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Highlights: 

⚫ Unifying human and AI emotion recognition (ER) via RSA. 

⚫ EmoNet mimics human emotional processing hierarchically. 

⚫ RSA enhances AI model interpretability in ER tasks. 

Abstract: Emotion is a complex psychophysiological response to external stimuli, essential for human 

survival, social interaction, and human-computer interaction. Emotion recognition plays a critical role 

in both biological systems and artificial agents. However, existing research often treats these systems 

independently, limiting opportunities for interaction and hindering the development of more advanced 

models. This study employs representational similarity analysis (RSA) to bridge this gap by comparing 

emotional representations between the human brain and neural networks, aiming to improve 

understanding of emotion recognition in deep learning models. By correlating the emotion recognition 

model EmoNet with EEG signals from the human brain during emotional image processing and 

introducing AlexNet for comparison, we reveal EmoNet’s human-like representation for emotional 

images and its hierarchical structure for emotion recognition. The results show that RSA effectively 

aligns human emotional processing with deep neural networks, offering new avenues for improving the 

interpretability and performance of emotional AI models. Moreover, they underscore EmoNet’s 

potential to simulate human emotional responses, paving the way for future research to enhance emotion 

recognition models by incorporating human emotional evaluations into their training processes, thereby 

improving efficiency and specificity. 
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1. Introduction 

Emotion is a complex psychophysiological response to external stimuli, intricately linked to human 

survival, development, and social interaction [1]. For individuals, emotion permeates every aspect of 

human life, influencing perception, decision-making [2,3], and even mental health, with emotional 

abnormalities often imposing significant burdens on daily functioning [4]. In the age of artificial 

intelligence (AI), emotion plays an increasingly pivotal role in human-computer interaction [5–7]. 

Interestingly, while emotions were traditionally seen as biological phenomena, recent studies have begun 

exploring whether intelligent systems can perceive emotions as well [5,8,9], potentially enabling better 

integration with human society. Understanding how emotions are processed and recognized remains a 

fundamental and challenging question in both affective neuroscience, which focuses on humans, and 

affective artificial intelligence, which focuses on computers [6,9].  

Research about affective neuroscience and AI has provided valuable insights into the mechanisms 

of emotion processing. However, a significant gap exists between these two fields, limiting our ability 

to fully understand and advance the science of emotion recognition. Researchers in affective 

neuroscience have long debated whether emotion processing is primarily governed by subcortical 

structures such as the amygdala or by sensory cortices. Although brain damage and neuroimaging studies 

have emphasized the amygdala’s critical role in emotion detection [10,11], recent research has 

highlighted the sensory cortices’ involvement in emotion processing [12,13]. Indeed, comprehensive 

evidence remains elusive, as fully isolating the interactions between these regions in human studies is 

challenging. The constructionist theory of emotion [2,14], which posits a hierarchical process beginning 

with low-level features generated by subcortical structures and culminating in higher cortical regions that 

categorize emotions, provides a potential framework for resolving this debate. Yet, empirically uncovering 

the dynamic and interrelated sub-stages of emotion processing remains an ongoing challenge. 

In parallel, research leveraging artificial neural networks (ANNs) has further contributed to our 

understanding of emotion recognition. For example, EmoNet, a convolutional neural network (CNN) 

trained on emotional stimuli, has demonstrated its ability to classify emotional images into 20 distinct 

categories [15]. Notably, EmoNet is designed to mimic the human sensory cortex, deliberately avoiding 

input from subcortical structures. EmoNet employs a multilayer convolutional structure to extract image 

features, which simulates the human visual system’s gradual processing of low-level features (such as 

edges and colors) to high-level features (such as shapes and objects). This approach allows the model to 

not only classify complex images but also to accurately predict human participants’ BOLD signal 

responses when exposed to the same stimuli [15]. Interestingly, emotional detection was observed in 

object recognition networks that had not been specifically trained for emotion classification [8]. 

However, like the human brain, ANNs operate as “black boxes”, complicating efforts to interpret the 

neural unit organization across layers. The optimization of these networks through hyperparameters 

further obfuscates the specific mechanisms behind emotion classification [16,17]. As a result, the 

lack of interpretability in ANN models severely hampers the development of more effective and 

innovative emotion recognition systems. Taken together, although both affective neuroscience and 

computational models using ANNs have advanced in emotion processing, the lack of communication 

and cross-pollination between these fields hinders progress. This gap is particularly evident with the 

growing prominence of brain-inspired neural networks [17–21], and the increasing emphasis on AI 
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as a tool to understand the human brain [22,23]. Strengthening the link between these fields is thus 

crucial for advancing the science of affective computation. 

One promising avenue for bridging this gap is the concept of convergent evolution, borrowed from 

comparative biology, which describes how distant biological systems evolve similar functions to 

address shared challenges [17,19]. Recently, this idea has been applied to brain-machine research, 

including studies on orientation tuning in the primary visual cortex and CNN neurons for object 

recognition [17], as well as the analogy between grid cell structures in the entorhinal cortex and JPEG 

image compression [17]. In this context, representational alignment—a technique used to align brain 

and model representations—offers a practical method for mapping convergent evolutionary traits 

across both domains [7,24]. This approach aligns biological and artificial intelligence systems through 

task alignment and cross-modal representational similarity analysis [25,26], improving both model 

performance and interpretability. For instance, brain-inspired networks have outperformed traditional 

models, with representations that closely resemble the activity of primate IT neurons [21,27]. 

Furthermore, neural networks have provided insights into brain information processing, such as the 

fatigue mechanism of face repetition suppression [23] and the transition from visual to semantic 

information processing [22]. These frameworks highlight the value of improving communication 

between biological and artificial intelligence systems. However, the lack of cross-talk in affective 

computation between the human brain and machines leaves us uncertain about how closely machine 

emotion recognition mirrors the brain’s emotional processing. Addressing this gap is crucial for 

advancing emotion computation models. Moreover, steady state visual evoked potential is utilized to 

detect the response of the visual cortex to emotional information, which aligns with the neural network’s 

processing of emotional stimuli [28]. This parallel suggests a potential similarity between human and 

artificial systems in emotion representation. 

This study seeks to address this gap by employing representational similarity analysis (RSA) to 

compare the representational geometry of emotional stimuli in the human brain and deep neural 

network models. Our goal is to enhance understanding of how deep network models perform emotion 

recognition. Specifically, we compare EmoNet, a neural network model validated to distinguish 

emotion categories, with the dynamic processing of emotional images in human brain EEG signals. 

Additionally, by introducing AlexNet, a model trained for object recognition, we aim to uncover 

potential reasons behind EmoNet’s ability to generate fine-grained emotion classifications. This study 

makes the following key contributions: 

⚫ Proposes a representational similarity analysis method to understand affective computation in 

models, inspiring model development in emotion recognition. 

⚫ Demonstrates the hierarchical structure of neural networks in combination with human EEG data. 

⚫ Compares the representational structures of emotional images in both humans and models, 

revealing emotion-specific processing. 

2. Methods 

2.1. Participants 

This study involved twenty-five healthy college students from Sun Yat-sen University, including 15 

females, with a mean age of 20.8 years (SD = 2.0), among whom one participant is left-handed. The 
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sample size was determined based on a previous similar EEG decoding study [29]. All participants had 

normal or corrected-to-normal vision and reported no history of psychiatric or neurological disorders. 

Written informed consent was obtained from all participants before the experiment, and they were 

compensated ¥80 for their participation. Additionally, participants completed the Beck Depression 

Inventory (BDI-II; Steer, 1996) to report their level of depression (M = 7.04, SD = 6.52). The 

Institutional Review Board of Sun Yat-sen University approved the current study and adhered to the 

Declaration of Helsinki. 

2.2. Experimental paradigm and stimuli 

The nine images used in this study were selected from the International Affective Picture Systems 

(IAPS) [30]. Prior to the experiment, all participants provided ratings for each image on emotional 

valence (pleasantness vs. unpleasantness) and arousal (calm vs. tension), using a scale from 1 to 9 

(1 = ‘extremely unpleasant’ or ‘calm’ and 9 = ‘extremely pleasant’ or ‘tense’).  

The experimental procedure was programmed using the Psychophysics Toolbox [31] based on 

Matlab 2020a (Mathworks, Natick, MA, USA). Stimuli were displayed on an LED monitor (AOC 

G2460P) with a 120 Hz refresh rate and 24-inch screen resolution of 1024 × 768, set against a gray 

background. All participants were seated 60 cm from the monitor, viewing the stimuli at a visual angle 

of approximately 12 × 9°. 

A scene working memory task adapted from a previous study [29] was employed, with EEG signals 

recorded throughout. The experiment consisted of 1080 trials, including 864 main trials (96 repetitions 

per picture) and 72 test trials. Only the main trials were used for the subsequent analysis, while the test 

trials and the trials immediately before and after them were excluded from analysis. This exclusion 

helped prevent memory reports from influencing the EEG signal during the processing of subsequent 

stimuli and reduced trial-by-trial variability [31]. Detailed experimental procedures can be found in a 

prior publication. Each trial began with a white fixation cross for 1000 ms, followed by a memory image 

target for 1000 ms. A white fixation dot then appeared for 1000 ms (working memory delay), during 

which participants were instructed to remember the affective valence and semantic content of the image 

for occasional memory tests (7% of trials). In the test trials, a test screen presented three image options 

for participants to report either the affective valence or semantic category of the prior image. Stimulus 

sequences were pseudo-randomized, and high-frequency flickering was applied during stimulus 

encoding, which did not result in visible flickering for the participants [28,32]. This aspect is not central 

to the focus of current study. 

2.3. EEG acquisition and preprocessing 

EEG signals were continuously recorded using a 64-electrode Ag/AgCl electrode cap arranged according 

to the extended International 10/20 system. A Neuroscan SynAmp2 amplifier was used for signal 

acquisition in DC mode, with data recorded via Curry 7 software at a sampling rate of 1000 Hz. Electrode 

impedances were kept below 10 kΩ throughout the experiment. The electrooculogram (EOG) was 

monitored to track eye movements, with vertical EOG recorded via electrodes placed above and below 

the left eye, and horizontal EOG recorded via electrodes at the lateral canthi of both eyes. All signals 

were referenced online to a REF electrode placed at the top of the head. 



Artif. Intell. Auton. Syst.  Article 

 5 

EEG data were processed and analyzed using the EEGLAB toolbox v14.1.2 [33] and the Fieldtrip 

toolbox [34]. First, continuous signals were detrended to remove the linear shift. The signals were then 

band-pass filtered between 0.1 and 90 Hz (roll-off 6dB/octave) and down-sampled to 500 Hz. A 50 Hz 

notch filter was applied to remove power line interference. The EEG signals were re-referenced offline 

to the average of the left and right mastoid electrodes and then segmented into epochs from −200 to 2000 

ms relative to stimulus onset with the prestimulus 200 ms activity as the baseline. These 2200 ms epochs 

were manually screened to remove artifacts and then entered into an infomax independent component 

analysis (runica) [33]. Blink-related components were identified and removed. Epochs with voltage 

differences exceeding ± 120 μV were automatically rejected to further reduce artifacts. 

2.4. Representational similarity analysis 

RSA is a multivariate pattern analysis method that provides insights into how the brain represents 

information. By comparing neural responses to specific stimuli, RSA reveals the geometric structural 

relationship between them in a high-order space. Using distance measures, RSA enables the comparison 

of information across different modalities. 

Human-rating RDM construction: the IAPS provides 9-point valence and arousal ratings for each 

image based on human ratings. To construct the human emotional experience RDMs, we calculated the 

Euclidean distance between pairs of images based on their valence, arousal, and combined ratings (2D vector). 

We also extracted RDMs for positive, negative, and neutral images for further analysis. The images were 

categorized according to normative IAPS ratings, with random downsampling used to match the smallest 

category size. This resulted in a general RDM (1187 × 1187) and three category-specific RDMs (118 × 118). 

EmoNet RDM construction: EmoNet, a convolutional neural network designed to classify images 

into emotion categories [15], was used to extract emotion-related features. The model consists of eight 

layers, five convolutional layers, and three fully connected layers, which maps the hierarchical structure 

of the ventral visual stream. We extracted the simulated activations of EmoNet for each IAPS image and 

reduced the feature dimensions using principal component analysis (PCA), retaining components that 

explained over 95% of the variance. For each layer of EmoNet, we computed the cosine dissimilarity 

between the activation vectors corresponding to any two images as the dissimilarity measure, yielding 

the 1181 × 1181 general EmoNet RDM. Similarly, we extracted specific EmoNet RDMs for positive, 

negative, and neutral images. To perform similarity analysis with human brain EEG signals, we also 

constructed an RDM for the 9 images used in the EEG experiment. 

AlexNet RDM construction: To examine whether EmoNet exhibits emotion-specific representation, 

we performed the same analysis on AlexNet activations [35]. AlexNet shares the same model architecture 

as EmoNet but was originally trained for object recognition rather than emotion classification. We 

extracted AlexNet’s activation patterns for all IAPS images and calculated the cosine dissimilarity between 

pairs of images to construct a series of RDMs, including a general AlexNet RDM (1187 × 1187) and 

specific RDMs for different emotional categories (118 × 118). This comparison with EmoNet allows us to 

test whether EmoNet’s emotional specificity differs from a general object-recognition model like AlexNet. 

EEG RDM construction: The preprocessed EEG data were used to construct the EEG representation 

dissimilarity matrix (RDM) using the rdm_cal module in NeuroRA [36] with the default parameters. For 

each participant, we computed the Pearson correlation between the EEG signals from all channels 

evoked by any two images at each time point, resulting in a 9 × 9 correlation matrix. The correlation 
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distance (1-correlation) was then calculated to convert the 9 × 9 correlation matrix into an EEG RDM. 

Each cell in the resulting RDM represented the dissimilarity in scalp distribution between the EEG 

responses elicited by two images at a particular time point. We used a 5-time point sliding window with 

a step size to compute the time course of the EEG RDMs. 

RSA: We performed RSA to assess the relationship between the different RDMs constructed above 

(Figure 1). Spearman’s correlation was used to evaluate the similarity between the human-derived RDMs 

(both EEG and behavioral ratings) and those generated by the CNN models (EmoNet and AlexNet). For 

the EmoNet RDMs, we used partial correlation to control for the influence of other layers and isolate 

the unique contribution of each layer to the representation of emotional images. Since valence and 

arousal often show correlations, we also performed partial correlation to examine the unique similarity 

between the neural network models and valence/arousal while controlling for the other dimension. 

 

Figure 1. Representational similarity analysis pipeline. The representational dissimilarity matrix 

(RDM) for the DNN model (e.g., EmoNet) was computed using cosine dissimilarity between 

activations for each pair of images. The EEG RDM was constructed by calculating the Pearson 

correlation between EEG signals from all channels for each pair of images at each time point. The 

human-rating-based RDM was obtained by calculating the Euclidean distance between image 

ratings. Finally, Spearman’s correlation was used to assess the representational similarity between 

the different RDMs, linking the representations from human brain data and models. 
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2.5. Statistical inference 

For the RSA between the human-rating RDM and the EmoNet /AlexNet’s representations, we performed 

a permutation test by randomly shuffling the matrices 1000 times to generate a null distribution of r-values. 

The observed correlation values were then compared to this null distribution to calculate the p-value. 

These p-values were corrected for multiple comparisons using the False Discovery Rate (FDR) at a 

threshold of 0.05. 

For the RSA between the EEG RDMs and the EmoNet RDMs, non-parametric permutation tests 

were used to solve the multiple comparisons correction and statistical distribution assumptions [37]. 

These tests were performed using the function ft_timelockstatistic in Feildtrip [34]. Specifically, we used 

cluster-based inference to determine whether the Spearman r calculated from the RSA was significantly 

greater than zero (one-tailed test) at a given time point within the analysis window. For each time point, 

we computed the t-values and defined consecutively significant t-values as clusters. The size of the 

clusters was calculated by the sum of t-values. This procedure was repeated 1000 times, each time 

disrupting the label of the r value with the chance (0) and then calculating the t-value. This gives a 

permutation-based null distribution, and comparing this to the actual observed clusters gives a statistical 

p-value (0.05). 

3. Results 

3.1. EmoNet reflects the hierarchical processing structure of emotion perception in the human brain 

To characterize emotion representations at the image-specific level, we used RSA to compare the neural 

representations in the human brain with those in EmoNet (Figure 2 and Methods). Figure 2 shows the 

representational similarity between EEG RDMs and EmoNet RDMs within the analysis window. The 

comparison of representational similarity values with zero for individual layers of EmoNet reveals 

significant correlations between neural representations during perceptual encoding and working memory 

delay and EmoNet representations in both early and deep layers (see Figure 2). Specifically, for layer 3, 

correlations are observed from 210 to 700 ms and 1100 to 1260 ms; for layer 4, from 260 to 550 ms; for 

layer 5, from 330 to 520 ms; for layer 6, from 1860 to 1980 ms; for layer 7, from 1880 to 1980 ms; and 

for layer 8, from 960 to 1060 ms and 1860 to 1960 ms. These results were validated through a cluster-based 

permutation test, yielding p < .05 in a one-tailed test. These results reveal a hierarchical processing 

pattern: early layers of EmoNet, which handle lower-level information, are significantly correlated with 

the early stages of emotion processing in the human brain, while deeper layers, responsible for 

generating and outputting emotional concepts, are significantly correlated with the later stages of 

emotion processing. Notably, the highest correlation coefficients are observed around 1 second after the 

image disappeared, which coincides with the time when participants were preparing to judge the 

emotional category (positive, negative, or neutral) of the image. 
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Figure 2. Temporal dynamic representational similarity between human brain EEG signals and 

EmoNet. Significant correlations are detected between neural signals and various layers within 

the DNN, including early, middle, and late layers. Representations seem to emerge earlier in the 

early convolutional layers and later in the deeper, fully connected layers (layer 3: 210 to 700 ms 

and 1100 to 1260 ms; layer 4: 260 to 550 ms; layer 5: 330 to 520 ms; layer 6: 1860 to 1980 ms; 

layer 7: 1880 to 1980 ms; layer 8: 960 to 1106 ms and 1860 to 1960 ms; cluster-based permutation 

test, p < .05, one-tailed test).  

3.2. Representational similarity between EmoNet and human emotional ratings 

Figure 3 shows the representational similarity between each layer of EmoNet and human ratings 

(valence, arousal, and combined dimensions) of emotional images. For both the valence (all ps < .015) 

and combined dimensions (all ps < .002), each layer of the model shows significant correlations with 

the geometric structure of human emotional ratings. However, for the arousal dimension, no significant 

correlations are observed (all ps > .1). 

 

Figure 3. Representational similarity between each layer of the DNN and human ratings in 

valence, arousal, and combined dimensions. Error bars represent the SEM derived from 

permutation tests. The asterisks above the bars indicate significance: the first row corresponds to 

AlexNet, and the second row to EmoNet. *p < .050; **p < .010; ***p < .001. 

When images were further categorized based on emotional valence (with positive images rated from 

1–3, neutral images from 4.5–5.5, and negative images from 7–9), the results reveal (Figure 4, left) that 



Artif. Intell. Auton. Syst.  Article 

 9 

for the combined dimension, EmoNet exhibits a significant similarity with human ratings for positive (fc7: 

p = .032) and negative images (conv1: p < .001). Regarding the valence dimension, the majority of EmoNet 

layers demonstrate a significant similarity with human ratings (conv1: p < .001; conv2: p = .002; conv3: 

p = .008; conv4: p = .006; conv5: p < .001; fc8: p = .009). For the arousal dimension, the fc6 (p = .020) 

and fc7 (p < .001) layers of EmoNet shows a significant correlation with human experience for positive 

images. These results indicate that EmoNet selectively aligns with human emotional experience for 

emotional images, but not for neutral images. 

 

Figure 4. Similarity between each layer of the DNN and human ratings in valence, arousal, and 

combined dimensions across different emotion categories (negative, neutral, positive). Error bars 

represent the SEM derived from permutation tests. Asterisks indicate significance, with the rows 

representing the significance for negative, neutral, and positive image conditions, respectively. *p < .050; 
**p < .010; ***p < .001. 
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3.3. Absence of emotion-specific representational similarity in AlexNet 

To test whether the representational similarity between EmoNet and human ratings on emotional images 

arises from its emotion-specific training, we conducted the same analysis on AlexNet. AlexNet shares 

the same model architecture as EmoNet, but it is trained for semantic classification (object recognition) 

rather than emotion classification. We extracted the activations of each layer of AlexNet’s neurons for 

emotional images to construct the AlexNet RDM, and then correlated it with human emotional ratings. 

The results reveal that at the general level, AlexNet exhibits significant representational similarity with 

human ratings across all dimensions—valence (all ps < .015), arousal (conv1: p = .075; conv2: p = .526; 

conv3-fc8: ps < .001), and the combined (all ps < .001) dimension. Furthermore, when images were 

categorized into positive, negative, and neutral categories, AlexNet’s representational structure shows 

high similarity with human ratings for all images categories (positive images, fc6, fc7 and fc8: ps < 001; 

neutral images, conv3-fc8: ps < .003; negative images, conv2: p = .010; conv3: p < .001; conv4: p = 

.006; conv5: p = .005; fc7: p < .001). These findings highlight that AlexNet does not exhibit emotion-

specific representational similarity, even though it performs similarly to human ratings in terms of 

overall representation. 

4. Discussion 

This study used representational similarity analysis (RSA) to explore the alignment between human 

brain emotion processing and deep neural networks, providing new insights into emotion processing. 

RSA assesses how similar or dissimilar these patterns are across different stimulus response. Two main 

findings emerged: EmoNet shares a hierarchical structure with the human brain, and it demonstrates 

emotion-specific representations that align with human responses to emotional, but not neutral, images. 

First, by correlating EmoNet with EEG signals from the human brain during emotional processing, 

we observe a similarity in hierarchical pattern. This alignment suggests that both the model and the brain 

share a similar processing structure for emotions. Specifically, EmoNet’s early layers correlate with 

early emotion processing stages in the brain, while later layers align with more advanced stages. This 

hierarchical pattern reflects both the temporal dynamics and the progression of emotion recognition from 

low-level visual features to high-level semantic concepts [14]. Notably, the correlation coefficient peaks 

approximately one second after the image disappears (see Figure 2), the moment when participants are 

preparing to assess the emotional valence (positive, negative, or neutral) of the image. Moreover, this 

finding reveals the dynamic changes in encoding and transient storage of different types of information 

(visual and emotion concepts) during emotional image processing in the human brain, as shown by the 

DCNN model, and underscores the critical role of the sensory cortex in emotional processing. 

Second, EmoNet demonstrated a unique correlation with human ratings of emotional images across 

both arousal and valence dimensions, as well as their combined effects, but did not show such correlation 

for neutral images (Figure 4). In contrast, AlexNet, which was trained solely for object recognition, 

showed similar responses to human for all categories of images (positive, negative, and neutral). 

EmoNet’s ability to capture emotional specificity likely stems from its refinement through exposure to 

emotional stimuli, enabling efficient emotion recognition. For the emotionally neutral categories, the 

model’s classification accuracy also decreased, similar to the confusion that the human brain may 

experience when processing ambiguous emotions [15]. This specificity in EmoNet’s representation 
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contrasts with AlexNet’s broader classification, suggesting that EmoNet discards non-emotional 

information, analogous to the brain’s cellular pruning and network refinement processes [38,39]. 

These findings highlight the potential of emotion AI models like EmoNet to more accurately model 

human emotional processing, opening up new directions for improving emotion recognition systems. 

Our attempt to represent the similarity between human neural data and deep learning model can pave 

the way for the performance enhancement of emotional recognition models. Future work could involve 

using human ratings and neural representation similarities as training constraints to enhance model 

efficiency and specificity. 

5. Conclusion 

In this study, we bridge the gap between human brain and neural networks by comparing the emotional 

representations within these systems, with the goal of enhancing the understanding of emotion 

recognition in deep learning models. By correlating the emotion recognition model EmoNet and the 

object recognition model AlexNet with EEG signals from the human brain during the processing of 

emotional images, we uncover that EmoNet exhibits a hierarchical structure that mirrors the human 

brain’s emotion processing stages and demonstrates emotion-specific representations that closely align 

with human responses to emotional images. This selective alignment underscores EmoNet’s ability to 

prioritize emotionally salient information, a capability absent in general-purpose models like AlexNet. 

This study contributes to a deeper understanding of the neural mechanisms underlying emotion 

processing and lays a theoretical foundation for more human-like AI systems in affective computing. 
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