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Abstract: Deep Reinforcement Learning (DRL) is capable of learning a policy with great scene
adaptation ability through interactions with the environment, and has application potential in
the field of autonomous driving. However, using DRL to directly control the vehicle motion
command is easy to lead to fluctuation and non-smoothness. Discrete DRL decision-making
method can generate stable behavior but lose some maneuverability. Thus, the trade-off
between flexibility and stability to enhance the performance of DRL policy is an important
issue. In this paper, a Deep Reinforcement Learning Decision-Making algorithm based on
Motion Primitives Library (MPL) in hierarchical action space is proposed to provide flexible
and reliable maneuvers for autonomous driving. The upper action space contains discrete
lane-changing targets, and the lower action space is mapped as a motion primitives library. In
addition, model predictive control method (MPC) based on the vehicle kinematics model is
used to optimize the motion primitives instantly. The performance of the proposed method
is evaluated through highway simulation. The results show that the method can make the
autonomous driving lane changing process safer, more efficient and more comfortable.

Keywords: artificial intelligence; autonomous vehicles; machine learning; reinforcement
learning; motion planning

1. Introduction

Autonomous driving technology is rapidly evolving and can bring a safer, more efficient,
environmentally friendly and comfortable mode of transportation to society. Traditional
autonomous driving approaches rely on mechanism models to realize maneuver functions
through pipeline framework including perception, prediction, decision making, trajectory
planning and control [1–3]. However, these approaches suffer from problems such as lack of
flexibility in complex environments and high-cost algorithm maintenance [4]. In recent years,
learning-based methods have been applied to autonomous driving systems [5]. Consequently,
it can facilitate vehicles’ capacity to adapt more effectively to complex and evolving traffic
environments with large amount data training.

Reinforcement learning (RL) is a significant branch of machine learning, which is distin-
guished by many advantages including high control flexibility, straightforward maintenance
of algorithms. It is attracting increasing attention and emphasis from researchers engaged in
autonomous driving [6,7]. RL applications typically involve the use of deep neural networks
and are therefore often referred to as Deep Reinforcement Learning (DRL). Based on the designed
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rewards, the DRL agent can interact with the traffic environment through trial-and-error to
achieve self-evolution of its policy, thus enabling strong scene adaptation capability [8,9].
Therefore, it has been applied in many autonomous driving scenarios such as lane-changing,
intersection, merging, etc. [10–12].

However, some current DRL-based methods may still affect the smoothness or maneuverability
of the vehicle. (1) Some studies have focused on developing the high maneuver capability
of the DRL agent: researchers attempted to enable the agent to directly control the vehicle’s
steering angle and accelerator pedal to emulate human driving behaviors [13,14]. However,
these methods outputting continuous actions are randomly selected from a mathematical
distribution, resulting in continuous shaking of vehicle’s steering angle and acceleration,
which has a negative effect on driving stability and safety. (2) Some other studies are more
conservative, which only use the DRL agent to assist decision-making: here, DRL is used to
solve high-level semantic decision-making problems in autonomous driving scenarios, such as
whether to keep the lane or how to change the lane. Based on the high-level decision-making
information, traditional mechanism model-based planners and controllers are then designed to
generate motion commands, such as PID [15,16]. Nevertheless, in complex traffic scenarios,
the lack of flexibility in trajectory planning and control may reduce the driving efficiency and
even make the vehicle in a dangerous situation.

Therefore, it is necessary to both improve the flexibility and stablity performance by
involving the DRL agent in vehicle motion planning with a more reasonable degree. Some
researchers have made attempts. In reference [17], the DRL agent is used to output the
expected time of the trajectory and the lateral offset distance, and the trajectory data obtained
on the basis of these parameters can be used to train a neural network model that outputs
the optimal trajectory of the vehicle driving process. However, this method requires a neural
network model to be trained offline first, which has poor transferability when dealing with
different traffic scenarios. Reference [18] allow agents to participate in trajectory planning
based on the DDQN algorithm in a hierarchical architecture, where the upper layer outputs
discrete task actions and the lower layer selects the type of trajectory. However, this method not
only does not consider the speed decision, but also has limitations on the types of trajectories
that the agent can select. Based on the DDPG algorithm, reference [19] let the agent output the
target point and target speed of the trajectory, and then track it with a PID controller. However,
the target point of this method is selected in a planar continuous region, and the computation
is time-consuming. In reference [20], a hybrid system is designed, consisting of a controlled
MDP and uncontrolled continuous dynamics, but the trajectory guidance in this system lacks
flexibility. In conclusion, the existing research results still cannot enable autonomous vehicles
to use DRL for proper motion planning.

To address the shortcomings of existing studies, this paper proposes a reinforcement
learning motion planning method based on a Motion Primitive Library (MPL) in hierarchical
action space. The upper action space of this method contains discrete high-level semantic
decision options. For each high-level option, there are corresponding number of motion
primitives in the lower action space for further selection by the DRL agent. In Section 3.2 we
explain the hierarchical action space, where we discuss the relationship between high-level
actions, low-level motion primitives, and the vehicle’s driving behavior. Then, an objective
function will be constructed based on the vehicle kinematic model to optimize the motion
primitive that will further improve its smoothness. The proposed method is called RL-MPL,
which can effectively improve the driving efficiency and safety of the vehicle in lane changing
scenarios. The specific contributions are summarized as follows:
• Propose a deep reinforcement learning framework based on motion primitives library,

which realizes the selection of motion primitives through hierarchical action space. It
can fully utilize the flexibility of the DRL agent while enhancing driving stability.
• Model Predictive Control (MPC) based on vehicle kinematics model is used to achieve
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the optimization of motion primitives, enhancing the smoothness of vehicle driving.
• Combine the SAC-Discrete algorithm with the motion primitives library and conduct

experiments in a straight structured simulation road. The results show that the method
proposed in this paper can realize safer and more efficient driving.

The rest of the paper is organized as follows: Section 2 introduces the RL fundamentals
and shows the overall system framework of RL-MPL. Section 3 presents the key details of
the DRL agent. Section 4 provides the development of motion primitives and the way they
combine with the RL method. In Section 5, simulation validation and analysis of experimental
results are provided. Section 6 concludes this paper.

2. System framework

This section will introduce the fundamentals about RL and then further introduce the SAC-
Discrete algorithm. Then, the overall framework of the proposed RL-MPL method will be
shown and explained.

2.1. Preliminary

2.1.1. Markov decision processes

The Markov Decision Processes (MDPs) is meant to be a straightforward framing of the
problem of learning from interaction to achieve a goal [21]. The learner and decision maker is
called the agent, which choose actions based on their observed state. The environment reacts
to the agent’s actions and feeds new observations and rewards back to the agent. The agent
is able to gain experience from the constant interaction and modify its strategy based on that
experience to gain greater rewards.

An MDP can be represented by a tuple < S,A,P,R,γ >, where S is the state space, A is the
action space, P is the state transition probability, R is the reward function, and γ is the discount
factor. Specifically, the agent and the environment interact at each of a series of discrete time
steps. At each time step t, the agent receives a representation of the environment’s state st , st ∈ S.
Then the agent is able to select an action at , at ∈ A, based on st . After a time step, as a partial
result of its action, the agent is able to receive a numerical reward rt , rt ∈ R, and finds itself in
a new state st+1. In this way, the cycle is able to generate experience for the agent, which is the
basis for training. The goal of agent is to find the optimal a policy maximizing the expected
reward. This optimal action-value function can be described by the Bellman equation:

Q(st ,at) = E
[

rt + γmax
a′∈A

Q(st+1,a′)|st = s,at = a
]

(1)

2.1.2. Maximum entropy RL

Traditional RL methods rely on tabular methods or simple function approximations, which are
ineffective when dealing with high dimensionality and complex state spaces. Therefore, neural
networks are introduced into reinforcement learning. By utilizing the powerful expressive
ability of neural networks, arbitrarily complex value functions and policy functions can be
approximated. A widely used architecture in DRL is Actor-Critic. Critic is responsible for
estimating the value function of the action and guiding the optimization of the behavior. In
turn, Actor is responsible for generating a policy to select an action based on the current state.

The algorithm that applies maximum entropy in the Actor-Critic architecture is Soft
Actor-Critic (SAC) [22], which has the advantage of being efficient and stable. The agent of
SAC attempts to find a policy that maximizes the entropy objective:

π
∗ = argmax

π
Eπ

[
∑
t

r(st ,at)+αH(π(· |st ))

]
(2)
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where π is a policy and π∗ is the optimal policy. α is a regularized coefficient that determines
the importance of the entropy term with respect to the reward, also called the temperature
parameter. H denotes the degree of stochasticity of the policy π in state st , which is computed as:

H(π(· |st )) =− logπ(· |st ) (3)

Upon consideration of the maximum entropy, the following soft Bellman equation can be derived:

Q(st ,at) = r(st ,at)+ γEst+1 [V (st+1)] (4)

where the state value function can be written as:

V (st) = Eat∼π [Q(st ,at)−α logπ(at |st )] (5)

In SAC implementation, two Q-networks (with parameters ω1, ω2) are used to output
the action value function. Each time a Q-network is employed, the one with the smaller
output value is selected in order to alleviate the problem of overestimation of the Q value [1].
Additionally, a policy network π is utilized to output the agent’s action with network parameters
of θ . Consequently, the loss function of any Q-network can be written as:

lQ(ω) = E

[
1
2

(
Qω(st ,at)−

(
rt + γ

(
min
j=1,2

Q
ω
−
j
(st+1,π(st+1))−α logπ(st+1)

))2
]

(6)

where D is the experience replay pool. In order to enhance the stability of the training
process, target networks are introduced for the two Q networks with parameter ω−.

To obtain the loss function of the policy network, SAC uses the reparameterization trick [1].
During policy updating, at can be obtained by fθ (εt ;st) , where ε is a random noise variable.
So, the loss function of the policy network can be written as:

lπ(θ) = Est∼D,εt∼N

[
α log(πθ ( fθ (εt ;st) |st ))− min

j=1,2
Qω j(st , fθ (εt ;st))

]
(7)

It is worth noting that how the temperature coefficient α of the entropy regularity term
is chosen is important. So during the training process of SAC, α will change as the state s
changes. Reference [2] provides a method to learn the temperature coefficient α and get the
loss function of α:

l(α) = Est∼D [−α logπθ (st)−αH0] (8)

where H0 is a constant vector equal to the hyperparameter representing the target entropy.

2.2. SAC discrete action space

SAC is a kind of algorithm for continuous action space, with a policy network that can directly
output a parameterized family of distributions (e.g. Gaussian distribution). In contrast, the
MPL proposed in this paper is designed under discrete action space. In order to make SAC
capable of outputting discrete actions, some changes must be made in the process of optimizing
the objective function [23].

Since the action space is discrete, we can fully recover the action distribution without
forming a Monte Carlo estimate. Therefore, the expectation of the state value function can be
calculated directly, and Equation (5) needs to be modified as:

V (st) = πθ (st)
T [Qω(st ,at)−α logπθ (st)] (9)

Similarly, modifications can be made to the loss function calculation for the temperature
coefficient α in a manner analogous to that described above in order to reduce the variance of
this estimate. Equation (8) can be modified as:

l(α) = πθ (st)
T [−α logπθ (st)−αH0] (10)
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In order to minimise the loss function of the policy network, SAC employs a reparameteri-
sation trick, which allows the gradient to pass through the expectation operator. However, in
the case of a discrete action space, the policy network outputs the exact action distribution,
allowing the expectation to be computed directly. Consequently, Equation (7) can be modified
as:

lπ(θ) = E(st ,at)∼D

[
πθ (st)

T (α log(πθ (st))− min
j=1,2

Qω j(st ,at))

]
(11)

2.3. Overall framework of RL-MPL

The overall framework of the proposed RL-MPL method is shown in Figure 1. The observation
information containing the state of the ego vehicle (EV) and its surrounding traffic environment
is transformed into one-dimensional vectors, which are used as inputs to the neural network.
Based on the output of the neural network, the flexible lane changing option can be performed
in the hierarchical action space and the optimal motion primitives in MPL will be finally
selected. Specifically, each semantic lane-change option corresponds to i abstract motion
primitives from which the agent can select. To simplify the action space, we set i = 3, with the
motion primitives varying in their endpoint positions. In practice, the policy network implicitly
encodes the selection of semantic lane-change actions, so that when the agent chooses a
motion primitive, the corresponding lane-change action is inherently determined. After the
generation of the motion primitive, trajectory optimization is performed under the framework
of MPC to better fit the vehicle kinematics model. The motion primitive will finally be fed to
the underlying controller of the EV to control the vehicle motion through steering angles and
accelerations. The experiences during vehicle driving will be used to guide the training of the
DRL agent.

Figure 1. The whole framework. The proposed RL-MPL method incorporates a hierarchical
action space, where the upper layer consists of a discrete set of lane-change options, and the
lower layer contains a library of motion primitives.

3. RL agent formulation

This section will introduce the design of important concepts of DRL agent, including state
space, action space, reward function and neural network structure.
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3.1. State space definition

The agent needs to consider the information of the ego vehicle and the surrounding vehicles (SV)
to perform the driving task on straight structured roads. To facilitate the use of information
features as network inputs, we use a vectorized representation of the state space. The vector
that can represent the EV information is defined as:

se = [xe,ye,vx,vy,ax,ay, IDc, IDt ] (12)

where xe and ye denote the lateral and longitudinal positions of the EV, respectively. vx and
vy denote the lateral and longitudinal velocities. ax and ay denote the lateral and longitudinal
accelerations. IDc is the id of the lane in which the EV is currently located. IDt is the id of the
target lane of the EV.

To make the agent fully understand the traffic environment, we extract the information of
six surrounding vehicles. The information of the i-th SV, after vectorization, can be expressed as:

ss
i = [∆xi,∆yi,∆vxi,∆vyi,∆axi,∆ayi, IDci, IDti] (13)

where ∆xi and ∆yi denote the relative distances between SV and EV in the lateral and longitu-
dinal directions. ∆vxi and ∆vyi denote the relative speeds between SV and EV in the lateral
and longitudinal directions. ∆axi and ∆axi denote the relative accelerations between SV and
EV in the lateral and longitudinal directions. IDci and IDti are the id of SV’s current lane and
the target lane.

In order for the state information to be used as an input to the neural network, the 7×8
two-dimensional information matrix needs to be expanded into a 1×56 one-dimensional vector:

s = [se,ss
1,s

s
2, · · · ,ss

6] (14)

3.2. Hierarchical action space definition

The method proposed in this paper is based on a discrete hierarchical action space. The upper
layer action space contains discrete options for lane changing. For each upper layer option, the
lower layer action space correspondingly contains multiple alternative trajectory primitives.
Therefore, the hierarchical action space can be defined as:

AU = {KEEP,LCL,LCR,ACC,DEC} (15)

AL = {M1, · · · ,Mi}option∈AU (16)

where, AU is the upper action space that contains five discrete options that determine what
action the EV will take. Selecting KEEP means that the EV’s target lane remains unchanged,
while LCL or LCR means that the target lane will be changed to the left or right lane. And
ACC and DEC mean to increase and decrease the target speed of the vehicle, respectively.
AL is the lower action space, where the number of discrete actions is i. Mi denotes the i-th
motion primitive when option is fixed, and all the motion primitives together form the one
MPL. Considering the computation time consuming, we take i = 3 in this paper, so the MPL
contains 15 motion primitives. So, the DRL agent will select one motion primitive from the
15 motion primitives as an output. It should be noted that the motion primitive at this point is
not a trajectory, but only a label. Section 4 describes how to build a motion primitive based on
this label that can be used by the underlying EV controller.

3.3. Reward function definition

The objective of the DRL agent is to identify the globally optimal EV driving strategy, which
is as efficient and comfortable as possible while ensuring safety. Therefore, a reasonable
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reward function must be designed to guide the agent during training. The reward function R,
designed in this paper, includes three parts:

R = Rs +Re +Rc (17)

where Rs is the safety reward, Re is the efficiency reward and Rc is the comfort reward.
The safety aspect is the most important and it should be ensured that the EV does not crash

while driving. Therefore, a large negative reward should be given when a collision occurs
between the EV and the SV. Rs can be expressed by the following equation:

Rs =−ks fcoll (18)

where fcoll is the collision flag bit, which is set to 1 when collision occurs, otherwise to 0. ks
is the weighting factor for the safety reward, which is set to 10 in this paper.

In terms of driving efficiency, EV is encouraged to make lane changes to gain higher
driving speeds and set the speed of the traffic stream to be slightly lower than the EV’s target
speed vt . The closer the EV’s speed is to vt , the greater the positive reward it receives. Re can
be expressed by the following equation:

Re = ke
|v− vt |

vt
(19)

where v is the current speed of the EV and vt is the target speed of the EV. ke is the weight
coefficient of the efficiency reward, which is set to 5 in this paper.

In terms of comfort, the EV should be encouraged to maintain a uniform linear motion and
minimise the number of lane changes and acceleration/deceleration operations. Meanwhile, it
should be ensured to be as smooth as possible during EV lane changes. The equation for Rc is
as follows:

Rc =−kc1 fc− kc2
|δEV |
|δmax|

(20)

where fc is the collision flag bit, fc is 0 when the motion primitive corresponding to keep is
selected and 1 in all other cases. δEV is the EV’s real-time steering angle of the front wheels,
and δmax is the maximum steering angle. kc1 and kc2 are the weight factors of the comfort
reward, which are both set to 1 in this paper.

3.4. Neural network design

The neural network architecture of Soft Actor Critic algorithm based on discrete action space
is shown in Figure 2. In this paper, the networks of Actor and Critic are similar.

For actor, a policy network πθ (st) is needed to be constructed to output the probability
distribution of all discrete actions. The policy network contains three parts: input layer, hidden
layers, and output layer, totaling four layers. The input layer has 56 units to obtain state
information. Layer-2 has 256 units, while layer-3 has 128 units, which together form the
hidden layers part. Considering the size of the MPL, the output layer has 15 units, each
corresponding to the probability of selecting a motion primitive. The learning rate of the actor
is set to 10−4.

For critic, two value networks Qω1(st) and Qω2(st) with exactly the same architecture
must be constructed to make the actor training more stable. The input layer has 56 units to
receive state information, and both layers-2 and layer-3 have 128 units. The output layer has
15 units to output the values of all motion primitives. The learning rate of both value nets is set
to 10−3. In addition, two target value networks, Q

ω
−
1
(st) and Q

ω
−
2
(st), are needed to improve

the training stability, which are set up in the same way as the value networks. Q
ω
−
1
(st) and

Q
ω
−
2
(st) take a soft update to keep approaching Qω1(st) and Qω1(st), and the parameter update

method is as follows:
ω
−← τω +(1− τ)ω− (21)
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through multiple experiments by adjusting τ , we found that when τ = 0.005, it achieves a
good balance between the stability of the learning process and convergence efficiency.

Figure 2. Neural network architecture. Both the actor and critic networks of the
SAC-Discrete we used have four layers: the input layer, two hidden layers, and the output
layer.

4. Motion primitive development and combination with RL

Each motion primitive is a reference trajectory of the EV for a future time period, and detailed
information about the motion primitives is presented in this section. This section includes a
polynomial curve based path point generation and a trajectory optimization method based on
the vehicle kinematic model.

4.1. Path generation

When planning path points for motion primitives, the continuity of the path curve and the
computational time consuming need to be considered [24]. The most common path generation
method is based on polynomial functions. In the Cartesian coordinate system, the fifth degree
polynomial function curve is given by:

y = γ0 + γ1x+ γ2x2 + γ3x3 + γ4x4 + γ5x5 (22)

the points on the curve of this function can be used as reference path points when the vehicle
performs a lane change action. The coefficients of the fifth degree polynomial γi can be
estimated by solving linear equations when the position information of the start and end points
is known. The EV’s position information that needs to be obtained includes the x-position, the
y-position, the yaw angle θ , and the curvature κ . We can denote the EV’s position information
at the initial moment T0, with (x0,y0,θe0,κe0), and then denote the EV’s position information
at the termination moment Tf , with (x f ,y f ,θe f ,κe f ). As shown in Figure 3 is a schematic
diagram of the motion primitive during lane change.

Consequently, when solving the linear equation, it is necessary to extract information from
on-board sensors at the initial point of the path and to compute information at the termination
point based on the decision-making result of the DRL agent. It is assumed that the EV will be
traveling along the target lane in a straight line at the termination moment. In this case, θe f

and κe f can be regarded as 0. The value of y f is related to the selection of the DRL agent in
the upper action space, which satisfies the following correspondence:

y f = {−L,0,L}⇐ option = {LCR,KEEP,LCL} (23)
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Figure 3. Motion Primitive during lane-change. The coefficients of the fifth-degree poly-
nomial can be calculated based on the starting and ending states of the EV, and then the
reference path points on the motion primitives are determined.

where L is the lane width. The value of x f is not only related to the agent’s decision, but also
to the EV’s velocity and termination moment Tf . The motion primitives in this paper are the
possible reference trajectories of the EV in the next 5 s, so Tfmax = 5s. When the option based
on the upper workspace is fixed, the terminal lateral position x fi is selected for the i-th motion
primitive Mi in the lower action space:

x fi = min
(√

4R0L−L2,
v2

x

2a−max

)
+

i
imax

vxTfmax (24)

where R0 is the minimum turning radius of the EV, a−max is the maximum braking acceleration
of the EV, and imax = 3. Different values of x f result in different shapes of the constructed
motion primitives.

4.2. Trajectory optimization

Under the ground coordinate system, the MPC problem can be constructed based on the
two-degree-of-freedom vehicle kinematics model, which in turn enables the optimization of
the trajectory. Three states of the EV are selected to describe the system, x = [xe,ye,θe]

T .
Then the velocity and front wheel steering angle of the EV are used as the control inputs,
u= [ve,δe]

T . Therefore, the description for the motion of the EV using the ordinary differential
equation can be written as:  ẋe = ve cosθe

ẏe = ve sinθe
θ̇e = vetanδe

/
le

(25)

where le is the vehicle wheelbase of EV. The above model is a constant nonlinear system,
which can also be denoted as:

ẋ(t) = f (x(t),u(t)) (26)

using Eulerian forward discretization, a discrete time representation of the above equation can
be obtained:

x(k+1) = x(k)+ f (x(k),u(k))∆t = F(x(k),u(k)) (27)

where ∆t is the discrete time interval. For convenience, x(k) and u(k) can be abbreviated as xk
and uk.

The objective of optimizing the motion primitives during lane-changing is to ensure a
more consistent trajectory with the vehicle’s kinematics model and greater smoothness. If
both the number of control steps and the predicted steps are designated as N, an objective
function can be formulated in the following form:

minJ =
N

∑
k=1

(xk−xre f )
T Q(xk−xre f )+(uk−ure f )

T R(uk−ure f ) (28)
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where Q and R are weight matrices. xre f is the reference path point information calculated in
section 4.1, xre f =

[
xre f ,yre f ,θre f

]
. ure f is the reference input information, ure f =

[
vre f ,δre f

]
.

vre f is the target speed of the EV, and is related to the agent’s option in the upper action space.
To enhance the stability of EV during lane changing, the value of δre f is set to 0. For system
27, in conjunction with the driving scenario, the constraints of the control inputs need to be
considered: {

0≤ v(k)≤ vmax
−δmax ≤ δ (k)≤ δmax

(29)

Solving the above optimization problem results in a sequence of control inputs
U = [u1,u2, . . . ,uN ]

T in the predicted time horizon, and the optimized state sequence
X = [x1,x2, . . . ,xN ]

T can be obtained by substituting U into Equation (25). Using the results
of the above solution, a suitable motion primitive Mi can be generated, which contains
five kinds of information for each trajectory point: x-coordinate, y-coordinate, target yaw
angle, target velocity, and target steering angle of the front wheels. Consequently, Mi can be
expressed as follows:

Mi = [(x1,y1,θ1,v1,δ1), . . . ,(xN ,yN ,θN ,vN ,δN)]i (30)

4.3. Combination of MPL and RL

Based on the motion primitive, the DRL agent is able to participate in motion planning for the
EV. At moment t, the policy network πθ (st) can select the motion primitive Mi,t in the lower
action space based on the current observation information st . After optimizing the trajectory
of the motion primitive, the underlying controller can be used to output driving commands.
The EV can obtain a reward Rt and the environmental state feedback st+1 at the next moment
after driving based on the motion primitive. Therefore, the loss function of the policy network
can be written according to Equation (11) as:

lπ(θ) = E(st ,Mi,t)∼D

[
πθ (st)

T (α log(πθ (st))− min
j=1,2

Qω j(st ,Mi,t))

]
(31)

For the two Q networks used in the training process, their loss function when considering
Mi,t according to Equation (6) can be written as:

lQ(ω) = E

[
1
2
(Qω(st ,Mi,t)− (Rt + γ(min

j=1,2
Q

ω
−
j
(st+1,πθ (st+1))−α logπθ (st+1))))

2

]
(32)

However, the form of the loss function for the temperature coefficient alpha remains
unchanged. The detailed training process about the RL-MPL method is shown in Algorithm 1.

5. Experiment and results

In this section, the setup of the traffic environment model under straight structured roads
is given. Then the training and testing results are analyzed to verify the superiority of the
proposed method in this paper.

5.1. Experiment setup

We constructed a straight structured road simulation scenario with three lanes based on the
highway-env platform, as shown in Figure 4. The SVs in the traffic flow are also randomly
generated in each lane when the scenario is initialized, and the target speeds of all SVs are
randomly generated in the range of [8 m/s,16 m/s]. In addition, to improve the ability of the
traffic environment to interact with EV, the longitudinal and lateral driving models of the SVs
are respectively IDM and MOBIL, and there are random lane-changing behaviors in the SVs.
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Algorithm 1 Training process of proposed RL-MPL

Require: Total training steps NT , learning rate of Actor lA
r , learning rate of Critic lA

r , temperature coefficient α ,
soft update coefficient τ .

1: Initialize: experience replay pool D, networks {Q,π} with random parameters {ω,θ}, target networks with
random parameters ω−.

2: for t = 0 to NT do
3: Get state st from environment.
4: Select Mi,t = πθ (st) from MPL.
5: Create motion primitive to map to Mi,t .
6: Optimize trajectory for Mi,t .
7: Use Mi,t as reference to control EV.
8: Get st+1 and Rt from environment.
9: Store transition {st ,Mi,t ,Rt ,st+1)} into D.

10: Sample randomly from D to compute lπ(θ), lQ(ω), l(α).
11: Update θ ,ω,α with ∇θ lπ(θ), ∇ω lQ(ω) and ∇α l(α).
12: ω−← τω +(1− τ)ω−

13: st ← st+1
14: if st is terminal then
15: Reset environment.
16: end if
17: end for
18: return

Figure 4. Straight structured road simulation environment in highway-env. The green vehicle
represents the EV, and the blue vehicles represent the SVs.

The EV will be randomly generated in one of the lanes when the scenario is initialized,
and its initial speed is randomly generated in the range of [8 m/s,16 m/s,]. The maximum
speed limit of the EV is 20 m/s, and the target speed is 18 m/s. When a motion primitive is
selected, the controller inside the EV will use the motion primitive as a reference to give the
steering angle and acceleration commands of the vehicle. In this paper, we choose the stanley
algorithm as the control algorithm inside the EV.

The update time step of the entire simulation scenario is 0.1s, and the maximum simulation
time of a single episode is 200 s. When the EV collides with the SV, the simulation scenario
ends and is reinitialized.

5.2. Comparison methods

In order to verify the superiority of the SAC-Discrete algorithm after combining MPL, four
methods are selected as baselines in this paper:
(1) Model-based Method (IDM [25]+MOBIL [26]): In this approach architecture, the longitudinal

and transverse control of EV is based on IDM and MOBIL respectively.
(2) Direct-RL Method (DQN [27], SAC-Discrete [23]): In this architecture, the output of DQN

or SAC-Discrete is a discrete high-level semantic action option, not a motion primitive.
Based on the agent’s options, the EV’s underlying PID controller will directly control the
vehicle’s motion.

(3) DQN+MPL: In this architecture, the DQN algorithm will be combined with MPL to enable
the agent to output motion primitives to the underlying EV controller.

11
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5.3. Performance comparison

As shown in Figure 5 is the average reward change in each episode for all methods during
the training process. Of these, using IDM and MOBIL for EV control the average reward
for each episode fluctuates within a stable range and is significantly worse than the learning-
based approach. Based on the reward change curves, it can be found that all learning-based
algorithms are able to converge to a stable driving strategy after 1000 episodes. Both for
SAC-Discrete and DQN, the combination with MPL enables faster convergence and higher
rewards. In addition, SAC-Discrete can be found to be more suitable than DQN for vehicle
driving decisions in discrete action spaces.

To further verify the superiority of RL-MPL, we tested each of the trained models on
300 episodes, and the results are shown in Table 1. It is easy to find that the SAC-Discrete
algorithm combining MPL still has the highest reward during the test. On straight structured
roads, our approach enables the EV to travel at higher average speeds and more lane change
times, while being able to maintain the lowest number of collisions. Analyzing the steering
angle variance shows that the EV is able to have a smoother steering angle during lane changes
due to the application of motion primitives.

Figure 5. Training results. The figure shows the change in total reward for all methods
during the training process over 1700 episodes.

Table 1. Comparison of test result.

Method Average reward Average speed Episode LC times Collision rate Steering variance

IDM+MOBIL 0.651 8.3 5.22 0.17% 0.023
DQN 0.797 11.5 7.09 0.35% 0.027

DQN+MPL 0.834 12.3 7.65 0.21% 0.009
SAC-Dis 0.909 14.1 8.31 0.26% 0.025

SAC-Dis+MPL 0.942 14.8 8.99 0.11% 0.008

In summary, both training and testing results can prove that our proposed RL-MPL method
is more outstanding. RL-MPL can make the EV obtain higher efficiency and flexibility, and
can ensure the safety of the vehicle as well. Moreover, the combination of motion primitives
and RL also improves the stability of the vehicle and the smoothness when changing lanes.
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6. Conclusion

In this paper, a reinforcement learning method based on motion primitives library is proposed
to select the optimal motion primitives from the hierarchical motion space. And MPC are
used to optimize the trajectory and improve the fit of the motion primitives to the vehicle
kinematics model. The SAC-Discrete algorithm, which has good performance in discrete
action decision making, is used to combine motion primitives library. The experimental results
show that the proposed RL-MPL method enables vehicle to achieve more flexible and stable
motion planning under straight structured roads, improving driving efficiency, safety and
smoothness. The future work will focus on:(1) enhancing the flexibility of DRL agents in
motion planning by extending motion primitives to continuous action spaces; (2) improving
the algorithm’s generalization ability to handle more complex scenarios in autonomous driving;
and (3) incorporating additional RL comparison algorithms in the experiments to provide a
more comprehensive analysis.
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