b) If the current velocity of AV is greater than the maximum allowed velocity to begin 

lane change, namely, 𝑣AV(𝑡𝑚
S ) > 𝑣AV

MAX(𝑡𝑚
S ), AV needs to slow down to meet the speed 

requirements. During the deceleration, the target deceleration value should be smaller than 

maximum deceleration 𝑏𝑛
MAX to guarantee passenger comfort and avoid potential collisions 

with the following vehicle on the current lane (CFV). The target speed of AV in time step 

𝑚 + 1 is, 

 ( )
( )

( ) ( )

( ) ( )
( ) ( )

MAX S S

AV AVMAX S

AV S S

1S

AV 1
MAX S S

AV AVS S S

AV 1 S S

1

, , .

m m

m

m m

m

m m

m m m

m m

v t v t
v t b

t t
v t m M t T

v t v t
v t b t t b

t t

+

+

+

+

 −
  −

−
=   

−
+ −  −

−

 (30) 

(c) If AV’s velocity is smaller than the minimum allowed velocity for lane change, 

namely, 𝑣AV(𝑡𝑚
S ) < 𝑣AV

MIN(𝑡𝑚
S ), AV needs to accelerate to meet the speed requirements. AV 

should keep a safe time headway with its preceding vehicle on the current lane (CPV) during 
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the acceleration. The linearized car-following model is employed to guarantee safety with 

CPV [35]. 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )S S S S S S

CPV 4 CPV AV AV 5 CPV AV
ˆ

., ,

m m m m m ma t k x t x t C v t g k v t v t

m M t T

= − − − + −

  
 (31) 

And, the target speed of AV in time step 𝑚 + 1 is, 
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+

+

+

+

 −
 

−
=   

−
+ − 

−

 (32) 

By repeating the velocity adjustment process, AV is able to obtain a suitable chance for 

conducting lane change in the future time step. 

3. Simulations and results analysis 

3.1. Simulation settings 

This section delineates the specific configurations of the simulation, encompassing the software 

platform, road geometry, traffic scenarios, and essential factors employed in the simulation. 

The simulation environment utilized to validate the proposed DLCTP model consists of 

MATLAB 9.0 and CarSim 2019. The comprehensive simulation process is illustrated in 

Figure 4; the proposed model operates on MATLAB and transmits the findings to CarSim to 

control virtual vehicles utilizing a complicated vehicle model. The real-time states (position, 

heading, speed, acceleration) of all simulation cars are relayed from CarSim to MATLAB, 

creating a cyclical data flow. Trajectory tracking is not addressed in this study, as it is not the 

focus of our research. Research on model-predictive-control-based trajectory tracking can be 

referenced in the works of Raffo et al. and Ji et al. [36,37]. According to the actual road data 

from Google Maps, the uninterrupted curved road is depicted in Figure 4. The traffic states 

are incorporated into the digital map to assess the efficacy of the proposed approach in 

managing various route geometries. Five vehicles, comprising four heavy vehicles and one 

AV, are utilized in the scenario. Both the TPV and CPV function in accordance with the 

established speed and trajectory, whereas other vehicles adhere to the linearized car-following 

model [35]. 

Traffic States Lane-changing decision

& trajectory planning
Trajectory tracking

Dynamic vehicles

 

Figure 4. Overall architecture of the simulation platform. 
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Three representative traffic situations, incorporating various driving behaviors of 

adjacent high-velocity vehicles, are formulated to assess the adaptability of our model.  

(a) The AV transitions from a slow-moving lane to a fast-moving one. The speed of the 

CPV is less than that of the TPV. This configuration seeks to replicate the AV’s pursuit of a 

sluggishly advancing vehicle, intending to achieve a velocity advantage via lane-changing 

maneuvers (e.g., circumventing traffic congestion or enhancing driving speed). 

(b) The AV executes a lane change between two lanes of comparable speed. Both TPV 

and CPV maintain a reasonably consistent velocity during the lane-changing maneuver, 

indicating stable traffic conditions. 

(c) The AV changes lanes from a high-speed lane to a low-speed lane. This configuration 

seeks to replicate the case where AVs must execute obligatory lane changes, such as avoiding 

obstacles or exiting the road. 

The three lane-changing experiment settings account for various traffic situations and 

driver behaviors in the simulation, facilitating the assessment of the proposed DLCTP 

model’s performance. 

The essential parameters utilized in the lane-changing simulation experiments are 

enumerated in Table 2. 

Table 2. Parameters for simulation experiments. 

Parameter Value Unit 

𝐶 4.9 𝑚 

𝑎𝑛
MAX 1.4 𝑚/𝑠2 

𝑏𝑛
MAX -2.8 𝑚/𝑠2 

𝜏𝑛 0.9 𝑠 

𝑘4 0.24 𝑠−2 

𝑘5 0.08 𝑠−1 

𝑔 1.3 𝑠 

3.2. Results analysis 

 

(a) Planned and executed trajectories. 
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(b) Longitudinal speed. 

 

(c) Lateral acceleration. 

Figure 5. Simulation results of the acceleration scenario. 

Figure 5a illustrates the intended trajectory (red dashed line) and the actual trajectory 

executed by the vehicle (blue line) within the simulation of the initial traffic scenario. 

Throughout the lane-changing maneuver, the intended trajectory remains smooth and 

continuous. The AV demonstrates high-precision trajectory tracking based on this planned 

path. Both the speed and lateral acceleration of the AV are consistently smooth during the 

lane change. As depicted in Figure 5b, the AV experiences a comfortable acceleration 

throughout the experiments. Furthermore, Figure 5c shows that the maximum lateral 

acceleration during the entire maneuver remains within a comfortable range, ensuring 

passenger comfort. 

 

(a) Planned and executed trajectories. 

 

(b) Longitudinal speed. 
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(c) Lateral acceleration. 

Figure 6. Simulation results of the const speed scenario. 

In the second lane-changing situation, the statuses of adjacent HVs are rather steady. 

Consequently, there are no significant alterations between two contiguous trajectory plans. 

The AV can complete the lane-changing maneuver with reduced trajectory tracking error, 

speed variance, and lateral acceleration. In the constant speed lane change situation, the 

lateral acceleration is comparatively lower than in the acceleration and deceleration lane 

change scenario. 

 

(a) Planned and executed trajectories 

 

(b) Longitudinal speed 

 

(c) Lateral acceleration 

Figure 7. Simulation results of the deceleration scenario. 
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Figure 7a demonstrates that the AV can change lane in a deceleration condition with a 

smooth trajectory and an acceptable trajectory tracking error. The velocity of the AV 

consistently diminishes throughout the lane shift (shown in Figure 7b), but the lateral 

acceleration remains acceptable (depicted in Figure 7c).  

Our proposed DLCTP model can construct a secure route within 100 milliseconds at each 

time step throughout the simulation (i7-4710 MQ, 16GB memory, 512GB data storage), 

indicating the model’s decreased resource usage.  

The experimental results demonstrate that our proposed DLCTP model can successfully 

execute safe and comfortable lane-changing operations on curved roads across various 

traffic circumstances, including both acceleration and deceleration, as well as differing 

driver behaviors. 

4. Conclusion and future work 

This paper contributes to the AV’s lane-changing trajectory planning in the mixed traffic 

scenario. The cubic polynomial is utilized in our DLCTP model because to its smoothness 

and ease of computing. The proposed DLCTP model comprehensively accounts for the 

dynamics of surrounding high-velocity vehicles and is applicable on both straight and curved 

roadways. Safety limitations, such as collision avoidance and rollover prevention, are 

implemented to guarantee the safety, comfort, and efficacy of the lane-changing procedure. 

A CarSim-Simulink simulation and three representative traffic scenarios are developed and 

executed to test our proposed DLCTP model. Experimental findings indicate that the 

proposed DLCTP model can effectively manage intricate traffic situations, encompassing 

acceleration, constant speed, and deceleration lane changes, while producing a safe, smooth, 

and efficient trajectory across all three traffic scenarios. Our proposed DLCTP model exhibits 

reduced usage and is directly applicable in real AV operations. 

This research can be expanded in other avenues. Initially, the diverse driving behaviors 

of heavy vehicles must be considered while formulating the safety limitations. Additionally, 

field studies must be conducted to validate the DLCTP model. 
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