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Highlights:  

⚫ Proposes coarse-to-fine DL-LPR classification framework via data structure and model architecture. 

⚫ Reviews datasets, metrics, and performance comparisons of representative DL-LPR methods. 

⚫ Analyzes challenges in complex environments (long-term, large-scale, dynamic) and future trends. 

Abstract: LiDAR-based place recognition (LPR) technology processes 3D LiDAR point clouds and 

encodes them into feature descriptors, enabling mobile robots to recognize previously visited locations. 

This capability supports critical tasks such as loop closure detection and re-localization. With the rapid 

advancements in deep learning, deep learning-based LiDAR place recognition (DL-LPR) has emerged 

as the dominant research direction in this field. However, existing reviews on DL-LPR remain limited in 

scope. To address this gap, this paper focuses on DL-LPR, introducing its core concepts, system 

structures, and applications. It presents a coarse-to-fine classification framework to systematically 

categorize and review existing methods, based on two dimensions: input data structure and model 

architecture. Furthermore, this paper summarizes commonly used datasets and performance evaluation 

metrics, along with performance comparisons of representative methods. Finally, it provides an in-depth 

analysis of the challenges faced by DL-LPR in complex environments, such as long-term, large-scale, 

and dynamic settings, and offers insights into future development trends. 

Keywords: place recognition; LiDAR; deep learning; mobile robots; navigation; re-localization; loop 

closure detection 

1. Introduction 

The core principle of Place Recognition (PR) involves identifying a location within a global place 

features database or map, based on environmental data captured by sensors. As a subset of global 

localization technologies for mobile robots, PR enhances navigation and localization systems, playing a 

crucial role in tasks such as loop closure detection in Simultaneous Localization and Mapping (SLAM) 
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and re-localization in long-term navigation [1]. These functions help mitigate cumulative localization 

errors and ensure robust localization [2]. 

PR technologies can be categorized by sensor type, mainly including Visual-based Place 

Recognition (VPR), Radar-based Place Recognition (RPR), and LiDAR-based Place Recognition 

(LPR). This paper focuses on outdoor applications of PR. While VPR leverages cameras to capture 

rich environmental features such as color and texture, its sensitivity to lighting variations limits its 

effectiveness in outdoor settings. In contrast, millimeter-wave radar is more resilient to adverse 

weather conditions like rain, fog, and dust. However, radar-based systems suffer from sparse data 

coverage and noise susceptibility, hindering the maturity of RPR for outdoor applications. LiDAR, 

with its longer range, high distance accuracy, and robustness to lighting fluctuations, has emerged as a 

more reliable solution for outdoor place recognition in mobile robots. Therefore, this paper focuses on 

recent advancements in LPR from a practical perspective. For detailed discussions on VPR and RPR, 

readers are referred to comprehensive reviews [1,3–9], which are beyond the scope of this work. 

In 2009, Magnusson et al. [10] introduced a 3D LPR solution using Normal Distributions 

Transform (NDT) [11], a feature-based approach relying on handcrafted features. Following the 

resurgence of deep learning in 2012, marked by the success of the ImageNet [13] image classification 

challenge, significant progress was made in fields like image processing and natural language 

processing. However, deep learning applications in LPR lagged behind due to the fact that early neural 

networks, particularly those based on 2D convolutions, were designed for structured data (e.g., images 

and text), which are relatively regular. These networks were not directly applicable to sparse and 

unordered 3D LiDAR point clouds. As a result, most LPR research before 2017 focused on traditional 

methods, such as histogram-based features [10,14–15], keypoint-based features [16–17], and 

segment-based features [18], which relied on mathematical models for statistical analysis or data 

structure transformations to generate local or global place descriptors. 

In 2017, Yin et al. [19] employed neural networks to extract features from 2D projections of 3D 

point clouds for loop closure detection, marking one of the first deep learning-based solutions for LPR. 

The same year, Qi et al. [20] introduced PointNet, a neural network model designed for processing 3D 

point clouds. Originally intended for 3D object detection and segmentation, PointNet provided an 

efficient framework for feature extraction from 3D point clouds and addressed the challenge of point 

cloud permutation invariance, advancing deep learning applications in 3D point cloud processing. In 

2018, Mikaela et al. [21] introduced PointNetVLAD, the first DL-LPR model capable of processing 

3D point clouds directly. By using PointNet for local feature extraction, PointNetVLAD demonstrated 

comparable performance to traditional methods. Since then, DL-LPR techniques have evolved, 

surpassing traditional methods in efficiency and accuracy across several benchmark datasets. While 

classic handcrafted LPR methods such as Scan Context [22–23], LiDAR-iris [24], Semantic 

Topological Descriptors [25], and Binary Image Fingerprints [26] were proposed after 2018, DL-LPR 

has become the dominant approach in LPR research, with numerous deep learning models emerging. 

Despite these advances, there remains a notable lack of comprehensive review articles on DL-LPR. 

Existing reviews [1–2,27–28] fail to provide a complete overview of the technology. To fill this gap, this 

paper presents a systematic review of DL-LPR methods, offering an in-depth examination of the various 

technical branches and their current research status. 
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Table 1 The data structures and their characteristics of the inputs of the place encoding network. 

Structure Type 
Data 

Volume 

Structural 

Characteristics 
Contained Information Other 

3D Point Cloud Large Sparse, unordered 
Fine-grained scene 

information 

Sensitive to viewpoint 

variations 

2D Projection Small Compact, ordered 

Preserves geometric 

structure information, with 

some information loss 

Facilitates 

rotation-invariant design 

3D Voxel Small 
Sparse, ordered, 

efficient for retrieval 
Information loss present 

Sensitive to viewpoint 

variations 

Semantic 

Information 
Small 

Sparse, suitable for 

graph construction 

Contains high-level 

information, loses 

low-level information 

Accuracy and efficiency 

depend on semantic 

extraction methods 

A DL-LPR system consists of several key components: input data, neural network models, loss 

functions, evaluation metrics, and datasets. Among these, the design of the neural network model 

architecture is closely tied to the structure of the input data. For example, Yin et al. [19] use 2D 

convolutions because their input data is structured as 2D images, while PointNetVLAD [21] can process 

3D point clouds directly due to its feature extraction module based on PointNet. In tasks such as 3D 

object detection [29] and classification [30], common preprocessing techniques, including 2D 

multi-view projection and voxelization, are used to reduce data size and regularize the data. 

Additionally, semantic segmentation techniques [31] can extract more detailed semantic information 

from 3D point clouds. These point clouds, being sparse, are better represented as graph structures, which 

are well-suited for processing by graph neural networks. These preprocessing methods have been 

adopted in the DL-LPR domain, expanding the range of input data types beyond raw 3D point clouds. 

The characteristics of different input data structures are summarized in Table 1. 

Therefore, this paper classifies existing DL-LPR methods based on input data structures into four 

main categories: methods based on raw 3D point clouds, 2D projections, 3D voxelization, and semantic 

data. The corresponding data flow variations are depicted in Figure 1. However, classifying methods 

purely by input data structure oversimplifies the diversity of DL-LPR models, as methods within the 

same category can differ significantly in their network architectures. Understanding these variations is 

essential for designing more efficient models. To address this, the paper further refines the 

categorization by considering differences in network architectures, providing a comprehensive review of 

DL-LPR research from a coarse-to-fine perspective. 

The main contributions of this paper are as follows: 

(1) We propose a coarse-to-fine classification strategy, systematically summarizing and analyzing 

existing DL-LPR methods at two levels: input data structure and model network architecture. 

(2) We outline the core components of DL-LPR systems, including key research challenges, 

commonly used datasets, and their characteristics. We also provide a detailed analysis and 

evaluation of selected DL-LPR methods, focusing on place recognition accuracy, 

generalization ability, and real-time performance. 

(3) We discuss challenges in future DL-LPR research, particularly for long-term, large-scale, and 

high-dynamic applications, and explore development trends by incorporating advancements in 

emerging technologies and methodologies. 
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Figure 1. Data flow and corresponding technical route in DL-LPR. In DL-LPR research, 3D 

LiDAR point clouds are typically preprocessed into various data structures, such as 2D 

projections, 3D voxels, and semantic segmentation labels. Corresponding neural network models 

need to be designed for feature encoding based on different types of input data, thereby giving rise 

to four distinct technical approaches. 

The paper is structured as follows: section 1 provides the background of DL-LPR. Section 2 

introduces the proposed classification approach, summarizes key research challenges, and 

systematically organizes and analyzes DL-LPR methods based on the coarse-to-fine classification 

strategy. Section 3 reviews commonly used datasets and performance evaluation metrics. Section 4 

discusses challenges and development trends in long-term, large-scale, and high-dynamic 

environments. Finally, Section 5 concludes the paper. 

2. Related background on DL-LPR research 

This section summarizes the definitions of PR, LPR, and DL-LPR within the context of this research, 

following the typical process flow of a DL-LPR system (Figure 2). The components of the DL-LPR 

system are abstracted, and the relationships and distinctions between DL-LPR and related applications 

are discussed. 

2.1. Concept of “Place” 

The core focus of DL-LPR research is the concept of “place”. Within the academic community, two 

primary perspectives on the definition of “place” exist. 

The first definition is inspired by “place cells” in the hippocampus. O’Keefe and Dostrovsky [32] 

discovered that these cells are activated when an animal revisits a previously encountered location. 

These cells can update place information using external visual landmarks and self-motion estimation, 

even in changing environments. When the animal returns to the same position, the cells are reactivated, 

leading to their designation as “place cells”. Drawing from this mechanism, Lowry et al. [3] proposed 

that “place” can be defined either as a precise point (e.g., a GPS coordinate) or as a continuous or 

discretized region, where the region boundaries are determined by criteria such as the robot’s time step, 

travel distance, or scene appearance. A new place can be identified when the robot travels a certain 

distance or when the currently observed scene differs significantly from the previous one [9]. 

The second definition is based on the concept of “spatial view cells” in the animal brain. Research 

indicates that when an animal observes a specific region of its environment, “spatial view cells” are 
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activated if the field of view overlaps with a prior observation, regardless of the spatial position. Garg et 

al. [7] applied this concept to VPR, defining place recognition as follows: if the field of view between 

two observations overlaps beyond a certain threshold — considering both metric distance and 

observation direction—the two locations are considered the same. 

In DL-LPR research, these two definitions lead to two distinct ground-truth measurement standards: 

distance-based and overlap-based metrics. 

(1) Distance metric: in works such as PointNetVLAD [21], distance is used as the measurement 

standard. During training, point cloud pairs within 10 meters (in Universal Transverse Mercator (UTM) 

coordinates) are considered positive, while pairs with coordinates more than 50 meters apart are 

negative. In the place recognition phase, if the UTM distance between the retrieved point cloud and the 

query frame is less than or equal to 25 meters, the recognition is considered successful. This method 

aligns with the first definition of “place”. 

(2) Overlap metric: in works such as OverlapNet [33–34], the authors use a custom overlap rate to 

define relationships between samples. During training, point cloud pairs with an overlap rate greater 

than 0.3 are considered positive, while those below 0.3 are negative. In the recognition phase, if the 

overlap rate between the retrieved point cloud and the query frame exceeds 0.3, place recognition is 

deemed successful. This method aligns with the second definition of “place”. 

 

Figure 2. Example of typical DL-LPR system. A typical DL-LPR system comprises core modules 

including point cloud database construction, data preprocessing, feature encoding, and feature matching. 

1.2. Definition of DL-LPR 

Building on the definitions of PR and LPR, we define DL-LPR as follows: a mobile robot uses an 

onboard LiDAR sensor to observe its environment and processes the data with deep learning techniques. 

The robot learns global feature descriptors that effectively represent places in the scene, enabling it to 

identify previously visited locations by retrieving or matching these descriptors in the feature space. 
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1.3. System architecture of DL-LPR 

Drawing from the VPR system architecture by Barros et al. [9] and incorporating Figure 2, the DL-LPR 

system architecture is derived, with the logical relationships between the system modules illustrated in 

Figure 3. 

(1) Data preprocessing module: this module converts 3D point clouds into a structure suitable for 

subsequent network processing. Common preprocessing methods are illustrated in Figure 1. 

(2) Place modeling module: this module maps sensor data or preprocessed data to the feature 

descriptor space. Its core is the place feature encoding network, typically comprising two submodules: 

local feature extraction and local feature aggregation. 

(3) Place mapping module: this module organizes and stores global feature descriptors output by 

the place modeling module, constructing a scene feature map. The map can take various forms, such as a 

database, topological map, or topological-metric map. In DL-LPR, database-based feature maps are 

most commonly used. 

(4) Confidence generation module: this module performs matching or nearest-neighbor searches on 

global feature descriptors. Based on similarity measures (e.g., distance or overlap rate), it identifies the 

descriptor in the feature map closest to or most overlapping with the query frame. The corresponding 

place is considered a candidate match. 
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Figure 3. System composition of DL-LPR. Drawing upon the canonical architecture of visual 

location recognition systems, a DL-LPR system can be partitioned into four core modules: data 

preprocessing (including dataset construction), location modeling (centered on feature encoding), 

scene mapping (constructing feature database and query library), and confidence generation (based on 

feature matching). 

1.4. Relationship between DL-LPR and other tasks 

At both the algorithmic and application levels, DL-LPR is closely related to tasks such as retrieval, 

regression, loop closure detection [151], and re-localization. The relationships between these tasks are 

illustrated in Figure 4. 

At the algorithmic level, when the place feature map constructed by the DL-LPR system is 

represented as a database, the DL-LPR task essentially becomes a data retrieval task. Research in 

retrieval tasks can be applied to search for DL-LPR feature descriptors. Conversely, when the output of 

the DL-LPR model consists of continuous values, such as similarity scores, the task can be treated as a 

regression task. 

At the application level, DL-LPR is used in position estimation for loop closure detection and 

re-localization in mobile robot autonomous navigation and localization. The key distinction is that place 
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recognition typically does not estimate the robot’s current pose, while loop closure detection and 

re-localization require both position and accurate pose information. 

Additionally, for place recognition and re-localization tasks, the search/matching space is the 

pre-constructed scene feature map, which has a fixed spatial scale. In contrast, the search/matching 

space for loop closure detection tasks is within the historical frames, and its size increases as the task 

progresses [35]. 

DL-LPR

Task Level

Algorithm 

Level

Loop 

Closure 

Detection

Re-

localization

Retrieval Regression

The search range for loop closure 

detection is limited to historical 

frames, and pose information must 

be obtained. LPR can serve as an 

auxiliary method in this process.

The search range for relocalization 

is identical to that of LPR, 

requiring pose information. In this 

context, LPR can also act as an 

auxiliary method.

LPR can be considered a data 

retrieval task only when the feature 

map is structured as a database.

When the network output is a 

continuous value, such as 

similarity, LPR can be treated as a 

regression task.

 

Figure 4. The relationship between DL-LPR and other tasks. At the algorithmic design level, 

DL-LPR involves the selection between retrieval and regression methodologies, a decision 

governed by the system’s output format — whether employing discrete feature descriptors or 

continuous similarity metrics. At the application level, DL-LPR serves as the computational foundation for 

critical robotic navigation tasks including loop closure detection and re-localization. 

2. Research status of DL-LPR 

This section introduces the proposed classification method for the literature and outlines the key issues 

addressed in current studies before summarizing existing research according to this classification. 

As shown in Figure 3, the core of the DL-LPR system lies in the place modeling module, which 

centers on the place feature encoding network. This network typically consists of two main components: 

the local feature extraction module and the local feature aggregation module. The input data is first 

processed by the local feature extraction module, and then aggregated into a global feature descriptor by 

the local feature aggregation module. 

As previously mentioned, the design of the network structure is closely linked to the input data. 

Variations in DL-LPR at the network design level are primarily reflected in the local feature extraction 

module, while methods for local feature aggregation are generally more standardized, as demonstrated 

in Tables 2, 3, 4, and 5. Therefore, the coarse-to-fine classification method proposed in this paper 

primarily focuses on the local feature extraction module of the DL-LPR model. 
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2.1. Classification method 

This paper classifies current DL-LPR research into two levels: the data structure level and the model 

network structure level, with a coarse-to-fine progression between them. 

Classification of 

DL-LPR Methods

Multi-branch Arthitecture+ 
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Siamese Architecture+
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Transformer

GAN, U-Net, Group 

Convolution, etc.
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Sparse Convolutions, etc.

Transformer
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Transformer
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Sinogram Projection
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Cylindrical Projection
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PointNet and its 
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Point Convolution
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Range Image
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Methods Based on 

Raw 3D Point Clouds

 

Figure 5. Classification of DL-LPR methods. 
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At the data structure level, DL-LPR methods are categorized based on the structure of the input data, 

including methods based on raw 3D point clouds, 2D projections, 3D voxels, and semantic data. Further 

subdivisions within these categories are made based on specific implementation details of the data 

transformation methods. At the network structure level, models within each major category are further 

refined according to similarities and differences in their network architectures. This two-level 

classification approach allows for a comprehensive and systematic summary of existing DL-LPR 

methods. A detailed classification scheme is presented in Figure 5. 

Table 2. Representative methods based on original 3D point clouds. 

Category 
Method Time 

Local Feature 

Extraction Network 

Local Feature 

Aggregation 

Network 

Loss Function 
Ground 

Truth 

Source 

Code 
Dataset 

PointNet and its 

Enhancement 

Methods 

PointNet- 

VLAD [21] 
2018 PointNet [20] NetVLAD [150] 

Lazy-Triplet/ 

Quadruplet Loss 
Distance 

PointNet- 

VLAD 

Oxford 

In-house 

PCAN [37] 2019 PointNet 
Attention+ 

NetVLAD 
Lazy-Quadruplet Loss Distance PCAN 

LPD-Net [39] 2019 
PointNet 

+GNN 
NetVLAD Lazy-Quadruplet Loss Distance LPD-Net 

SeqLPD [40] 2019 
PointNet 

+GNN 
NetVLAD Lazy-Quadruplet Loss Distance - 

SOE-Net [45] 2019 
PointOE 

(Modified PointNet) 

Attention+ 

NetVLAD 

Hard Plsitive-Hard 

Negative-Quadruplet 

Loss 

Distance SOE-Net 

RPR-Net [48] 2022 
ARIConv 

(Based on PointNet) 
GeM Triplet Loss Distance RPR-Net 

Zhou [43] 2022 PointNet - Hard Contrastive Loss Distance  KITTI 

Methods Based on 

Point Convolution 

DH3D [51] 2020 

Multi-layer FlexConv 

[49]+ 

SENet [52] 

Attention+ 

NetVLAD 
N-Tuple Loss Distance DH3D Oxford 

SE(3)- 

Equivariant 

[53] 

2022 

EPN [54]/E2PN [55] 

(Based on KPConv 

[50]) 

NetVLAD/GeM Lazy-Quadruplet Loss Distance 
se3- 

equivariant 

Oxford 

In-house 

KITTI 

KPPR [56] 2022 

Point Cloud 

Compression 

Network+KPConv 

NetVLAD Contrastive Loss Distance KPPR 
Oxford 

In-house 

Methods Based on 

Graph Convolution 

DAGC [38] 2020 

ResGCN 

(Introduce EdgeConv 

into PointNet) 

NetVLAD Lazy-Quadruplet Loss Distance - 

Oxford 

In-house 
EPC-Net [59] 2022 

ProxyConv 

（Modified 

EdgeConv） 

Grouped VLAD Lazy-Quadruplet Loss Distance EPC-Net 

HiBi-GCN [36] 2023 

T-Net+Hierarchical 

Bidirectional Graph 

Convolution 

NetVLAD Lazy-Quadruplet Loss Distance - 

Methods Based on 

Transformer 

PPT-Net [58] 2021 

Graph 

Embedding+Pyramid 

Point-Transformer 

Pyramid VLAD+ 

Context Gatting 
Lazy-Quadruplet Loss Distance PPT-Net 

Oxford 

In-house 

HiTPR [61] 2022 
Hierarchical 

Transformer 
Max Pooling Lazy-Quadruplet Loss Distance - 

FPET-Net [60] 2022 Point-Transformer Attention 
Binary Cross-Entropy 

Loss 
Distance - KITTI 

https://github.com/mikacuy/pointnetvlad
https://github.com/mikacuy/pointnetvlad
https://github.com/XLechter/PCAN
https://github.com/Suoivy/LPD-net
https://github.com/Yan-Xia/SOE-Net
https://github.com/FANzhaoxin666/RPR-Net_release
https://github.com/JuanDuGit/DH3D
https://github.com/UMich-CURLY/se3_equivariant_place_recognition
https://github.com/UMich-CURLY/se3_equivariant_place_recognition
https://github.com/PRBonn/kppr
https://github.com/fpthink/EPC-Net
https://github.com/fpthink/PPT-Net
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2.2. Key issues 

Based on the literature review, current DL-LPR methods primarily address the following key challenges: 

viewpoint variation, appearance changes of the same place, perceptual ambiguity across different places, 

occlusion, and real-time performance. Solving these challenges is crucial for improving the overall 

performance of DL-LPR systems. 

(1) Viewpoint variation. When mobile robots operate in real-world environments, they may 

observe the same place from different angles. Since the information captured by the observation data 

varies with the viewpoint, and the training data cannot cover all possible angles, the model may 

misidentify the same place from different viewpoints as distinct places. This issue is referred to as 

viewpoint variation. 

(2) Appearance change of the same place. Factors such as seasonal changes, weather conditions, 

and road construction can cause the appearance of the same place to change. These changes may lead the 

model to incorrectly classify the same place as a different one, thereby increasing demands on the 

model’s expressiveness and robustness. 

(3) Perceptual confusion across different places. In environments like highways, corridors, and 

bridges, the geometric structure of places may appear highly similar, increasing the likelihood of the 

model misidentifying different places as the same. This issue highlights the importance of the model’s 

ability to distinguish between structurally repetitive environments. 

(4) Occlusion. Dynamic objects within the scene can cause occlusion by blocking certain areas 

from being scanned by LiDAR sensors. These objects may change position, leading to shifts in the 

distribution of observation data, which may not have been encountered during training. This imposes 

additional demands on the model’s robustness. 

(5) Real-time performance: Real-time performance is crucial for deploying models on real-world 

platforms. Complex network architectures often exhibit higher computational complexity, which may 

hinder the ability to meet real-time requirements. Thus, reducing model structural complexity without 

sacrificing accuracy has become a key area of research. 

2.3. Methods based on raw 3D point clouds 

A key characteristic of these methods is their use of raw 3D point clouds as input. However, due to the 

sparse, independent, and unordered nature of 3D point clouds, applying traditional 2D convolution 

techniques directly is challenging [36]. In the context of DL-LPR, this challenge has been addressed by 

leveraging PointNet [20] and its improved variants as backbone networks for local feature extraction. 

Moreover, various deep learning methods have been introduced to enhance feature extraction from 3D 

point clouds. Based on the core components of the local feature extraction network, methods based on 

raw 3D point clouds can be further categorized into sub-branches, including PointNet and its enhanced 

variants, point convolution-based methods, graph convolution-based methods, and Transformer-based 

methods. Representative models and their key attributes are summarized in Table 2. 
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Figure 6. Examples of local feature extraction method based on PointNet. 

2.3.1 PointNet and its enhancements 

The core architecture of PointNet [20] consists of a multi-layer perceptron (MLP) and a max pooling 

layer, with its T-Net design ensuring invariance to the arrangement of 3D point clouds. Despite its 

strengths, PointNet has limitations, such as difficulties in cross-scale local feature extraction, lack of 

viewpoint invariance, and relatively high computational complexity. 

PointNetVLAD [21] uses PointNet for local feature extraction from 3D point clouds but inherits 

many of PointNet’s limitations. To address these, several models have introduced improvements while 

retaining the overall PointNet architecture. For example, PCAN [37] incorporates an attention 

mechanism after PointNet to weight local features, but it overlooks the relationships between points and 

their neighborhoods, resulting in higher computational complexity [38]. LPD-Net [39] and SeqLPD [40] 

embed adaptive local feature extraction modules within the PointNet architecture to enhance 

fine-grained feature extraction. Figure 6 compares their architectures with that of PointNet. 

Studies show that local 3D feature descriptors typically offer better generalization than global 

features [41–42]. Building on this, Zhou et al. [43] used PointNet to learn 3D local deep descriptors for 

loop closure detection. SOE-Net [45], inspired by SIFT’s direction encoding [44] in image processing, 

integrates a directional encoding unit from PointSIFT [46] into PointNet and employs a self-attention 

mechanism [47] to capture long-range dependencies. This improves the model’s point-wise feature 

expression and robustness to viewpoint variations. 

Some models, such as DAGC [38] and RPR-Net [48], deviate from the original PointNet 

architecture. DAGC retains only the T-Net structure and combines a dual-attention mechanism with 

residual graph convolution, enhancing the exploration of point relationships. In contrast, RPR-Net keeps the 

MLP from PointNet and introduces an ARIConv module with rotational invariance and attention mechanisms. 

2.3.2 Point convolution-based methods 

In DL-LPR, point-wise convolution methods, such as FlexConv [49] and KPConv [50], are widely used. 

DH3D [51] employs stacked FlexConv layers and SENet [52], integrating multi-level spatial context 

and channel feature correlations to form local feature descriptors. 
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To improve robustness to transformations like rotation and translation, Lin et al. [53] adopted EPN 

[54] or E2PN [55], building SE(3)-equivariant networks that learn global feature descriptors with 

SE(3)-invariant properties from 3D point clouds. SPConv, the core of EPN, is based on 

SE(3)-equivariant group convolutions from KPConv, while E2PN is a lightweight version of EPN. 

KPPR [56] simplifies KPConv to construct a local feature extraction network with a ResNet-like 

structure to boost performance.  

2.3.3 Graph convolution-based methods 

Common graph convolution methods in DL-LPR models include EdgeConv [57] and its variants. In 

models like LPD-Net [39] and SeqLPD [40], graph convolutional networks are used to aggregate point 

cloud information in both feature and Cartesian spaces. The residual graph convolution module in 

DAGC [38] builds on EdgeConv, aggregating features from multi-level neighboring points. PPT-Net 

[58] incorporates a graph embedding layer before each Pyramid Point Transformer (PPT) module, with 

EdgeConv at its core, further exploiting geometric structures. 

HiBi-GCN [36] uses a hierarchical bidirectional graph convolutional network to learn features from 

sparse 3D point clouds, improving place representation. However, as the number of channels and 

neighbors increases, the memory consumption of EdgeConv escalates, and recalculating the k-nearest 

neighbor (k-NN) graph in feature space increases computational costs. To address this, Hui et al. [59] 

introduced ProxyConv in EPC-Net, which constructs the k-NN graph in the spatial domain, reducing 

computational costs by keeping the graph static and replacing k-NN points with proxy points.  

2.3.4 Transformer-based methods 

Transformers, originally developed for natural language processing, have revolutionized computer 

vision tasks due to their self-attention mechanism [48]. Recent studies have introduced Transformer 

models into the DL-LPR domain, advancing research in this area. 

PPT-Net [58] employs Pyramid Point Transformers to capture spatial relationships between local 

features of point clouds at different resolutions. To address the limitations of traditional point-wise 

self-attention, the authors introduced a grouped self-attention module, enhancing the Transformer 

module in their model. HiTPR [61] employs a hierarchical architecture with both short-range and 

long-range Transformer modules, improving the learning of correlations between adjacent points and 

capturing global context dependencies. Ye et al. [60] proposed a lightweight point-level Transformer in 

FPET-Net, efficiently extracting local features from feature points. 

2.3.5 Summarize 

Methods based on raw 3D point clouds have evolved from the relatively simple PointNet architecture 

to more complex models. This evolution is driven by the need to improve local feature encoding, 

enhance robustness to viewpoint variations, and increase network efficiency. Recent research 

increasingly integrates attention mechanisms and Transformer architectures to refine key components, 

such as point convolution and graph convolution. 
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2.4. Methods based on 2D projections 

These methods apply projection transformations to raw 3D point clouds, converting them into 2D 

representations. Depending on the projection technique, 2D-projection-based DL-LPR methods can be 

categorized into spherical, bird’s eye view (BEV), cylindrical, sinogram, and hybrid projection methods. 

Further sub-categorization is possible based on specific implementation details. Representative methods 

for each category are summarized in Table 3. 

2.4.1 Spherical projection-based methods 

For a specific 3D point in a point cloud frame, its spherical projection formula is computed as: 

 

2 2 2 ,

arctan( ),

arcsin( ),

r x y z

x

y

z

r






 = + +



=



=


 (1) 

where r  represents the distance of the 3D point from the LiDAR center, and   and   represent the 

azimuth and elevation angles in the spherical coordinate system, respectively. 

Spherical projection captures more geometric structural information and offers inherent advantages 

in direction equivalence. As a 3D transformation, it is typically converted into 2D representations, such 

as range image ( RI ) or panoramic image ( PI ), in DL-LPR research. This has led to methods based on 

RI  and PI . 

2.4.1.1 Methods based on range imgae 

Range images, compared to raw 3D point clouds, offer a more compact structure that preserves local 

geometric relationships and simplifies feature extraction by eliminating the need for KD-tree 

construction [62]. Range images also bypass complex voxelization operations, thus obviating the need 

for 3D sparse convolutions (SP-Conv). 

Two primary methods for generating range images are used in DL-LPR: one computes row indices 

based on the LiDAR’s laser ID (Projection By Laser ID, PBID ), and the other uses the vertical field of 

view angle (Projection By Elevation Angle, PBEA ) [62]. These range images are denoted as 
PBIDRI  

and 
PBEARI , respectively. The width and height of RI  are denoted as   and h , with the 

corresponding column and row indices as u  and v . 

Ideally, the central column of the range image aligns with the forward direction of the mobile robot. 

The column index is calculated as: 

 
1

(1 ) ,
2

u





 
= +  

 
 (2) 

where     is the floor operator. 

For 
PBIDRI , the row index is computed as: 

 , 1,2, ,v l l N=   (3) 

where l  is the ID number of the laser beam, and N  is the total number of laser beams. 
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For 
PBEARI , the row index is: 

 ,
up

up down

v h
 

 

 −
=  

−  

 (4) 

where up  and 
down  are the maximum and minimum elevation angles of the laser beams, respectively. 

(1) Methods based on 
PBIDRI  

Early methods like LocNet [19][63][64] use a siamese architecture with 2D convolutional neural 

network (CNN) feature extraction. Later models, such as SMD-Net [65], incorporate additional inputs 

like normal vectors, intensity, and elevation data to address point cloud sparsity. 

Table 3 Representative methods based on 2D projection. 

Category Method Time 
Local Feature Extraction 

Network 

Local Feature 

Aggregation 

Network 

Loss 

Function 

Ground 

Truth 
Source Code Dataset 

Methods 

Based on 

Spherical 

Projection 

LocNet 

[19,63,64] 
2018 

Siamese 

Architecture+Multi-layer 2D 

Convolution 

- 
Contrastive 

Loss 
Distance LocNet KITTI 

OREOS [66] 2019 

Three-Branch 

Architecture+Multi-layer 

Convolution 

- Triplet Loss Distance - 
KITTI 

NCLT 

OverlapNet [33] 2020 

Siamese 

Architecture+Multi-layer 2D 

Convolution 

- 

Sigmoid 

Loss+ 

Binary 

Cross-Entro

py Loss 

Overlap OverlapNet 

KITTI 

Ford 

Campus 

SeqSphereVLAD

[71] 
2020 SphereVLAD NetVLAD 

Lazy- 

Quadruplet 

Loss 

Distance - KITTI 

SphereVLAD++ 

[73] 
2022 

SphereVLAD+ 

Self-Attention 

Attention+ 

NetVLAD 

Lazy-Quadr

uplet Loss 
Distance - KITTI360 

 

DeLightLCD 

[67] 
2022 

Siamese 

Architecture+Multi-layer 

Depthwise Separable 

Convolution 

- 

Binary 

Cross- 

Entropy 

Loss 

Distance - 

KITTI 

Ford 

Campus 

AttDLNet [68] 2022 
DarkNet53 [69]+ 

Multi-layer Self-Attention 
Max Pooling 

Cosine 

Loss 
Distance AttDLNet KITTI 

OT [35] 2022 
Multi-layer Convolution+ 

Transformer 
NetVLAD 

Lazy 

Triplet Loss 
Overlap OT 

KITTI 

Ford 

Campus 

Haomo 

SeqOT [70] 2022 

Multi-layer 

Convolution+Single-frame/

Multi-frame-Transformer 

GeM Triplet Loss Overlap SeqOT 

KITTI 

NCLT 

Haomo 

MulRan 

Methods 

Based on 

Bird’s Eye 

View 

Yin [78] 2018 GAN - 

Adversarial 

Feature 

Inference 

Loss 

Distance - 
KITTI 

NCLT 

DiSCO [79] 2023 UNet+FFT - 

Lazy- 

Quadruplet 

Loss 

Distance - 

Oxford 

NCLT 

MulRan 

BEVPlace [77] 2023 Grouped Convolution NetVLAD 
Lazy 

Triplet Loss 
Distance BEVPlace KITTI 

Methods 

Based on 

Cylindrical 

Projection 

Cao [81] 2022 
Multi-Branch Architecture+ 

Multi-layer Convolution 
- 

Softmax 

Cross- 

Entropy 

Loss 

Distance - Oxford 

https://github.com/HuanYin94/LocNet_caffe
https://github.com/PRBonn/OverlapNet
https://github.com/Cybonic/AttDLNet
https://github.com/haomo-ai/OverlapTransformer
https://github.com/BIT-MJY/SeqOT
https://github.com/zjuluolun/BEVPlace
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Table 3 Cont. 

Category Method Time 
Local Feature Extraction 

Network 

Local Feature 

Aggregation 

Network 

Loss 

Function 

Ground 

Truth 
Source Code Dataset 

Methods 

Based on 

Sinogram 

Projection 

DeepRING [84] 2022 
Siamese Architecture+Cycle 

Convolution-based UNet 
- 

Cross- 

Entropy 

Loss 

Distance - 
NCLT 

MulRan 

Category Method Time 
Local Feature Extraction 

Network 

Local Feature 

Aggregation 

Network 

Loss 

Function 

Ground 

Truth 
Source Code Dataset 

Methods 

Based on 

Hybrid 

Projection 

FusionVLAD 

[85] 
2021 

TVE+SVE+ 

VGG16 
NetVLAD 

Lazy 

Triplet Loss 
Distance - 

KITTI 

NCLT 

CVTNet [75] 2023 
Multi-layer 

Convolution+Transformer 
NetVLAD 

Lazy 

Triplet Loss 
Overlap CVTNet 

KITTI 

NCLT 

Haomo 

(2) Methods based on 
PBEARI  

These methods can be further categorized into single-frame and sequence-based approaches. 

Single-frame methods generally offer higher computational efficiency, while sequence-based methods 

are more robust to viewpoint variations. Feature extraction networks in these models often employ 

multi-branch (e.g., siamese or tri-branch) or single-branch architectures, utilizing 2D convolutions, 

attention mechanisms, or Transformers. 

(a) Multi-branch Architecture + Multi-layer CNN 

Models like OREOS [66], OverlapNet [33–34], and DeLightLCD [67] use traditional 2D 

convolutions in their feature extraction networks. DeLightLCD, however, uses depth-wise separable 

convolutions to reduce parameter sizes and mitigate issues like gradient vanishing and overfitting. 

(b) Single-branch + Attention/Transformer Enhancement 

AttDLNet [68] uses an improved DarkNet53 [69] combined with multiple self-attention modules to 

capture long-range contextual dependencies. OT [35] and SeqOT [70] enhance OverlapNetLeg [33–34] 

with yaw rotation invariance and Transformer-based spatiotemporal feature extraction.  

2.4.1.2 Methods based on panoramic image 

Yin et al. [72] demonstrated that spherical convolutions in the spherical harmonic domain can 

extract local features from panoramic images invariant to directional changes. By aggregating these 

features, global descriptors invariant to viewpoint and local translations can be obtained. The 

seqSphereVLAD model [71–72] pioneers this approach, while SphereVLAD++ [73] introduces attention 

mechanisms to capture long-range dependencies and improve signal-to-noise ratios in global descriptors. 

2.4.2 BEV projection-based methods 

BEV projection preserves the rigid structure of the environment in the xy  plane while disregarding the 

z -axis distribution. This projection captures structural information of the environment, with dynamic 

targets, buildings, and roads forming edges that exhibit good repeatability and stability as the robot 

moves [74].  

In DL-LPR, BEV images are typically generated using metrics such as maximum perception 

distance [75], maximum height [76], or point cloud density [74,77]. For instance, for a point ( , , )p x y z  

https://github.com/BIT-MJY/CVTNet
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in the point cloud P , if the maximum perception distance is used as the projection criterion, the 2D 

BEV image coordinates ( , )u v  can be calculated by [75]: 

 

1 arctan( , )
[1 ] ,

2

,

y x
u

r
v h

f





= − 


 = 


 (5) 

where 2 2r x y= +  and f  represent the maximum perception distance, respectively. There is 

considerable structural variation in the local feature extraction networks of such methods. 

Yin et al. [78] incorporated adversarial and unsupervised learning into feature extraction, improving 

robustness to viewpoint changes and enabling real-time operation on mobile platforms. DiSCO [79] uses 

a 2D BEV map generated from Scan Context [22], employing a shared multi-branch U-Net for feature 

extraction. The model uses Fourier transforms on the feature tensor to exploit translation and rotational 

invariance in the frequency domain. BEVPlace [77] generates 2D BEV images based on point density, 

using group convolutions for rotation-invariant feature extraction. 

2.4.3 Cylindrical projection-based methods 

Cylindrical projections offer a compact representation of 3D point clouds, preserving significant 

geometric information. The method proposed by [80] addresses sparsity in single-frame point clouds and 

improves robustness to occlusion and viewpoint changes by accumulating sequence data during projection. 

For a LiDAR point ( , , )p x y z  in Cartesian coordinates, z  is first normalized to the range (0, ) , 

and its corresponding cylindrical coordinate in the cylindrical space is obtained by: 

 

2 2 ,

arctan( ) , [0,2 )

arctan( ) , (0, )
2

r x y

x

y

z
h h

l

   




 = +

 = + 


 = + 


 (6) 

Where arctan( / )x y  represents the azimuth angle from the origin to point p , with a range of ( , ) − , 

h  is the normalized height, and l  is the normalization factor. To ensure viewpoint invariance, the 

origin is set at the centroid of the point cloud, and the absolute height of the 3D point is used to further 

mitigate the impact of viewpoint variations. The cylindrical space is then divided into V M N=   

voxels, where M  and N  are the number of divisions for   and h  , respectively. For a point 

( , , )k k k kp r h=  in the cylindrical space, its representation in the voxel unit ,i jv  is:  

 

, [0,2 )
2

, (0, )

k k

k k

M
i

N
j h h

  





  
=    

  


  =     

 (7) 

To improve computational efficiency, the cylindrical space is divided into voxels, with each voxel 

treated as a pixel in the cylindrical projection image. The pixel value is computed based on the point 

within the voxel and its geometric relationship with adjacent points: 



Artif. Intell. Auton. Syst. Survey 

 
17 

 

 1, 1 , , 1, 1

,

,

255(1 ),
2

, , , ,

(0,0,0)

0, (0,0,0)

k m n m n m n m n

m n

m n

P P P P

P

P





 − − + +


−


 =
 

 =

 (8) 

where   is the angle between vectors 
1, 1 ,,m n m nP P− −

 and 
, 1, 1,m n m nP P + +

. 

Cao et al. [81] developed a lightweight dual-head place classification network using 2D 

convolutions, pooling layers, and fully connected layers. The model employs large convolution kernels 

and average pooling layers to mitigate seasonal changes and focus on regional background features. The 

dual-head design addresses the limited depth of the convolutional network, and incremental learning 

distinguishes between different scenes for robust topological localization. 

2.4.4 Sinogram projection-based methods 

To address sparse localization, Lu et al. [82] developed the RING (Radon Sinogram) descriptor, a 

compact, unified representation that is invariant to both orientation and translation. This descriptor is 

generated using the Radon transform. For each point cloud frame, ground points are first removed to 

focus on the relevant features. Then, based on the scan context [22], the point cloud is projected into a 

2D BEV representation, denoted as a 2D function ( , )f x y . The Radon transform is applied to ( , )f x y  

to obtain the RING representation of the point cloud, denoted as ( , )fR   , with its calculation formula 

given by: 

 
: cos sin

( , ) ( , )

( , ) ( cos sin ) ,

f

L x y

R f x y dxdy

f x y x y dxdy

 

 

   

+

 

− −

=

= − −
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where L  represents the integral line parameterized by cos sinx y  + = , [0,2 )   is the angle 

between L  and the y  axis, and ( , )  −   is the perpendicular distance from the origin to L . 

Xu et al. [83] extended RING to RING++, improving robustness for global localization, while Lu et al. [84] 

applied RING in DL-LPR tasks with the DeepRING model, which includes a sine wave feature 

extraction module and frequency-domain feature aggregation. 

2.4.5 Hybrid projection-based methods 

To address sparsity, occlusion, and viewpoint variations, Yin et al. [85] introduced FusionVLAD, which 

extracts translation-invariant features from BEV projection and rotation-invariant features from 

spherical projection. These features are fused using VGG16 [86], significantly improving performance. 

Ma et al. [75] proposed CVTNet to explore and integrate internal and inter-relational information from 

range images and BEV images. The model uses Intra-Transformer and Inter-Transformer to uncover 

deep associations within and between data from different viewpoints. 
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2.4.6 Summarize 

2D projection data retain certain features from the original 3D point cloud, such as local geometric 

structures and yaw rotation invariance. Researchers design specialized local feature extraction networks 

focusing on rotation invariance, developing DL-LPR models robust to viewpoint changes. These models 

typically use single-branch or multi-branch architectures. Single-branch models output global feature 

descriptors, while multi-branch models output similarity scores and may integrate additional tasks like 

pose estimation. Network architectures have evolved from simple convolutional stacks to advanced 

attention/Transformer-based designs. Inputs have expanded from single-channel 2D projections to 

multi-channel and sequential data, enriching information but demanding higher network performance 

and efficiency. 

2.5. Methods based on 3D voxels 

The original 3D point cloud often contains fine-grained local details essential for tasks such as 

segmentation and detection. However, these details may be irrelevant or considered noise for LPR tasks, 

complicating scene understanding for DL-LPR models. To address this, sparse 3D voxelization has been 

implemented to reduce unnecessary local details and data size, while preserving the overall structural 

information of the scene [87]. 

DL-LPR methods based on 3D voxelization can be categorized into several types depending on the 

voxelization technique used. These include Cartesian voxelization, spherical voxelization, 3D NDT, and 

dynamic voxelization, among others. Relevant classical models are summarized in Table 4. 

Table 4. Representative methods based on 3D voxels. 

Category Method Time 
Local Feature Extraction 

Network 

Local Feature 

Aggregation 

Network 

Loss 

Function 

Ground 

Truth 
Source Code Dataset 

Methods 

Based on 

Cartesian 

Voxelization 

MinkLoc3D 

[91] 
2020 

Feature Pyramid 

Architecture+3D SP-Conv 
GeM 

Triplet 

Loss 
Distance MinkLoc3D 

Oxford 

In-house 

TransLoc3D 

[93] 
2021 3D SP-Conv +Attention - 

Triplet 

Loss 
Distance TransLoc3D 

MinkLoc3D- 

v2 [92] 
2022 

Feature Pyramid 

Architecture+3D SP-Conv 
GeM 

Smoothed 

AP Loss 
Distance MinkLoc3Dv2 

SVT-Net [87] 2022 3D SP-Conv +Transformer GeM 
Triplet 

Loss 
Distance SVT-Net 

Methods 

Based on 

Cartesian 

Voxelization 

LCDNet [94] 2022 

Three-Branch 

Architecture+ 

Feature Pyramid+ 

3D SP-Conv 

- 
Triplet 

Loss 
Distance LCDNet 

KITTI 

KITTI360 

LoGG3D-Net 

[96] 
2022 

Four-Branch Architecture+ 

UNet+ 

3D Point-Voxel 

Convolution 

Second-Order 

Pooling 

Quadruple

t Loss 
Distance LoGG3D-Net 

KITTI 

MulRan 

Methods 

Based on 

Spherical 

Voxelization 

SpoxelNet 

[99] 
2020 

Dual-Branch Architecture+ 

3D Convolution 
NetVLAD 

Lazy-Qua

druplet 

Loss 

Distance - 
NAVER 

LABS 

MinkLoc3D- 

SI [100] 
2021 

Feature Pyramid 

Architecture+3D SP-Conv 
GeM 

Triplet 

Loss 
Distance MinkLoc3D-SI 

Oxford 

KITTI 

https://github.com/jac99/MinkLoc3D
https://github.com/slothfulxtx/TransLoc3D
https://github.com/jac99/MinkLoc3Dv2
https://github.com/ZhenboSong/SVTNet
https://github.com/robot-learning-freiburg/LCDNet
https://github.com/csiro-robotics/LoGG3D-Net
https://github.com/KamilZywanowski/MinkLoc3D-SI
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Table 4. Cont. 

Category Method Time 
Local Feature Extraction 

Network 

Local Feature 

Aggregation 

Network 

Loss 

Function 

Ground 

Truth 
Source Code Dataset 

Methods 

Based on 3D 

NDT 

NDT- 

Transformer 

[101] 

2021 Transformer NetVLAD 

Lazy-Qua

druplet 

Loss 

Distance 
NDT- 

Transformer 
Oxford 

Methods 

Based on 

Dynamic 

Voxelization 

GeoLCR [103] 2023 
3D SP-Conv + 

Geometric Transformer 
- 

Mean 

Squared 

Error 

Loss 

Distance - KITTI 

Others Kong [105] 2023 
Siamese 

Architecture+Transformer 
NetVLAD - Distance - 

Oxford 

In-house 

KITTI 

2.5.1 Cartesian voxelization-based methods 

Cartesian voxelization involves partitioning a 3D point cloud into voxel grids within Cartesian 

coordinates, simplifying the processing of the original point cloud. Siva et al. [88] applied representation 

learning to voxelized data, transforming the LPR problem into a regularized optimization task. 

Subsequent research has leveraged neural network models to extract meaningful features from voxelized 

data, effectively capturing location information. Key components of these models include 3D SP-Conv [89], 

3D sparse point-voxel convolution [90], and attention/Transformer mechanisms. 

2.5.1.1 Methods based on 3D SP-Conv 

SP-Conv [89], implemented using the MinkowskiEngine, is designed for efficient processing of sparse 

data in high-dimensional spaces [87]. Several models, including MinkLoc3D [91], MinkLoc3Dv2 [92], 

TransLoc3D [93], and SVT-Net [87], are based on SP-Conv. MinkLoc3D and MinkLoc3Dv2 employ a 

Feature Pyramid Network (FPN) architecture, with MinkLoc3Dv2 improving performance by adding 

additional convolutional layers, transposed convolutions, and attention modules to enhance network 

depth and width. 

TransLoc3D incorporates attention/Transformer modules to enable the model to process semantic 

objects of varying sizes using adaptive receptive fields, while SVT-Net utilizes Transformers to capture 

long-range contextual information. 

LCDNet [94] adopts a three-branch architecture, with feature extraction based primarily on 

PV-RCNN [95]. Depending on the task, LCDNet retains 3D voxel convolution and voxel set abstraction 

modules from PV-RCNN, which are integrated with four feature pyramid modules constructed using 3D 

SP-Conv layers. This design effectively combines the fine-grained feature extraction strengths of 

PointNet-like architectures with the high-level feature extraction advantages of voxel-based methods. 

2.5.1.2 Methods based on 3D point-voxel convolution 

The LoGG3D-Net [96] model features a four-branch architecture, with its core local feature extraction 

network built upon 3D point-voxel convolution using SparseConv U-Net. It first maps input points to a 

high-dimensional feature space using SparseConv U-Net, then applies a local consistency loss to 

https://github.com/dachengxiaocheng/NDT-Transformer
https://github.com/dachengxiaocheng/NDT-Transformer
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maximize feature similarity for overlapping point clouds. Next, second-order pooling and differentiable 

eigenvalue power normalization aggregate local features into global scene descriptors. 

2.5.1.3 Methods based on Attention/Transformer 

MinkLoc3Dv2 [92] improves performance by incorporating the Efficient Channel Attention (ECA) 

module [97] after certain 3D SP-Conv layers in the FPN. TransLoc3D [93] uses ECA in its self-adaptive 

receptive field module (ARFM) to aggregate global information while filtering out irrelevant noise 

features. To further improve contextual information aggregation and reduce the model’s parameter 

count, an External Attention Transformer module is added after the ARFM. Simply stacking 3D 

SP-Conv layers may overlook long-range contextual information, so SVT-Net [87] introduces two types 

of Transformers: atom-based sparse voxel Transformers and cluster-based sparse voxel Transformers. 

These Transformers are designed to capture short-range local features and long-range contextual 

features within 3D voxels, respectively. 

2.5.2 Spherical voxelization-based methods 

Spherical voxelization divides the point cloud into voxels within spherical space. Unlike Cartesian 

voxelization, where the voxel size is fixed, spherical voxelization adjusts the voxel size based on radial 

distance from the origin, allowing for more accurate structural information representation. This 

approach reflects the sparsity of laser projections, which typically vary with distance. Spherical 

voxelization is particularly effective for encoding 3D point clouds into a compact and efficient voxel 

representation. 

For a 3D point cloud frame ( , , )CP X Y Z , which contains M  points represented by Cartesian 

coordinates ( , , )C i i ip x y z , where 0 i M  , the corresponding 3D spherical coordinates ( , , )SP R    

can be obtained as shown in Equation (1), and it contains M  points represented by spherical 

coordinates ( , , )Sp    . After spherical voxelization, the voxel representation obtained follows the 

calculation formula for points contained in each spherical voxel unit , ,i j kV  follows: 

 

, , { ( , , ) |

( 1),

( 1),

( 1)},

i j k SV P R

i i

j j

k k

  

  

  

=  

      +

      +

      +

 (10) 

where,  ,  ,   represent radial distance, azimuth angle, and elevation angle, respectively, while 

 ,  ,  represent the voxelization resolution along the three axes, i ，j ，k  denote the index of the 

voxel unit along the three axes, respectively. 

SpoxelNet [99] employs a two-branch network design for local feature extraction, with branches 

operating independently without weight-sharing. Each branch uses 3D convolutional layers, with the 

fine feature extraction branch capturing detailed structural relationships and the coarse feature extraction 

branch capturing broader features. A deconvolutional layer ensures consistent output dimensions, 

enabling efficient feature extraction at different granularities. 

MinkLoc3D-SI [100] builds on MinkLoc3D [91], retaining the FPN design and 3D SP-Convs but 

using spherical voxelization to address uneven density distribution. It incorporates intensity information 

to enhance robustness to sparsity and viewpoint variation, improving LPR performance. 
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2.5.3 3D NDT-based methods 

3D NDT [11] is widely used in 3D LiDAR SLAM for probabilistic representation of point clouds, such 

as in point cloud registration. In NDT representation, each point is modeled as a Gaussian distribution, 

generated by voxelizing the point cloud and calculating the Gaussian distribution for each voxel.  

The NDT-Transformer model [101] uses the NDT representation of 3D point clouds as input, 

preserving geometric information while reducing data size. It employs a standard Transformer [47] to 

extract geometric and contextual features, aggregated into a global descriptor using the NetVLAD layer. 

2.5.4 Dynamic voxelization-based methods 

Dynamic voxelization, proposed by Zhou et al. [102], allocates storage space for each voxel unit based 

on the number of points, addressing challenges such as high memory consumption and computational 

cost in traditional voxelization methods. Figure 7 compares non-dynamic and dynamic voxelization. 

 

Figure 7. Schematic diagram of the difference between hard voxelization and dynamic voxelization [102]. 

The GeoLCR model [103] preprocesses 3D point clouds using dynamic voxelization and employs 

KPConv [50] to hierarchically extract point and voxel features. These features are passed to an overlap 

estimator using the Geometric Transformer [104] to estimate overlap scores between voxel frames. Loop closure 

detection is performed by combining overlap scores with pose information from the registration module. 

2.5.5 Others 

Kong et al. [105] proposed the Interest Point-Driven LPR method, inspired by human scene recognition. 

It uses LeGO-LOAM [106] to extract interest points, projects them onto grid cells, and encodes features 

using EdgeConv and PointNet. A grid-based U-Transformer and a twin Transformer-NetVLAD LPR module 

explore local topological relationships and global interactions, generating robust global feature descriptors. 

2.5.6 Summary 

Voxelization of 3D point clouds reduces data volume and regularizes the data structure, making it easier 

to process with neural network models. Various voxelization methods have advantages and limitations 

that affect DL-LPR model performance. Current feature extraction networks in DL-LPR models based 

on 3D voxels typically include architectures such as feature pyramids and U-Net, with recent 

advancements incorporating attention mechanisms or Transformers. 
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2.6. Methods based on semantic 

The original 3D point cloud primarily contains low-level geometric structure information, while 

high-level semantic data obtained through semantic segmentation and other methods is more robust to 

environmental changes. This high-level information provides stronger constraints for LPR tasks, 

enhancing the overall performance of LPR systems [25,107]. Chen et al. [33–34] demonstrated in 

OverlapNet that incorporating semantic category information into the model input improves the 

accuracy of place recognition and loop closure detection. 

This section focuses on semantic-based DL-LPR methods that process semantic information within 

the place feature encoding module, rather than methods used to acquire semantic information. While 

references [25,108–116] include neural network modules, these modules are primarily designed for 

semantic information extraction, not processing. The handling of semantic information in these studies 

relies on traditional techniques, such as clustering, histogram matching, and semantic topological graph 

matching, and will not be further discussed here. 

The network structure of semantic-based DL-LPR models is closely tied to how semantic 

information is organized. Models that do not construct semantic graphs typically rely on conventional 

convolutions (e.g., 2D, 3D, or sparse 3D convolutions), while those that organize semantic information 

as graphs typically employ graph convolutions as their core building block. Some relevant classical 

models are listed in Table 5. 

Table 5. Representative methods based on semantic. 

Category Method Time 
Local Feature 

Extraction Network 

Local Feature 

Aggregation 

Network 

Loss Function 
Ground 

Truth 

Source 

Code 
Dataset 

Methods Based 

on 

Conventional 

Convolution 

SegMap [117] 2018 
Multi-layer 

Convolution 
- 

Contrastive 

Loss 
Distance SegMap KITTI 

Wietrzykowski 

[120] 
2021 

Multi-layer 

Convolution 
- - Distance - 

KITTI 

MulRan 

PSE-Match 

[107] 
2021 

Three-Branch 

Architecture+Spheri

cal Convolution 

NetVLAD 
Lazy Triplet 

Loss 
Distance - 

KITTI 

NCLT 

Locus [121] 2021 SegMap-CNN 
Second-Order 

Pooling 
- Distance Locus KITTI 

RINet [122] 2022 

Siamese 

Architecture+Multi-

layer Convolution 

- 

Soft Binary 

Cross-Entropy 

Loss 

Distance RINet 

KITTI 

KITTI360 

NCLT 

PADLoc [123] 2023 

Three-Branch 

Architecture+Featur

e Pyramid+3D 

Voxel Convolution 

- Triplet Loss Distance PADLoc 

KITTI 

Ford 

campus 

In-house 

Semantic-

KITTI 

Methods Based 

on Graph 

Convolution 

SG-PR [124] 2020 Graph Convolution 
Fully Connected 

Layer 

Binary 

Cross-Entropy 

Loss 

Distance SG-PR KITTI 

SC-LPR [126] 2022 
GRU- 

EdgeConv++ 
- 

Binary 

Cross-Entropy 

Loss 

Distance SC-LPR KITTI 

https://github.com/ethz-asl/segmap
https://github.com/csiro-robotics/locus/tree/main
https://github.com/lilin-hitcrt/RINet
https://github.com/robot-learning-freiburg/PADLoC
https://github.com/kxhit/SG_PR
https://github.com/Daideyun/SC-LPR
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2.6.1 Conventional convolution-based methods 

Dubé et al. [18] introduced SegMatch, the first method to leverage semantic segments from 3D LiDAR 

point clouds for LPR. Later, Dubé et al. [117–119] proposed SegMap, a semantic-based DL-LPR 

method using multi-layer 3D convolutions to extract feature descriptors from semantic segments. 

Wietrzykowski et al. [120] extended SegMap by incorporating both semantic segment data and point 

cloud intensity, enhancing the feature descriptors. Vidanapathirana et al. [121] introduced the Locus 

model, which fully exploits spatiotemporal relationships between semantic segments. This model first 

encodes semantic segments using SegMap-CNN [118], then applies spatial and temporal pooling, 

followed by second-order pooling to generate fixed-length global descriptors. 

To improve descriptor robustness to viewpoint changes, Li et al. [122] proposed RINet, a twin 

network with rotation-invariant properties. 

Building on LCDNet [94], Arce et al. [123] proposed PADLoC, a Transformer-based framework 

for loop closure detection and point cloud registration. PADLoC redefines the matching problem as both 

a semantic label classification task and an instance label graph connectivity assignment. The feature 

extraction module follows LCDNet, but in the matching module, the Transformer processes geometric 

and panoramic semantic labels for better internal structure utilization. 

Yin et al. [107] introduced PSE-Match, a viewpoint-invariant model based on semantic analysis. 

The model performs spherical projection of static semantic objects (e.g., roads, buildings, and static 

targets) obtained through semantic segmentation. It uses spherical convolutions to encode and aggregate 

features of each semantic object in parallel, generating rotation-invariant feature descriptors. Divergence 

learning metrics are employed to further enhance the invariance of the descriptors to translation and 

viewpoint changes. 

2.6.2 Graph convolution-based methods 

Inspired by human perception, Kong et al. [124] proposed a DL-LPR method utilizing semantic graph 

representation and graph matching. Semantic information is extracted using the RangeNet++ model [125], 

and the point cloud is transformed into a concise graph representation, capturing key semantic details 

and topological relationships. The feature extraction network consists of the Node Embedding module 

(using EdgeConv [57] to extract spatial and semantic node features) and the Graph Embedding module 

(using attention to weigh node embeddings). 

Dai et al. [126] proposed SC-LPR, a model that integrates spatiotemporal context and semantic 

information from sequential point clouds. It uses RangeNet++ for semantic labeling, discarding less 

useful categories such as roads and pedestrians. The DBSCAN algorithm [127] clusters the point cloud 

to extract semantic instance segments, creating the semantic graph. A GRU-EdgeConv++ network 

extracts features from the graph and aggregates spatiotemporal information. Similarity between point 

cloud frames is evaluated using the Cosine Tensor Network and Neural Tensor Network combination. 

2.6.3 Summary 

Semantic data, as high-level information, may sacrifice some low-level geometric details when used in 

isolation, and its quality depends on the effectiveness of the extraction method. To address this, 
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semantic-based DL-LPR methods are evolving in two key directions: At the input level, researchers 

focus on improving semantic extraction techniques for stability and accuracy, while exploring ways to 

integrate semantic information with low-level geometric details to preserve scene information. At the 

feature extraction level, networks are increasingly adopting fusion strategies that combine components such 

as graph convolutions, attention mechanisms, and Transformers to enhance the capture of local features. 

3. Common datasets and evaluation metrics 

3.1. Common datasets 

A series of open-source datasets in mobile robotics have significantly advanced research in DL-LPR. 

This section reviews some of the most commonly used public datasets, summarizing their relevant 

attributes in Table 6. 

The Ford Campus dataset [128], collected between November and December 2009 at the Ford 

Research Campus and downtown Dearborn, Michigan, includes several loops of varying sizes, making it 

suitable for testing SLAM and place recognition algorithms. While data was collected using different 

types of LiDAR, most DL-LPR studies have utilized point clouds from the Velodyne HDL-64E sensor 

to assess the generalization performance of networks [33–35,67,123]. 

The KITTI dataset [129] comprises 22 sequences of point clouds, though DL-LPR research 

typically focuses on sequences 00-10, which provide ground truth poses for model evaluation. Among 

these, sequences 00, 02, 05, 06, 07, and 08 feature trajectory overlaps (i.e., loops), with sequence 08 

containing a reverse loop. A common usage strategy is to train models on sequences 03-10, validate on 

sequence 02, and evaluate on sequence 00 [35]. 

The NCLT dataset [130], collected at the University of Michigan’s North Campus, includes both 

indoor and outdoor scenes, with point clouds captured using the Velodyne HDL-32. Data was collected 

over 15 months, with new data approximately every two weeks. Like the Oxford RobotCar dataset [131], 

NCLT features significant variations in seasons, weather, lighting, viewpoints, and scene appearance, 

and contains many dynamic objects, placing high demands on DL-LPR models. 

The Oxford RobotCar dataset [131], created by the University of Oxford’s Mobile Robotics Group, 

was collected over 1000 kilometers of driving for autonomous driving research. Data was gathered from 

May 2014 to December 2015 by driving an experimental car through central Oxford twice a week. As a 

result, the dataset includes variations in seasons, weather, lighting, and viewpoints. The LiDAR used for 

point cloud collection is 2D, and in PointNetVLAD, 2D point clouds are aggregated into local 3D maps, 

with redundant ground points removed. The submaps are downsampled to 4096 points using a voxel grid 

filter, and their coordinates are transformed to a specific range. Each submap’s center is labeled with 

UTM coordinates for model training and evaluation. Subsequent DL-LPR methods using this dataset 

generally follow PointNetVLAD’s preprocessing steps. 

The In-House dataset [21], collected by Mikaela et al. using the Velodyne-64 LiDAR, was designed 

to validate the generalization ability of PointNetVLAD and improve network performance. It includes 

three main scenes: University Sector (U.S.), Residential Area (R.A.), and Business District (B.D.), with 

preprocessing following the same approach as PointNetVLAD’s handling of the Oxford RobotCar dataset. 

The In-House dataset has since become a widely used benchmark for evaluating DL-LPR methods. 
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The SemanticKITTI dataset [132], derived from the KITTI dataset, provides point-level semantic 

annotations for the 22 KITTI sequences, including full 360-degree field-of-view labeling. This dataset is 

particularly useful for semantic-based DL-LPR methods, providing rich semantic labels to enhance 

model recognition capabilities. 

The MulRan dataset [133] focuses on place recognition using distance sensors, including 

millimeter-wave radar and LiDAR. Point clouds were captured with an Ouster 64-line LiDAR sensor in 

four distinct environments: DCC, KAIST, Riverside, and Sejong City. The dataset is designed to test the 

robustness of range-based place recognition methods, particularly with challenges such as structural 

diversity, dynamic objects, reverse loops, repeated scenes, and changes in scene appearance 

Table 6. Datasets commonly used in DL-LPR and their instructions. 

Dataset Year LiDAR Type 
Scene 

Type 

Ground 

Truth of 

Place 

Variation Factors 
Related 

Literature Season Weather 
Day/

Night 

Scene 

Appearance 

Dynamic 

Objects 

Ford Campus 

[128] 
2011 

3D 

Velodyne- 

HDL-64E 

Campus 6DoF Pose  √  √ √ 
B: [33-35, 67] 

D: [123] 

KITTI [129] 2012 
3D Velodyne 

HDL-64E 

Urban 

Area 
6DoF Pose     √ 

A: [43, 60] 

B: [33-35, 63-68, 70-73, 

75, 78, 85] 

C: [94, 96, 100] 

D: [110-113, 121-124, 126] 

NCLT [130] 2016 
3D Velodyne 

HDL-32 
Campus 6DoF Pose √ √ √ √ √ 

B: [65, 70, 75, 78, 80, 85] 

C: [88] 

D: [122] 

Oxford 

Robotcar 

[131] 

2017 
2D SICK 

LMS-151 

Urban 

Area 

UTM 

Coordinate

s 

√ √ √ √ √ 

A: [21, 36-40, 45, 48, 51, 

53, 56, 58, 59, 61, 105] 

B: [80, 81] 

C: [87, 91-93, 100, 101] 

In House 

[21] 
2018 

3D Velodyne 

HDL-64 

Campus/ 

Resident

ial/ 

Commer

cial Area 

UTM 

Coordinate

s 

 √   √ 

A: [21, 36-39, 45, 48, 53, 

56, 59, 61, 105] 

C: [87, 91-93] 

Semantic- 

KITTI [132] 
2019 

3D Velodyne 

HDL-64E 

Urban 

Area 
6DoF Pose     √ 

A: [105] 

D: [112, 113, 123, 124] 

MulRan 

[133] 
2020 

3D Ouster- 

OS1-64 

Urban 

Area 
6DoF Pose    √ √ 

A: [103, 140] 

B: [70, 79] 

C: [96] 

D: [120] 

KITTI-360 

[134] 
2022 

3D Velodyne 

HDL-64E 
Suburb 6DoF Pose     √ 

B: [73] 

C: [94] 

D: [122] 

Haomo [35] 2022 
3D HESAI- 

PandarXT-32 

Urban 

Area 
6DoF Pose  √  √ √ D: [35, 70, 75] 

Wild-Place  

[135] 
2023 

3D Velodyne 

VLP-16 

Unstruct

ured 

Natural 

Scene 

6DoF Pose  √  √ √ C: [92, 93, 96] 

Note: A represents methods based on original 3D point clouds; B represents methods based on 2D projection; C represents methods 
based on 3D voxelization; D represents methods based on semantics. 

http://robots.engin.umich.edu/SoftwareData/Ford
https://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://robots.engin.umich.edu/nclt/
https://robotcar-dataset.robots.ox.ac.uk/
https://robotcar-dataset.robots.ox.ac.uk/
https://drive.google.com/drive/folders/1Wn1Lvvk0oAkwOUwR0R6apbrekdXAUg7D
http://www.semantic-kitti.org/dataset.html
http://www.semantic-kitti.org/dataset.html
https://sites.google.com/view/mulran-pr
https://paperswithcode.com/dataset/kitti-360
https://github.com/haomo-ai/OverlapTransformer/tree/master/Haomo_Dataset
https://data.csiro.au/collection/csiro:56372?q=wild-places&_st=keyword&_str=1&_si=1
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The KITTI-360 dataset [134], collected in the Karlsruhe area, introduces richer input modalities, 

comprehensive semantic instance annotations, and more accurate localization data, making it a 

valuable supplement to the original KITTI dataset. For DL-LPR research, it includes 11 sequences, six 

of which contain loops: 0000, 0002, 0004-0006, and 0009. These sequences feature more loops and 

reverse loops than the KITTI dataset, presenting additional challenges. The rich semantic annotations 

in KITTI-360, similar to those in SemanticKITTI, provide ground truth semantic labels, enhancing its 

utility for semantic-based DL-LPR methods. 

The Haomo dataset [35] was captured using the HESAI PandarXT-32 LiDAR sensor, spanning 

approximately two months and consisting of five sequences. Sequences 1-1 and 1-2 share the same 

trajectory but with opposite directions, while Sequence 1-3, collected 20 days later, shares the same 

movement direction as Sequence 1-1. This dataset is useful for testing the robustness of DL-LPR 

methods against extreme viewpoint changes (e.g., reverse direction) and variations in scene appearance. 

The Wild-Places dataset [135], created by Knights et al., was specifically designed for LPR 

research in unstructured environments. Collected over 14 months using a Velodyne 16-line LiDAR 

sensor in natural outdoor settings, it includes 67,000 frames of undistorted LiDAR point cloud 

submaps, divided into 8 sequences. The dataset features abundant intra-sequence and inter-sequence 

loops, making it suitable for testing DL-LPR models in complex, unstructured environments. 

3.2. Performance evaluation metrics 

The performance evaluation of DL-LPR models primarily focuses on three aspects: place recognition 

performance, model generalization ability, and computational efficiency, as illustrated in Figure 8. The 

analysis is conducted from these three perspectives, with a comparative assessment of the performance 

of various DL-LPR methods. 

Performance 

Evaluation of 

DL-LPR

Place Recognition 

Performance

Generalization 

Ability

Model Efficiency

Different Datasets

Viewpoint Variation

Scene Appearance 

Variation

Similar Scene 

Appearance

Sensor Occlusion

Model Parameters

Running Time

Accuracy

Robustness

 

Figure 8. Different aspects of performance evaluation of existing DL-LPR methods. 

3.2.1 Place recognition performance 

Place recognition performance is evaluated from two primary aspects: recognition accuracy and 

algorithm robustness. 

(1) Place recognition accuracy 

Place recognition accuracy is typically assessed using several quantitative and qualitative metrics, 

including Precision (P), Recall (R), Area Under the Precision-Recall Curve (AUC), Maximum F1 
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score, Average recall at top 1% (AR@1%), Average recall at top 1 (AR@1), and the Precision-Recall 

(PR) curve. 

Table 7. The AR@1% and AR@1 of some algorithms on the Oxford and In-House datasets. 

Methods 
Oxford RobotCar[131] 

In-House[21] 

U.S. R.A. B.D. 

AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 

Methods Based on Raw 3D Point Clouds 

PointNetVLAD [21] 80.09 63.33 90.10 86.07 93.07 82.66 86.49 80.11 

PCAN [37] 86.40 70.72 94.07 83.69 92.27 82.26 87.00 80.31 

LPD-Net [39] 94.92 86.28 96.00 - 90.46 - 89.14 - 

seqLPD [40] 95.81 87.15 - - - - - - 

DAGC [38] 87.78 71.39 94.29 86.34 93.36 82.78 88.51 81.29 

SOE-Net [45] 96.43 89.28 97.67 91.75 95.90 90.19 92.59 88.96 

PPT-Net [58] 98.40 - 99.70 - 99.50 - 95.30 - 

EPC-Net [59] 94.74 86.23 96.52 - 88.58 - 84.92 - 

HiTPR [61] 93.71 86.63 90.21 80.86 87.16 78.16 79.79 74.26 

KPPR [56] 97.08 - 98.01 - 95.10 - 92.09 - 

E2PN-GeM [53] 93.24 84.79 95.29 88.08 90.46 83.67 87.68 83.29 

HiBi-Net [36] - 87.46 - 87.81 - 85.76 - 83.03 

RI-STV [105] 98.50 - 97.30 - 93.00 - 91.70 - 

Methods Based on 3D Voxel 

MinkLoc3D [91] 98.50 94.80 99.70 97.20 99.30 96.70 96.70 94.00 

NDT-Transformer [101] 97.65 93.80 - - - - - - 

TransLoc3D [93] 98.50 95.00 99.80 97.50 99.70 97.30 97.40 94.80 

MinkLoc3Dv2 [92] 99.10 96.90 99.70 99.00 99.40 98.30 99.10 97.60 

SVT-Net [87] 97.80 93.70 96.50 90.10 92.70 84.30 90.70 85.50 

The F1 score represents the harmonic mean of P and R, treating both as equally important for overall 

classification performance. To address the limitations of AUC in evaluating VPR algorithms, Ferrarini 

et al. [136] introduced the Extended Precision (EP) metric, which was later applied by Li et al. [112] in 

the LPR field. The formulas for calculating P, R, F1, and EP are provided in Equation (11): 

 

0 100

,

,

2
1 ,

1
( ),

2
R P

TP
P

TP FP

TP
R

TP FN

PR
F

P R

EP P R


= +


 =
 +

 =
 +

 = +


 (11) 

where TP, FP, and FN are defined as illustrated in Figure 9. 
0RP  represents precision at the minimum 

recall point, and 
100PR  represents the maximum recall at 100% precision. In Figure 9, the term “same 
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place” refers to situations where the retrieved or matched place corresponds to the query place. Two 

definitions of “same place” are used: distance-based (e.g., PointNetVLAD [21], where places are 

considered the same if their geographic distance is less than 25 meters) and overlap-based (e.g., 

OverlapNet [33–34] and OT [35], where places are deemed identical if their overlap ratio exceeds 0.3). 

Table 7 presents the AR@1% and AR@1 metrics for various DL-LPR methods on the Oxford RobotCar 

and In-House datasets. 

The true relationship between the 

sample and the query frame (If they 

represent the same place, it is 

Positive; otherwise, it is Negative).

Predicted as the 

same place

Predicted as 

different place

Positive

Negative

Positive

TP

FN

Negative

FP
The predicted relationship between 

the sample and the query frame (If 

the LPR estimates them as the same 

place, it is Positive; otherwise, it is 

Negative).

Ground truth as 

the same place

Ground truth as 

different place

TN

 

Figure 9. The meaning of some relevant variables. 

(2) Robustness of models 

The robustness of DL-LPR methods is primarily challenged by factors such as viewpoint changes, 

scene appearance variations, similar scene appearances, and occlusion, as discussed in Section 2.2. 

Table 8 presents experiments evaluating the robustness of various DL-LPR methods to occlusion and 

viewpoint changes using sequence 00 from the KITTI dataset. In these experiments, occlusion is 

simulated by randomly deleting points within a specific range, while viewpoint changes are simulated by 

randomly rotating the point clouds [60]. As shown in Table 8, both occlusion and viewpoint changes 

result in a decrease in the maximum F1 score for several methods. However, the extent of the decrease 

varies, highlighting differences in their robustness to these challenges. 

Table 8 The maximum F1 scores of some methods before and after occlusion and viewpoint 

changes in sequence 00 of KITTI dataset [60]. 

  PointNetVLAD [21] LPD-Net [39] FEPT-Net [60] 

Occlusion 

Before 0.866 0.814 0.971 

After 0.884 0.791 0.955 

Difference 0.018 −0.023 −0.016 

Viewpoint 

Variation 

Before 0.866 0.814 0.971 

After 0.839 0.765 0.940 

Difference −0.027 −0.049 −0.031 

Note: “Before” refers to the maximum F1 score before the occurrence of occlusion or viewpoint changes; “After” refers to the maximum 
F1 score after the occurrence of occlusion or viewpoint changes; the “Difference” is calculated by subtracting the maximum F1 score 
before the change from the maximum F1 score after the change. 
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3.2.2 Generalization Performance 

Generalization ability is a crucial metric for evaluating neural network models. Since most DL-LPR 

datasets are collected from structured environments, it is important to note that significant variations 

exist within these environments. For example, campus environments typically feature more vegetation, 

urban street scenes involve dynamic pedestrians and vehicles, and highway environments exhibit 

repetitive geometric patterns. 

Table 9. Generalization performance (F1 score) of some algorithms on different data sets. 

 PointNetVLAD [21] OverlapNet [33, 34] OT [35] 

KITTI 0.846 0.865 0.877 

Ford Campus 0.830 0.843 0.856 

The generalization ability of DL-LPR models is typically assessed by evaluating place recognition 

accuracy across different datasets. The standard evaluation procedure involves training and validating 

the model on sequences from a specific structured scene dataset, testing it on sequences from the same 

dataset, and then testing it on sequences from different datasets. This allows for the comparison of place 

recognition accuracy across varying environments. Table 9 presents experiments on the generalization 

performance of several methods using sequence 00 from both the KITTI and Ford Campus datasets. In 

these experiments, the models were trained on sequences 03-10 of the KITTI dataset, validated on 

sequence 02 of the same dataset, and tested on the Ford Campus dataset. This experiment demonstrates 

the generalization ability of DL-LPR methods across different datasets and environments. The results, 

presented as maximum F1 scores in Table 9, clearly show that different DL-LPR methods exhibit 

varying degrees of generalization ability across datasets and scene types. 

3.2.3 Algorithmic efficiency 

The ultimate goal of DL-LPR research is to deploy models on mobile robots for real-time place 

recognition in dynamic environments. However, mobile robots often have limited computing resources, 

making algorithm efficiency crucial for successful deployment. 

Algorithm efficiency is influenced by two primary factors: model complexity and runtime. Model 

complexity is directly related to the number of parameters. Overly complex architectures can result in 

excessive parameters, making deployment difficult and significantly extending inference times. 

The algorithm runtime consists of two components: data preprocessing time and model inference 

time. For DL-LPR methods based on 2D projections, 3D voxels, and semantics, preprocessing of raw 

3D point clouds is required. This step may involve complex mathematical operations, leading to longer 

processing times. Model inference time is influenced by both model complexity and hardware 

computational power. 

To improve algorithm efficiency, it is essential to focus on lightweight network design and 

reducing data preprocessing time. These factors are key to enhancing real-time performance. Table 10 

compares the number of model parameters and algorithm runtimes for several DL-LPR methods, using 

an Intel Core i7-6950X CPU and an NVIDIA GeForce GTX 1080 Ti GPU with 12GB of VRAM [60].
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Table 10. Model parameters and running time of some algorithms [60]. 

Methods Model Parameters（M） Running Time（ms） 

PCAN [37] 20.4 39.7 

PointNetVLAD [21] 19.8 34.4 

LPD-Net [39] 19.8 96.94 

EPC-Net [59] 4.7 32.82 

FPET-Net [60] 1.77 7.6 

4 Analysis of challenges and outlook for research trends 

The place recognition task for mobile robots is increasingly characterized by long-term, large-scale, and 

highly dynamic environments [1], which introduce several new challenges: 

(1) Temporal dimension: Operations span across different times of day, seasons, and weather 

conditions (e.g., rain, snow, fog, dust), leading to significant changes in scene appearance. 

The Place Recognition Task of Mobile Robot Exhibits

Long-Term, Large-Scale Characteristics

Application 
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• Existing models lack generalization ability 
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unstructured scenes.
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the expansion of the task scene and the 
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Figure 10. Challenges and future development trends of DL-LPR research. 

(2) Spatial dimension: The scale of operational environments is expanding, often involving 

cross-scenario operations, increasing the size of scene maps and search spaces. 

(3) Dynamic targets: As operational time and range increase, so does the frequency of 

encountering dynamic targets, exacerbating occlusion problems. 

These emerging challenges emphasize the growing demands on DL-LPR research, particularly 

regarding model generalization, robustness, and real-time performance. They also point to key future 

research directions, as illustrated in Figure 10. 
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4.1 Challenge analysis 

While many DL-LPR methods perform well on single, limited-scale datasets, new challenges arise in 

long-term, large-scale, and high-dynamic tasks. This section analyzes these challenges in relation to 

model generalization ability, robustness, and real-time performance. 

    
(a)                   (b)                  (c)                 (d) 

    
(e)                   (f)                  (g)                 (h) 

    
(i)                   (j)                 (k)                  (l) 

Figure 11. Diversity of scenes and Lidar data (The first row are examples of different types of 

structured scenes, the second row are examples of different types of unstructured scenes, and the 

third row are examples of different types of LiDAR data). 

4.1.1 Insufficient generalization capacity 

For long-term, large-scale, and high-dynamic LPR tasks, current DL-LPR models exhibit insufficient 

generalization capability in three main areas: 

(1) Generalization across different types of structured scenes: Existing models show limited 

ability to generalize across diverse structured scenes. While generalization ability has been partially 

explored (see Section 3.2.2), a deeper analysis is needed for long-term, large-scale, and dynamic 

environments. With urbanization accelerating, autonomous driving and mobile robotics in urban areas 

are gaining increasing attention. Large public datasets have greatly advanced DL-LPR in structured 

scenes, but the generalization ability of current models remains inadequate. This is primarily due to the 

diversity of structured scenes, as shown in Figure 11, which includes urban neighborhoods, campuses, 

suburban areas, and highways. These scenes vary in terms of dynamic targets, road congestion, 

vegetation, and recurring scene types. A model trained on a single dataset may struggle to generalize to 

other environments. Therefore, developing models that can adapt to various structured scenes and 

enhancing their learning capacity are critical steps in addressing this challenge. 
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(2) Generalization between structured and unstructured scenes: Models also struggle with 

generalization between structured and unstructured scenes. The differences between these scene types 

are substantial. Figure 11 shows unstructured scenes such as off-road areas, deserts, and extraterrestrial 

terrains, which are more chaotic and less structured than urban scenes. Unstructured environments 

feature simpler elements, uneven terrain, and sparse structural features, making it difficult for DL-LPR 

models to adapt. Additionally, limited research and the scarcity of public datasets for unstructured 

environments hinder progress. For example, Knights et al. [135] released the first dataset for LPR in 

unstructured scenes, but it has not been widely adopted, limiting further development in this area. 

(3) Generalization across different types of LiDAR data: Models face challenges in 

generalizing across different types of LiDAR data. As the use of diverse LiDAR systems grows, point 

clouds generated by systems with different line counts, installation positions, and working principles 

exhibit significant variations in data density and distribution. Figure 11 highlights these differences, 

with point clouds from Velodyne, Ouster, and Livox LiDAR systems showing distinct characteristics. 

These differences make it difficult to train DL-LPR models on one type of LiDAR data and apply 

them to others. 

4.1.2 Robustness degradation 

The robustness of current DL-LPR models degrades in long-term, large-scale, and high-dynamic 

environments due to the following factors: 

(1) Occlusion caused by dynamic targets: Occlusion becomes more problematic in dynamic 

environments where the presence of moving objects obstructs the LiDAR sensor’s field of view. 

Occlusion blocks some laser beams, resulting in incomplete observations and data distribution, which 

can degrade model performance. The random and unpredictable nature of dynamic targets exacerbates 

this issue, increasing the demands on the model’s robustness. 

(2) Environmental contamination of point clouds: Adverse environmental conditions—such as 

rain, snow, fog, and dust—can contaminate point clouds, impairing model robustness. These conditions 

scatter or absorb LiDAR laser beams, reducing the energy and accuracy of distance measurements. Dust 

introduces random noise, further degrading the quality of the point cloud data. 

(3) Limitations of single-sensor systems: LiDAR sensors provide detailed geometric information 

but lack the ability to capture additional scene details like color or the motion of dynamic objects. 

Relying solely on LiDAR data can lead to incomplete representations of the environment, limiting model 

robustness. Incorporating additional sensors (e.g., cameras or radar) can provide complementary 

information, such as color and object dynamics, improving robustness in complex, changing environments. 

4.1.3 Lack of real-time performance 

In long-term, large-scale, and dynamic DL-LPR tasks, real-time performance is significantly affected by 

the following factors: 

(1) Model complexity and computational power: There is a trade-off between model complexity 

and available computational resources. More complex neural network architectures can capture more 

intricate features, improving the model’s ability to handle long-term, large-scale, and dynamic 

environments. However, mobile robots typically have limited computational power, which makes 
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deploying complex models challenging. Even if a model is deployed, higher complexity increases the 

number of parameters, resulting in slower inference and making it difficult to meet real-time 

performance requirements. 

(2) Feature map scale and search space: As the operational scenario expands and the task 

duration increases, the feature map scale grows, requiring more storage resources and increasing the 

search space. This makes place recognition and matching more time-consuming. Existing DL-LPR 

methods struggle to handle the larger feature maps and expanded search spaces required in long-term, 

large-scale, and dynamic environments, limiting their real-time performance. 

4.2 Outlook for research trends 

In the context of long-term, large-scale, and highly dynamic tasks, this paper outlines the following 

research trends and future directions for DL-LPR based on the challenges identified in existing models. 

4.2.1 Generalization capacity enhancement 

(1) DL-LPR technology for cross-scene: To address the challenge of limited generalization 

across different types of structured scenes and between structured and unstructured environments, 

research in cross-scene place recognition aims to bridge these gaps. Efforts in this domain aim to 

enhance the generalization capability of DL-LPR models. For instance, Yu et al. [138] proposed a 

method that leverages multi-modal information fusion, which improves the model’s ability to express 

place features by exploiting the full range of available data. Additionally, Knights et al. [139] explored 

incremental learning techniques to enhance the model’s adaptability and generalization, particularly for 

dynamic and previously unseen scenes. 

(2) DL-LPR technology for unstructured scenes: While most DL-LPR research has focused on 

structured environments, the growing importance of unstructured environments, such as deserts, 

swamps, and extraterrestrial terrains, requires dedicated research. This is particularly relevant with the 

rise of space exploration and the need for autonomous systems to operate in harsh, remote environments. 

Advances in this area will improve DL-LPR performance in unstructured environments and contribute 

to generalization across both structured and unstructured environments. A pioneering effort in this area 

was made by Knights et al. [135], who contributed foundational work on DL-LPR for unstructured 

environments, addressing challenges at the data level. 

(3) DL-LPR technology for different types of LiDAR data: In place recognition tasks, LiDAR 

data used to build feature databases is typically fixed for a given environment. However, during feature 

retrieval, query frames may be captured using different types of LiDAR systems. Various LiDAR 

systems — differing in beam counts, fields of view, and working principles — produce distinct 

distributions of observation data, even when capturing the same places. If these data distribution 

differences can be modeled, it may be possible to adapt or transform query data to match the style of the 

feature database, enhancing the model’s generalization across diverse LiDAR systems. Promising 

approaches include domain adaptation and Generative Adversarial Networks (GANs). For example, 

Qiao et al. [140] used domain adaptation to address the LPR problem by training on simulated data and 

testing with real-world data, while Yin et al. [141–142] employed GANs for style transfer between 

millimeter-wave radar and LiDAR data, providing valuable insights into cross-sensor data adaptation. 
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4.2.2 Robustness improvement 

(1) Temporal information fusion for DL-LPR: To mitigate occlusion caused by sensor 

placement and dynamic targets, temporal information fusion strategies can enhance model robustness. 

Temporal information, consisting of observations from various perspectives over time, can reduce the 

effects of occlusion on data distribution and address the sparsity of point cloud features in individual frames. 

Studies [70–72] have demonstrated the effectiveness of such fusion strategies in improving robustness. 

(2) Multi-modal information fusion for DL-LPR: To address challenges such as environmental 

contamination and incomplete sensor data, multi-modal fusion strategies can enhance model robustness. 

Multi-modal fusion can take two forms: (1) combining different modalities from a single sensor, such as 

depth, intensity, normal vectors, and semantics associated with 3D point clouds [33–34,68,75,85,143], 

and (2) integrating data from heterogeneous sensors, such as combining LiDAR, camera, and 

millimeter-wave radar data [138,144–146]. However, issues like cross-modal place recognition and the 

relationships between modalities remain key areas for further exploration. 

4.2.3 Real-time performance improvement 

(1) Lightweight design of DL-LPR models: To address the trade-off between model complexity 

and available computational resources, lightweight network architectures can be developed to enhance 

real-time performance. Several studies, such as those by [59,87], have made progress in this area. 

However, more research is needed to design lightweight architectures that maintain place recognition 

accuracy for long-term, large-scale, and dynamic tasks. 

(2) Application of model compression techniques in DL-LPR research: To balance model 

performance with real-time capabilities, model compression techniques can complement lightweight 

network architectures, allowing large models that offer superior place recognition performance to be 

deployed within the computational constraints of mobile robots. Although model compression has rarely 

been explored in DL-LPR, its successful application in fields like natural language processing [147] and 

object detection [148] suggests it could be a promising direction for DL-LPR research. 

(3) Compressed representation of place and Map: To address the growing size of feature maps 

as task scenarios and durations expand, compressed representations of places and feature maps can 

reduce storage demands and improve real-time performance. Wiesmann et al. [149] have made initial 

strides in this area by designing network models for compressed feature representation of point clouds, 

demonstrating that place feature maps can be constructed with reduced memory requirements while still 

meeting performance and real-time constraints. This research direction shows significant potential for 

further development. 

5 Conclusion 

This paper presents a comprehensive review of the current state of research in DL-LPR technology, 

focusing on fundamental concepts, method classifications, key components, evaluation metrics, 

challenges, and emerging research trends. A “coarse-to-fine” classification framework is adopted, 

categorizing existing methods from both the perspectives of input data structure and model network 

architecture. The review not only covers techniques for generating various types of structural data but 
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also provides an in-depth analysis of the network architectures of corresponding DL-LPR models, 

offering valuable insights for future research. 

Looking ahead, as DL-LPR technology becomes more widely adopted, there will be growing 

demands for improvements in generalization, robustness, and real-time performance. The continued 

evolution of deep learning and related technologies will provide new tools for model design. Moreover, 

the exploration of diverse data structures will offer multi-dimensional insights into scene characteristics. 

Thus, the integrated optimization of model architectures and input data structures is expected to be a key 

focus in the future development of DL-LPR technology. 
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