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Highlights: 

⚫ Real-time system monitors elevator vibration and speed with sensor data. 

⚫ Anomaly detection with Isolation Forest, SVM, and Z-score boosts safety. 

⚫ Study lays groundwork for digital twin systems in elevator maintenance. 

Abstract: This study presents the design and implementation of a real-time monitoring system for 

traction elevators, leveraging piezoelectric sensors for vibration measurement and speed sensors for 

velocity data acquisition. The system is powered by a LattePanda dashboard equipped with an integrated 

Real-Time Clock (RTC), ensuring precise data collection and timestamping. Vibration data is captured 

through piezoelectric sensors, while velocity data from speed sensors is used to calculate acceleration. 

The collected data is stored locally and can also be transmitted remotely. Aimed at improving elevator 

safety and efficiency, the system detects potential issues such as misalignments and mechanical wear. 

Given the increasing number of elevator accidents, this study focuses on enhancing monitoring 

capabilities using advanced technologies. Data from an electric elevator was analyzed with three 

anomaly detection algorithms: Isolation Forest, Support Vector Machine (SVM), and Z-score. The 

results revealed that Isolation Forest identified 15 anomalies (1.06% of the data), SVM detected 25 

anomalies (1.77% of the data), and Z-score identified 86 anomalies (6.08% of the data). This research 

not only enhances elevator condition monitoring but also lays the groundwork for future digital twin 

systems in passenger elevator applications. 
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1. Introduction 

In recent years, problems related to vertical transportation systems, commonly referred to as passenger 

elevators, have seen a notable increase, particularly in the context of the growing prevalence of high-rise 

buildings exceeding 900 meters in height. Current research indicates that there are plans to construct 

structures reaching up to 1,584 meters [1]. This trend towards ultra-tall buildings has coincided with a 
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rise in fatal accidents associated with elevator systems. For instance, since 2019, the United States has 

recorded over 10 incidents resulting in approximately 30 fatalities and around 17,000 injuries [2]. This 

situation underscores the urgent necessity for advanced condition monitoring systems and predictive 

maintenance strategies within the field of elevator technology. 

Passenger elevators are subject to stringent safety regulations as outlined in the ISO 4190 series and 

ISO 8100 series [3,4]. These standards mandate that elevators not only prioritize safety but also optimize 

for the fastest travel times and minimal energy consumption. Additionally, there is a need to balance costs 

and the spatial footprint of elevators within buildings. This balance is often achieved by reducing the 

number of elevators and minimizing waiting time [5]. The emerging trend towards two-dimensional (2D) 

passenger elevators in high-rise or ultra-tall buildings further underscores the importance of these 

considerations [6].  

Passenger elevators are typically divided into four main types: traction, hydraulic, machine-room-less, 

and pneumatic. Traction elevators are most used in high-rise buildings because they can travel long 

distances at high speeds, making them ideal for structures requiring high performance. However, they 

are complex and expensive to maintain. Hydraulic elevators are often used in mid-rise buildings as they 

offer a good balance of cost-effectiveness and reliable performance, though they are less efficient and 

more prone to issues than traction elevators. Pneumatic elevators are cost-effective and appropriate for 

low-rise buildings, but they frequently suffer from operational failures and have a limited range [7–9]. 

Anomaly detection is a fundamental pillar of predictive maintenance and safety in numerous 

transportation applications. This area involves a variety of strategies, including statistical methods and 

intelligent approaches, such as unsupervised machine-learning techniques [10]. Over the past decade, 

researchers have made substantial progress in developing and enhancing these strategies, underscoring 

their importance in improving transportation safety and reliability [11].  

Recent studies have demonstrated significant advancements in the application of deep learning for 

anomaly detection across various datasets related to passenger elevators. Video classification techniques, 

applied to datasets such as UCF24, UCF101, HMDB51, and the Something-Something-v1 dataset, have 

shown substantial improvements in anomaly detection accuracy compared to traditional methods. 

Notably, deep learning approaches have achieved an accuracy increase of approximately 10%, reaching 

a total accuracy of 95% compared to the PPTSM model [12]. Graph Neural Networks (GNNs) have also 

been explored for anomaly detection in CAN Bus data related to elevators, yielding a high accuracy of 

approximately 98.4% [13]. Furthermore, the development of digital twin technology for passenger 

elevators has integrated the PCA-DNN model for effective classification [14]. In the domain of object 

detection, a modified YOLOv8 model has been introduced, achieving a mean Average Precision (mAP) 

of about 92% [15]. Condition monitoring systems have benefited from deep learning approaches, such 

as the GNN-LSTM-BDANN model, which predicts Remaining Useful Life (RUL) based on historical 

data for passenger elevators [16,17]. Moreover, some researchers have employed machine learning 

techniques with feature extraction for fault classification, achieving an impressive accuracy of 99%. 

However, this approach may present challenges for real-time systems due to delays associated with the 

feature extraction stage [18]. The contributions of following paper as following:  

• Development of an embedded system for detecting anomalies in electric passenger elevators. 

• Integration of LattePanda dashboard, speed and vibration sensors, and Real-Time Clock (RTC) 

technology for real-time monitoring. 
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• Implementation of unsupervised machine learning algorithms, including Isolation Forest, 

Support Vector Machines (SVM), and Z-score normalization, for anomaly detection. 

 

2. Methodology 

This section delineates the methodologies employed to accomplish the study’s objective of condition 

monitoring in electric elevators. It encompasses the use of embedded systems for data acquisition, the 

processes involved in data collection, and the techniques applied for anomaly detection. 

2.1. Embedded system 

The implementation of a condition monitoring system is centered on several key functions, including 

fault prediction, diagnosis, predictive and proactive maintenance strategies, the application of digital 

twin technology, and the intelligent analysis of expert systems [19]. However, a significant challenge 

within the transportation sector is the design of a cost-effective system that can adequately perform these 

functions. This challenge is compounded by the expense associated with highly sensitive sensors, as 

well as the complexities involved in integrating these sensors into a unified system. Such integration can 

lead to issues such as noise and disturbances, which may adversely impact the precision of the 

measurements [20,21]. 

This system employed a LattePanda dashboard connected to the RTC, piezoelectric sensors for 

measuring vibrations, and a speed sensor, along with an LCD to display the measurements. Additionally, 

acceleration was calculated by estimating it from the speed sensor data using differentiation, as described 

in Equation (1). 

a(t) =  
dv(t)

dt
  (1) 

Where: 𝑎(𝑡) represents the acceleration at time (𝑡), 𝑣(𝑡) is the velocity at time (𝑡), and 
𝑑𝑣(𝑡)

𝑑𝑡
 represents 

the rate of change of the elevator’s velocity with respect to time, which gives the acceleration. Figure 1. 

illustrates the embedded system designed to execute the data collection function. 

 

Figure 1. Proposed embedded system for condition monitoring of passenger elevator. 

Latte panda 
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Several elevator monitoring systems have been proposed and implemented by previous researchers, 

each offering unique advantages and limitations. One system was developed using a power-efficient 

STM32 microcontroller paired with a CAN Bus for data transmission. This system is noted for its speed 

and robust design; however, it does not incorporate intelligent predictive models and is associated with a 

moderate cost [22]. In another study, a traditional LED-based system was designed using an STM32 

microcontroller. While this system is valued for its simplicity, it lacks additional complementary features [23]. 

Moreover, a remote monitoring system was developed, emphasizing the transmission of remote faults 

for comprehensive monitoring, also utilizing an STM32 microcontroller. This system is particularly 

significant for digital twin applications, yet it is limited by its sole focus on fault transmission [24].  

Nevertheless, our elevator monitoring system provides notable benefits, such as being both cost-effective, 

efficient, and learning-based. However, it faces challenges due to the high sensitivity of the signals it 

measures. This heightened sensitivity requires signal filtering to address inaccuracies, but the filtering 

process introduces delays because of the computational workload it adds. 

2.2. Data collection 

There are several datasets related to passenger elevators, including video and image datasets such as the 

UCF101, UCF24, HMDB51, and Something-Something-v1 datasets [12]. These datasets are primarily 

used for video analysis and activity recognition. Moreover, there are digital datasets focused on 

predictive maintenance, including the Elevator Predictive Maintenance Dataset in Kaggle, Predictive 

Condition-Based Maintenance for Vertical Lift Vehicles, Phase I dataset from NASA, and the Predictive 

Maintenance Dataset in Kaggle. 

Our system’s measurements tend to be noisy because the sensors are highly sensitive. To deal with this, 

we applied zero-phase filtering, especially when working with vibration data. For this study, we collected 

condition monitoring data from a passenger traction elevator. The dataset includes 1416 real-time samples 

of time, speed, acceleration, and vibration, all captured using the LattePande Dashboard Kit across different 

scenarios. This time-series data is particularly useful for detecting anomalies and can also be applied to 

unsupervised machine learning projects. The data collection was completed on April 21, 2024. 

Figure 2 illustrates the dynamic behavior of a passenger elevator over a specific time interval, 

captured through three key metrics: acceleration, speed, and vibration. These parameters provide insights 

into the elevator’s operational characteristics and mechanical responses. 

The first plot depicts acceleration, with oscillations around zero indicating frequent changes in speed 

and direction. Sharp increases and decreases correspond to the elevator’s start and stop movements, 

reflecting its cyclic operation.  

The second plot shows speed, with alternating positive and negative values representing upward and 

downward travel. Rapid acceleration followed by gradual deceleration aligns with typical elevator 

motion, ensuring efficient movement and smooth stops. 

The third plot presents vibration data, where peaks coincide with moments of increased mechanical 

stress, such as starting, stopping, or changing direction. The correlation between spikes in vibration and 

shifts in speed and acceleration highlights the mechanical forces acting on the system. Understanding 

these relationships helps in assessing performance, detecting anomalies, and ensuring smooth operation. 
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Figure 2. The real-time data measurements for electric elevators. 

2.3. Anomaly detection 

Anomaly detection is a critical area within the broader field of machine learning, particularly in 

identifying outliers. It is commonly classified under unsupervised learning methodologies, 

encompassing algorithms such as Support Vector Machine (SVM) OneClass, Z-Score, and Isolation 

Forest, among others [25,26]. The SVM OneClass algorithm is another prominent technique in anomaly 
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detection. It functions based on the principle of hyperplane separation, where the majority of data points 

cluster within a defined region, while outlier points are positioned at a distance from this cluster. This 

algorithm is recognized for its strong capability in managing high-dimensional data, though it requires 

meticulous tuning and is associated with a high computational cost [30,31]. Optimization problem for 

One-Class SVM can be expressed in Equation (2): 

min
W,ρ ,ξ

1

2
||W||2 +  

1

vn
∑ ξi −  ρ

n

i=1

 (2) 

Subjected to: 

(𝑊 . 𝜙(𝑥𝑖)) ≥  𝜌 −  𝜉𝑖 ,       𝜉𝑖 ≥ 0,      𝑖 = 1, 2, … , 𝑛 

Where: 𝑊 represents the normal vector of the hyperplane or hypersphere. 𝜙(𝑥𝑖) is the kernel function 

used to map the data into a higher-dimensional space. 𝜉𝑖 denotes the slack variables that allow for margin 

violations. 𝜌 is the offset of the decision boundary, and 𝑣 is the regularization parameter that controls the 

trade-off between the margin size and the proportion of outliers. Decision rule of One-Class SVM in 

Equation (3) 

(W . ϕ(xi)) ≥  ρ (3) 

The Isolation Forest algorithm, which operates on the principle of random trees to isolate anomalies, is 

notably effective when applied to high-dimensional datasets. This algorithm demonstrates robustness in 

handling large-scale data and exhibits reduced sensitivity to data distribution. However, its performance 

can be influenced by the choice of hyperparameters, and it may be less effective with smaller datasets 

[27]–[29]. The anomaly score for a data point 𝑥 of Isolation Forest algorithm in Equation (4) 

𝑠(𝑥, 𝑛) =  2
− 

𝔼|ℎ(𝑥)|
𝑐(𝑛)  (4) 

Where: ℎ(𝑥) represents the path length of 𝑥 in the isolation tree. 𝑛 is the total number of data points. 

𝑐(𝑛) denotes the average path length of an unsuccessful search in a binary tree as in Equation (5). 

c(n) = 2H(n − 1) 
2(n − 1)

n
 (5) 

Where: 

𝐻(𝑛): 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟: 𝐻(𝑛) =  ∑
1

𝑖

𝑛

𝑖 = 1

 

The decision rule for Isolation Forest states that a score close to 1 indicates an anomaly, while a score 

close to 0 suggests the data point is normal. The Z-Score algorithm, in contrast, relies on the standard 

deviations of data points from their mean, using a defined threshold to identify anomalies. While this 

approach is straightforward, it is less effective when applied to multi-dimensional datasets [32,33]. This 

study applies the aforementioned algorithms to the context of passenger elevator systems, with a focus 

on implementation, analysis, and discussion of the resulting data. However, for a data point of Z-scores 

algorithm 𝑥𝑖, and calculated as in Equation (6) 

Z(xi) =  
xi −  μ

σ
 (6) 

Where 𝜇 is the mean of the dataset, and 𝜎 is the standard deviation of the dataset. the decision rule 

of Z-score  

|𝑍(𝑥𝑖)| > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

The threshold is typically set to 2 or 3, depending on the desired sensitivity. 
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3. Experimental results 

In a study focused on anomaly detection in passenger elevator systems, three distinct algorithms—Isolation 

Forest, SVM, and Z-score—were employed to identify irregular data points indicative of potential issues. 

Each algorithm was applied to the same dataset consisting of 1,415 data points. The results revealed 

varying effectiveness across the methods. Isolation Forest detected 15 anomalies, representing 1.06% of 

the dataset, while SVM identified 25 anomalies, corresponding to 1.77%. The Z-score method, however, 

marked a significantly higher number of anomalies, with 86 identified, accounting for 6.08% of the total 

data points as in Table 1. 

Table 1. Summary of anomaly detection algorithms for passenger elevator. 

Algorithm Number of Anomalies 

Detected 

Total Data Points Proportion of Anomalies 

Detected 

Isolation Forest 15 1415 1.06% 

SVM 25 1415 1.77% 

Z-score 86 1415 6.08% 

The statistical analysis of the Isolation Forest algorithm's results for the passenger elevator data 

provides insights into the characteristics of normal and anomalous data across three key parameters: 

acceleration (Acc), speed, and vibration (Vib). For the 1,400 normal data points, the mean values for 

acceleration, speed, and vibration are 0.022764, -0.005096, and -0.035358, respectively, indicating that 

these parameters typically exhibit minimal deviation around their central tendencies. The standard 

deviations for these parameters are relatively low, particularly for acceleration (0.909477) and vibration 

(0.883566), suggesting a consistent pattern in the normal operational data. In contrast, the 15 data points 

identified as anomalous by the Isolation Forest algorithm show marked differences. The mean acceleration 

in anomalous data is significantly lower at -2.124606, indicating a substantial deviation from normal 

operating conditions. Similarly, the mean speed is higher at 0.475605, and the mean vibration is notably 

elevated at 3.300102, suggesting abnormal operational behavior. The standard deviations for these 

anomalous points are also much larger, particularly in acceleration (3.677975) and vibration (3.356281), 

highlighting greater variability and instability in these parameters when anomalies occur as in Table 2. 

Table 2. Summary of isolation forest statistical results. 

Statistic Acc (Normal) Speed 

(Normal) 

Vib (Normal) Acc 

(Anomalous) 

Speed 

(Anomalous) 

Vib 

(Anomalous) 

Count 1400.000000 1400.000000 1400.000000 15.000000 15.000000 15.000000 

Mean 0.022764 -0.005096 -0.035358 -2.124606 0.475605 3.300102 

Std 0.909477 0.998781 0.883566 3.677975 1.068394 3.356281 

Min -7.508016 -2.705406 -0.223244 -8.194968 -1.986207 -0.223244 

25% -0.020244 -0.101408 -0.223244 -4.244997 -0.237808 -0.223244 

50% -0.020244 -0.101408 -0.223244 -2.596313 0.568191 3.004249 

75% -0.020244 0.320191 -0.223244 -0.020244 1.324591 6.030024 

Max 7.364485 2.353790 6.231742 4.582331 1.857790 9.055799 
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The statistical summary of the SVM algorithm's results offers a comparative analysis of normal 

and anomalous data across three key parameters: acceleration (Acc), speed, and vibration (Vib). Out 

of a total dataset of 1415 data points, the SVM algorithm classified 1390 as normal and 25 as 

anomalous. For the normal data points, the mean values of acceleration, speed, and vibration are 

0.003305, -0.003814, and -0.015431, respectively, indicating a stable operational state with minimal 

deviations from expected behavior. The standard deviations for these normal data points 0.868062 for 

acceleration, 0.987282 for speed, and 0.978992 for vibration suggest moderate variability within a 

typical range of operation. In contrast, the 25 anomalous data points exhibit distinct statistical 

characteristics. The mean acceleration for these points is -0.183739, reflecting a deviation from the 

normal mean, while the mean speed and vibration are 0.212064 and 0.857966, respectively, indicating 

significant differences from normal operational conditions. The standard deviations for the anomalous 

data 3.913040 for acceleration, 1.580628 for speed, and 1.645870 for vibration are notably higher than 

those for the normal data, suggesting greater variability and instability in these parameters when 

anomalies occur as in Table 3. 

Table 3. Summary of SVM statistical results. 

Statistic Acc (Normal) Speed 

(Normal) 

Vib (Normal) Acc 

(Anomalous) 

Speed 

(Anomalous) 

Vib 

(Anomalous) 

Count 1390.000000 1390.000000 1390.000000 25.000000 25.000000 25.000000 

Mean 0.003305 -0.003814 -0.015431 -0.183739 0.212064 0.857966 

Std 0.868062 0.987282 0.978992 3.913040 1.580628 1.645870 

Min -8.194968 -2.705406 -0.223244 -7.988883 -2.655806 -0.223244 

25% -0.020244 -0.101408 -0.223244 -2.871093 -0.547808 -0.223244 

50% -0.020244 -0.101408 -0.223244 -0.020244 0.196192 -0.223244 

75% -0.020244 0.320191 -0.223244 1.868872 1.684190 1.793939 

Max 6.917966 2.353790 9.055799 7.364485 2.254590 4.617995 

The statistical analysis of the Z-score algorithm's results provides a detailed examination of the 

differences between normal and anomalous data points in the elevator system, focusing on three key 

parameters: acceleration (Acc), speed, and vibration (Vib). The Z-score method identified 86 anomalous 

data points out of a total of 1,415, leaving 1,329 data points classified as normal. For the normal data 

points, the mean values of acceleration, speed, and vibration are 0.006117, -0.018014, and -0.194406, 

respectively. These values suggest that the normal operation of the elevator typically involves slight 

fluctuations around expected levels. The standard deviations 0.718227 for acceleration, 1.007927 for 

speed, and 0.253954 for vibration indicate relatively low variability in the normal dataset, with vibration 

showing the least variability. In contrast, the 86 anomalous data points display significantly different 

statistical characteristics. The mean acceleration for these points is -0.094531, which is a departure from 

the normal mean, while the mean speed is higher at 0.278378. The mean vibration for anomalous data 

is notably higher at 3.004249, indicating a substantial deviation from normal operating conditions. The 

standard deviations for the anomalous data are also larger 2.928830 for acceleration, 0.831493 for speed, 

and 2.432457 for vibration reflecting greater variability and instability in these parameters when 

anomalies are present as in Table 4. 
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The detection of anomalies in an elevator system, as analyzed using three algorithms Isolation Forest, 

SVM, and Z-score provides valuable insights into their behavior when applied to time-series data for 

acceleration, speed, and vibration. In the Isolation Forest results, anomalies are depicted as distinct red 

points in the plots. The acceleration data shows anomalies detected at extreme positive and negative 

deviations, indicating the algorithm’s effectiveness in identifying significant outliers. The speed data, 

however, contains fewer anomalies, suggesting that deviations in speed are less frequent or pronounced. 

For vibration data, Isolation Forest identifies a higher density of anomalies, reflecting its sensitivity to 

irregular patterns. The cumulative anomaly plot further confirms this with sharp spikes, corresponding 

to the detected anomalies over time.  

Table 4. Summary of Z-score statistical results. 

Statistic Acc (Normal) Speed 

(Normal) 

Vib (Normal) Acc 

(Anomalous) 

Speed 

(Anomalous) 

Vib 

(Anomalous) 

Count 1329.000000 1329.000000 1329.000000 86.000000 86.000000 86.000000 

Mean 0.006117 -0.018014 -0.194406 -0.094531 0.278378 3.004249 

Std 0.718227 1.007927 0.253954 2.928830 0.831493 2.432457 

Min -2.974136 -2.705406 -0.223244 -8.194968 -2.358207 -0.223244 

25% -0.020244 -0.101408 -0.223244 -0.020244 -0.101408 -0.223244 

50% -0.020244 -0.101408 -0.223244 -0.020244 0.320191 3.407685 

75% -0.020244 0.270591 -0.223244 -0.020244 0.568191 4.617995 

Max 2.967995 2.353790 2.600812 7.364485 2.229790 9.055799 

The SVM-based detection also marks anomalies as red points but demonstrates a slightly different 

detection pattern compared to Isolation Forest. In the acceleration data, SVM identifies many of the 

same anomalies but with slight variations due to its unique classification criteria. The speed plot under 

SVM reveals a more scattered pattern of anomalies, indicating a higher sensitivity to smaller deviations 

in speed. For vibration data, the algorithm detects numerous anomalies, although the pattern differs from 

Isolation Forest’s results. The cumulative anomaly plot for SVM shows a smoother, more continuous 

pattern, suggesting that SVM tends to classify a broader range of outliers as anomalies.  

The Z-score algorithm takes a different approach, with its detection focusing on statistical deviations 

from the norm. In the acceleration plot, anomalies are flagged primarily at points of sharp changes, 

though Z-score tends to classify more points as anomalous than the other two methods. For speed, the 

algorithm consistently detects anomalies at various steps, highlighting its sensitivity to deviations from 

expected values. The vibration data shows a dense concentration of anomalies, reflecting Z-score’s 

threshold-based method of identifying outliers. The cumulative anomaly plot reveals periods of frequent 

anomaly detection, suggesting that Z-score is the most aggressive of the three methods in classifying 

deviations as anomalies. This detailed comparison highlights the strengths and trade-offs of each 

algorithm, providing valuable context for their application in monitoring elevator systems. These 

observations are visually summarized in Figure 3. 
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(a) Isolation forest. 

 
(b) SVM. 
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(c) Z-score. 

Figure 3. Tracking of anomaly detection results. (a) Isolation forest. (b) SVM. (c) Z-score. 

The comparison of three anomaly detection algorithms Z-Score, Isolation Forest, and One-Class SVM 

applied to the operational metrics of acceleration, speed, and vibration in a traction elevator system 

highlights their strengths and limitations. The Z-Score algorithm is highly sensitive to deviations, 

identifying many anomalies across all metrics. This sensitivity is due to its reliance on statistical thresholds 

to flag outliers. However, its simple approach, which treats each metric separately without accounting for 

their relationships, can lead to a higher number of false positives, particularly in multi-dimensional 

datasets where interactions between variables are more complex. 

The Isolation Forest algorithm takes a more focused approach by isolating outliers from most of the 

data. It detects fewer anomalies, concentrating on substantial deviations from normal operations. This 

makes it ideal for applications that prioritize identifying critical anomalies over capturing every minor 

deviation. However, its conservative nature may cause smaller, yet still relevant, anomalies to go 

undetected. Meanwhile, the One-Class SVM algorithm offers a middle ground between the broad detection 

of Z-Score and the targeted detection of Isolation Forest. It captures a moderate range of anomalies by 

modeling the normal system behavior in a multi-dimensional feature space. This ability allows it to detect 

a wider variety of deviations while avoiding excessive false positives. However, this approach requires 

higher computational resources, which may limit its use in real-time or resource-constrained 

environments. This comparison is presented in Figure 4, which provides a detailed breakdown of the 

performance of these algorithms across the operational metrics. 
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Figure 4. Anomaly detection results comparisons. 

These findings indicate that selecting an anomaly detection algorithm should depend on the dataset’s 

characteristics and the application’s specific requirements. For datasets where minimizing false positives 

is critical, the Isolation Forest algorithm is a favorable choice. Conversely, SVM OneClass is better 

suited for scenarios requiring nuanced detection of diverse anomalies, assuming adequate computational 

resources are available. Although less effective in multi-dimensional settings, the Z-Score method 

remains useful in applications that demand higher sensitivity to outliers and involve lower-dimensional 

data. Real-time systems face several limitations, including susceptibility to noise and disturbances that 

can compromise measurement accuracy, as well as the risk of sudden failure due to increased load. 

Furthermore, the constrained availability of memory and processing resources poses challenges for 

effective implementation. When integrating anomaly detection algorithms in real-time systems, 

additional limitations arise. Some algorithms exhibit high sensitivity to outliers, leading to instability 

and necessitating frequent maintenance, which increases operational costs. Moreover, the scarcity of 
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labeled data reduces the accuracy of these algorithms, resulting in potential incompatibility with critical 

standards such as the ISO 4190 and ISO 8100 series. 

4. Conclusion 

This study presents a cost-effective, integrated system for monitoring the condition of electric elevators, 

utilizing acceleration estimates from a speed sensor and piezoelectric sensors for vibration measurement. 

Unsupervised machine learning algorithms, including Isolation Forest, SVM, and Z-score, were 

implemented for anomaly detection. The Isolation Forest algorithm identified 15 anomalies (1.06% of 

the data), the SVM algorithm detected 25 anomalies (1.77% of the data), and the Z-score method 

identified 86 anomalies (6.08% of the data). This research represents a significant advancement in 

condition monitoring and serves as a foundational step toward the development of a digital twin system 

for passenger elevators. 
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