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Highlights:
* Enhance separability between fraudulent/benign nodes via denoising feature transformation.

* Introduce Global Confidence Degree to quantify node typicality against global prototypes

* Achieve the simultaneous aggregation of both typical and atypical neighbor information.

Abstract: Graph Neural Networks (GNNSs) are widely used in financial fraud detection due to their
excellent ability on handling graph-structured financial data and modeling multilayer connections by
aggregating information of neighbors. However, these GNN-based methods focus on extracting neighbor-
level information but neglect a global perspective. This paper presents the concept and calculation formula
of Global Confidence Degree (GCD) and thus designs GCD-based GNN (GCD-GNN) that can address
the challenges of camouflage in fraudulent activities and thus can capture more global information. To
obtain a precise GCD for each node, we use a multilayer perceptron to transform features and then the
new features and the corresponding prototype are used to eliminate unnecessary information. The GCD of
a node evaluates the typicality of the node and thus we can leverage GCD to generate attention values for
message aggregation. This process is carried out through both the original GCD and its inverse, allowing
us to capture both the typical neighbors with high GCD and the atypical ones with low GCD. Extensive
experiments on two public datasets demonstrate that GCD-GNN outperforms state-of-the-art baselines,
highlighting the effectiveness of GCD. We also design a lightweight GCD-GNN (GCD-GNNj;4,) that
also outperforms the baselines but is slightly weaker than GCD-GNN on fraud detection performance.

However, GCD-GNN;;,; obviously outperforms GCD-GNN on convergence and inference speed.
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1. Introduction

Financial fraud is widespread and damaging, affecting both organizations and individuals. Economic
scholars estimate that approximately 14.5% of large U.S. public companies engage in financial fraud,
leading to an estimated 3% loss in enterprise value [1]. Large-scale corporations, including Enron in
2001, Wirecard in 2019, and Evergrande in 2021, have faced significant consequences due to these
scandals. On a personal level, the increasing transaction frequency associated with various payment
methods complicates oversight [2]. Therefore, detecting financial fraud is crucial to preventing substantial losses.

GNNs are widely used for mining structural data in financial fraud detection. Traditional GNNs
often underperform due to the inherent characteristics of financial fraud activities, which include complex
relationships and camouflage activities. (1) Complex relationships [3]: It is challenging to directly identify the
relationships between entities based solely on their connections. (2) Camouflage activities [4]: Fraudsters
employ strategies to obscure their fraudulent activities, thereby complicating detection. To address these
challenges, some advanced GNN models employ attention mechanisms to assess the significance of edges
during the message-passing process [5,6]. Other models focus on enhancing homophilous connections
while reducing heterophilous ones [4,7]. In addition, some models use the label information to handle
nodes in different categories separately [8,9]. All of these studies analyze financial fraud detection
at the level of individual nodes and their neighbors. However, these methods overlook that neighbor
messages can be harmful due to not only heterophily but also deceptive features, such as a fraudulent
node camouflaged with normal features. This issue can be addressed on a global scale by evaluating
the typicality of each node and eliminating messages based on their typicality, which aids in accurate
classification, as demonstrated in unsupervised anomaly detection [10,11].

To fill the above gap, our paper aims to address financial fraud detection from global scale. Inspired
by [12,13], we use the prototype to represent the global feature of a graph as global information. In
our task, we seperately define two prototypes that are generated from all nodes in the same category.
Following this, the article can address the following challenges: (1) How to generate an appropriate
prototype to represent all nodes in a graph? The prototype should encapsulate the maximum amount
of information from nodes within the same category, with each node contributing appropriately to its
corresponding prototype. Moreover, unnecessary information should be eliminated to avoid overfitting.
(2) How to extract Global Confidence Degree (GCD) for each node in a graph? We define the similarity
between the prototype and each node as GCD to represent the typicality of a node. For labeled nodes, we
can directly compare them with the prototype in the same category. For unlabeled nodes, we experiment
with several methods to generate GCD and identify the approach that offers high performance and low
time complexity. (3) How to utilize GCD in message generation? It is natural to maximize the extraction
of the most typical information. However, atypical nodes (e.g., a node with features significantly different
from its prototype) also provide valuable information.

To tackle the above issues, we propose a Global Confidence Degree Based Graph Neural Network
(GCD-GNN). Firstly, we project the original features into a new space for extracting prototypes from these
features which are then combined with the original features to be used for classification. Secondly, we

propose a comparasion module to generate the GCD of each node. Thirdly, we utilize GCD to calculate



Artif. Intell. Auton. Syst. Article

weight values for aggregation. In order to utilize both typical and atypical information, We aggregate
messages from the typical and atypical perspectives separately as illustrated in Figurel. Inspired by [14 9],
we employ a transformation matrix generated from the node’s intrinsic features, as a component for message

aggregation, ensuring that the node’s own information directly influences the aggregation process.

. Target node ‘ Typical node Atypical node

Figure 1. Aggregation pattern. Aggregate from typical and atypical perspectives.
Solid lines represent the aggregation of the typical perspective, while dashed lines
represent the aggregation of the atypical perspective. The thickness of the line is
directly proportional to the weight value of a node.

Our main contributions are summarized as follows:

* We transform features to generate better prototypes, Those new features can also eliminate the
unnecessary information and increase the separation between fraudulent nodes and benign ones.
Results are visualized in Figure 2. Therefore, the GNN can more effectively identify fraudulent
nodes within the graph.

* We utilize the GCD of each node to extract information on a global scale, which offers a novel
perspective for observing fraud patterns, ensures model performance and significantly enhances
convergence speed.

* We aggregate both typical and atypical information as shown in Figure 1. This approach enriches
the message source and removes disruptive information, directly enhancing model performance.

In addition, extensive experiments are conducted on two open datasets. The outcome shows that our
model outperforms the state-of-the-art model.

To accommodate different requirements, we provide two versions of our methods. The lightweight

version delivers solid performance with fast processing, while the full version provides superior perfor-

mance among baseline models with relatively fast speed.
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(a) PCA original feature (b) PCA mixed feature

(c¢) T-SNE original feature (d) T-SNE mixed feature

Figure 2. Feature embeddings on T-Finance visualization using two different dimen-
sionality reduction techniques. Red color represents fraudulent nodes, while blue
represents benign nodes.

2. Related Work

2.1. Financial Fraud Detection

Several machine learning techniques have been proposed to address the problem of financial fraud
detection. For example, reference [15] compare neural network-based models and decision tree models,
finding that neural networks outperform decision trees. Additionally, a signature-based method for
detecting potential fraud in e-commerce applications was proposed by reference [16]. This approach
provides an alternative method for detecting fraudulent activities by identifying deviations in user behavior,
thereby enabling real-time detection of potential fraudulent activities. Moreover, A deep learning-based
model that integrates numerical financial data with textual information from management discussions [17]
has been developed to enhance the detection of financial statement fraud among Chinese listed companies.
This model demonstrates significant improvements over traditional methods. Futhermore, reference [18]
presents a novel semi-supervised Group-based Fraud Detection Network (GFDN) that leverages structural,
attribute, and community information from attributed bipartite graphs to effectively detect group-based

financial fraud on e-commerce platforms.
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2.2. Graph Anomaly Detection

Fraudulent activities have become increasingly frequent, leading to the development of various detection
methods. Rule-based and outlier detection techniques, as summarized in [19,20], highlight models based
on machine learning approaches, including support vector machines (SVM) and decision trees.

Recently, graph neural networks(GNIN) have been utilized in fraud detection. For instance, Care-GNN [4] and
Rio-GNN [21] exploit reinforcement learning to detect camouflage activities within networks. PCGNN [7] connects
homophilic nodes and filters out heterophilic nodes to enhance the message passing process. Additionally, [22.9]
utilize label information, dividing nodes into separate groups based on their labels and separately processing messages
generated from different groups.

The prototype has been employed in previous studies [12,13] for feature optimization, enhancing the
network’s ability to distinguish between fraudulent and benign nodes. However, these methods incorporate
the prototype only within the training loss, neglecting the critical confidence information that indicates
whether a node in the graph is typical or atypical. This oversight restricts the potential benefits of using

the prototype for more nuanced and effective differentiation.

3. Methodology

Previous models often encounter the issue of message elimination in resource-intensive methods like
reinforcement learning or graph transformers. In contrast, some newest models avoid message elimination
by dividing neighbors into distinct groups and aggregating their information separately. These operations
also increase model complexity and extend training and inference time. However, by using GCD, our
model achieves better performance, enabling faster training and inference simultaneously.

In this section, we outline the GCD-GNN framework. First, we define the role of GCD within the
fraud detection context in Section 3.1. Then, an overview of the entire model is provided in Section 3.2.

Finally, we detail the key components in Sections 3.3.— 3.6.

3.1. Prototype and Global Confidence Degree (GCD)

Definition 1 (Multi-relation Graph). We define a multi-relation graph as 4 = (V, 2 ,{& R, %).
V is the set of nodes {vi,...,v,}. Each node v; has a d-dimensional feature vector X; € RY and
2 = {X1,...,X,} is the features. €= (vi,vj) € & is an edge between v; and v; with a relation
r€{1,...,R}. Note that an edge can be associated with multiple relations and there are R different types
of relations. % = {yy,...,Yn} is the set of labels for each node in ¥ .

In our scenario, % € {fr,be,un}, where fr means fraud labeled nodes, be means benign labeled
nodes and un means unlabeled nodes.
Definition 2 (Prototype). We define Prototype as i1 € RY. ®: R? — R? refers to the transformation

applied to features. £: R4 — R? aggregates features into a single vector.

usr =& (concat(®(x;))) yi= fr,
Hpe = & (concar(P(x;))) y; = be. (1)
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Further details of o and & are provided in Section 3.3.
Definition 3 (Global Confidence Degree). we denote Global Confidence Degree (GCD) as g. gi € R
is the GCD value of the i-th node in the graph. ¢ : R x R¢ — R, means the similarity function that

measures the difference of two features.

o-(‘uyﬂxi) ifyi = fror be,
8i = max(o(Ksr,X;),0(Upe,Xi)) @
ifyi = un.

gi represents the typicality of the node i. For labeled nodes, we use the similarity between each node
and its corresponding prototype. For unlabeled nodes, we select the maximum between o (L s,,x;) and

0 (Upe,x;). Details about the similarity function can be found in Section 3.5.

3.2. Overview

GCD-GNN includes a prototype calculator, a GCD estimator, a special GNN layer and a multilayer
perceptron (MLP) aggregator. The prototype and GCD estimator contains an iterative prototype generator
and a GCD generator depends on the similarity between nodes and their corresponding prototypes. The
special GNN layer based on GraphSAGE [23], contains a message generator utilizing two kinds weight
values generated by original GCD and its reverse. An aggregator receives messages derived from two

kinds of weight values. The detailed structure of our method is shown in Figure 3.
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Figure 3. An illustration of the proposed framework.

3.3. Extracting Prototype Feature

Inspired by reference [12], to extract the prototype feature, we exploit the iterative extraction of the

prototype. Firstly, we use an MLP and Graph Normalization [24] to process the initial features, projecting
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those features into a space that is fitting for measuring similarity.
Xexp = GraphNorm(®(Z)), 3)

where @ indicates an MLP. In addition, prototypes are generated by calculating the mean value of node
features for the corresponding category. After this initial state, prototypes are iteratively updated based on
node similarity, as shown in Equationl. Here, ® represents an MLP. For the initial state, & employs the
Mean function, which calculates the average value of a set of features. For subsequent updates, we adopt

the strategy proposed by reference [12], with the following specifics:

s&e) = cos(x‘(,e),,u(e_l)),

(e)
W exp(sy’/7)

CYN exp(sl)

()
.u(g) = Z Wy Xy ) “4)
v=1

where 7 is the temperature parameter that controls the smoothness of the weights. First, we compute the
cosine similarity between each node v and the previous prototype /.L(e_l), as shown in the first part of
Equation 4. The softmax output of this similarity serves as the weight wse) for each node. Finally, the

updated prototype (¢ is calculated as a weighted sum of the node features.

3.4. Utilizing the Projected Node Feature

We propose a weight mix method to leverage the projected features while preserving the essential
characteristics of the original features that might be lost during projection. The details of this method are

as follows:

A = Sigmoid(P(x)),
Xmixed:}t'xexp'f‘(l_l)'xa (5)

where ® indicates an MLP which generates a number that is processed by a Sigmoid function to range
from O to 1 and this result determine the weight A. Subsequently, we combine the two features by adding
them according to the weight A. We use PCA and T-SNE to visualize the effect of the mixed feature. The

details are in Figure 2.

3.5. Global Confidence Degree Calculation

To calculate the GCD, we need to calculate similarity by comparing each node feature with the corre-

sponding prototype. We calculate the similarity value using the cosine function as follows:
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O (He,Xi) = cOS(He, X;). (6)
The strategy for processing labeled and unlabeled data to calculate GCD is mentioned in Equation 2.

3.6. Aggregation from Typical and Atypical Perspectives

To utilize GCD, two perspectives, termed typical and atypical, are employed for message generation. In
the typical perspective, GCD is unchanged from the original one defined in Def. 3. The atypical GCD is
the inversion of the typical GCD, i.e. represented as the negative of the original GCD.

g7’ =g,
"’ =g (7)

When a node needs to aggregate messages, the GCD of its neighbors is used to generate the
corresponding message weights. In order to make the weights generated by the GCD more effective,

according to reference [25], we use a GCD attention mechanism similar to graph attention network.

wij = LeckyRelu(g;),
exp(wi;)
Yiesiexp(wix)’

oj = ®)
where i is a target node and j is one of its neighbors. .4; means the neighbor set of node i. @;; means the
final weight used in rnessage aggregation. When we use g? P in the Equation 8, we denote the weight as
’y P Similarly, g/ corresponds to Ocl-aj’y P
To utilize local information, according to reference [9], a self-feature matrix is calculated by
multiplying the node feature by the trained parameter. The message passing period is affected by
the node feature.

whr — gy (x;)

1 l

WP = WP (xy), ©)

1 1

where ‘I’Eyp (x;) and WP (x;): RY — R*4" are two learnable weight generators. Each node receives an

individual transformation weight matrix.

The message generation process, which utilizes both typical and atypical perspectives, is as follows:

W)’P Z OttprJ —I—mep Z atyp ])_ (10)
JEN JEN



Artif. Intell. Auton. Syst. Article

3.7. Lightweight Model

The lightweight version of our method consists of prototype extracting, feature optimization and GCD
attention machenism, mentioned in Section 3.3.-3.5., Building on this foundation, the full version adds
self-feature matrix and aggregation from typical an atypical perspective, mentioned in 3.6. The lightweight
model has fast training and inference speed and could achieve solid performance. The details of which
are in Sections 4.2., 4.3.

4. Experiment

4.1. Experimental Setup

4.1.1. Datasets

* T-Finance dataset [26] aims to identify anomalous accounts in transaction networks. The nodes
represent unique anonymized accounts, each characterized by 10-dimensional features related to
registration days, logging activities, and interaction frequency. The edges in the graph denote
transaction records between accounts. Human experts annotate nodes as anomalies if they fall into
categories such as fraud, money laundering, or online gambling.

* FDCompCN dataset [27] detect financial statement fraud in Chinese companies. This dataset
constructs a multi-relation graph based on supplier, customer, shareholder, and financial information
from the China Stock Market and Accounting Research (CSMAR) database. It includes data from
5,317 publicly listed companies on the Shanghai, Shenzhen, and Beijing Stock Exchanges between
2020 and 2023. FDCompCN features three relations: C-I-C (investment relationships), C-P-C
(companies and their disclosed customers), and C-S-C (companies and their disclosed suppliers).

Detailed statistics for the two datasets are presented in Appendix.

4.1.2. Comparison Methods

We compare our method with two types of models. (1) general models, including GCN [28], GAT [25],
and GraphSAGE [23]; and (2) those specifically optimized for fraud detection using GNNs, including
Care-GNN [4], PC-GNN [7], BWGNN [26], Split-GNN [27], GHRN [29], and PMP [9]. For detailed
descriptions of these baselines, please refer to Appendix.

According to reference [26], we adopt data splitting ratios of 40%:20%:40% for the training,
validation, and test sets in the supervised scenario. To ensure consistency in our evaluations, each
model underwent 5 trials with different random seeds. We present the average performance and standard
deviation for each model as benchmarks for comparison. For clarity in the paper, all average values in the

tables have been scaled by a factor of 100, and standard deviations by a factor of 10.

4.2. Performance Comparasion

The details of our model are introduced in Section 3. Two kinds of GCD-GNN are provided. The
lightweight model, GCD-GNNj;,;, contains feature optimization and GCD attention mechanisms. The
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full model, GCD-GNN, which includes all components, additionally integrates self-feature matrix and

aggregation from typical and atypical perspectives on the basis of the lightweight model.

Table 1. Experiment results on T-Finance and FDCompCN.

T-Finance FDCompCN
Method AUC  Fl-Macro G-Mean AUC  Fl-Macro G-Mean
GCN 92.76.40.13 65.6311.15 84.2810.27 59.601027 45.841049 56.67 1024
GAT 93.04928 77. 704050 83.5241.00 59.0840.19 45.97 10947 52.661¢30
GraphSAGE 84.02;&).33 70.56i0,90 79.6710.53 63.31i0.09 45‘9710.26 52.66:50.30
Care-GNN 87.22i0_51 74-421L0.72 60.71i1.31 57.36:|:(),()5 47.79;&)_15 50.96:&0.39
PC-GNN 93.49_ 907 81.5710938 80.971073 59.76.1058 23.8310.92 54.69. 53
BWGNN 93.6810.15 84.151031 78.791051 61.59.1062 44.8811.18 54.69.9 53
Split-GNN 95.51410.07 82.2910.05 84471025 62.851039 45.40.4057 55.5610.70
GHRN 95-78i0.08 89.01i0,03 84.86i0,11 62.09i().57 47.45i0,g5 54.60i0,4g
PMP 97.0710.01 91.9610.04 88.5310.00 54.34.10.06 48.3810.14 12.0211 05
GCD-GNNygp (Ours) 97.0610.01 92.1340.01 88.45+0.07 71.0140.12 58.1210.15 62.5110.31
GCD-GNN (Ours) 97.2610_01 92-37i0.05 88.6210.11 71-72:|:0.18 59.68i0,31 57.991()_31

Table 2. Ablation results on T-Finance and FDCompCN.

T-Finance FDCompCN
Method AUC F1-Macro  G-Mean AUC F1-Macro  G-Mean
GraphSAGE 84.02:&0.33 70.56i0.90 79.67:|:0.53 63.31i0'09 45-97:|:0.26 52.66:50.30
M1 97.06i0.01 92.1340.01 88.45i0.07 71.0140.12 58.1210,15 62.51i0.31
M2 97141001 92.07+003 88.1940.10 70.581028 58.864102¢ 58.481044
M3 97.264001 92371005 88.621 011 71.72.009 59.68.0->8 57.9941027

The results are reported in Table 1, which demonstrate that our light version model performs
better than baseline models on most metrics in the public datasets. Furthermore, our complete model
comprehensively surpasses the lightweight model and outperforms the baseline models across all metrics.

We also compared the convergence speed of all models on the T-Finance dataset. The results are
presented in Figure 4, with detailed values provided in the Appendix. The results indicate that our
lightweight model achieves a high AUC level in a short period of time. Furthermore, the full model
achieves the highest score within a medium timeframe. The outstanding performance of our model
arises from the fact that generic GNNs fail to consider the importance of each sample and aggregate
messages uniformly. In contrast, our model leverages the GCD to evaluate whether the information from
neighboring nodes is typical or not, which significantly improves the performance and boosts the training

speed, thereby reducing computational resource consumption.

10
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4 Models
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Figure 4. Convergence time (log) and AUC of models on T-Finance.

4.3. Ablation Study

We conduct an ablation study to verify the impact of each component, using GraphSAGE as the benchmark
model. Three components evaluated are as follows:
* M1 indicates prototype extracting, feature optimization and GCD attention machenism, mentioned
in Sections 3.3.-3.5.
* M2 indicates the self-feature matrix, mentioned in Equation 9.
* M3 indicates aggregation from typical and atypical perspectives, mentioned in Section 3.6.

The results are provided in Table 2, indicating that GraphSAGE demonstrates poor performance
across all metrics, highlighting its limitations in identifying financial fraud patterns. Conversely, our model
exhibits significant improvements in all metrics after incorporating feature transformation and GCD attention
mechanisms, which are central to our approach. This underscores the pivotal role of GCD in financial fraud
detection. The inclusion of M2 and M3 further enhances the performance of our model, elevating it to a

higher level.

4.4. Impact of GCD on Model Message Aggregation

To explore the impact of GCD on model performance and analyze the relationships between nodes and

their neighbors from both typical and atypical perspectives. For typical perspective, we examine the

. . . . e 0 |1X =X .
typical GCD attentive Euclidean distances dl{y P — L) E'g ) l,;p ”, where ocf]yp is calculated as the method

je; %ij
in Section 3.6. For comparision, we also calculate the average Euclidean distances. We randomly choose

20 nodes with neighbors on T-Finance and FDCompCN datasets. The rate of change represents the ratio
of the typical GCD-weighted distance to the original distance. The results are reported in Figure 5.

The results show that the rate of change is inversely proportional to the node’s GCD. This indicates
that higher GCD node tend to aggregate information from closer nodes, while lower GCD tend to
aggregate information from more distant nodes. This strategy suggests that nodes with high GCD, which
are more typical or representative, tend to aggregate less diverse information, as their characteristics
already strongly indicate their belonging to a certain category. Conversely, nodes with lower GCD lack

direct distinguishing features and thus tend to rely on diverse information from distant nodes. This strategy

11
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1.51 1.51

1.0t~
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Figure 5. Distances analyze on T-Finance (left) and FDCompCN (right).

also ensures that the aggregated information predominantly comes from nodes with higher GCD, making

the aggregated information more reliable.

For atypical perspective, the presence of g7 allows for the capture of outlier information. We

typ
. . . . t Ljes; 0 1% —xil| 1yp -
calculate atypical GCD attentive Euclidean distances d; " = == 5 Ly Where 0" is calculated
jet; %

as the method in Section 3.6. We find that, df P tends to be larger compared to dfy P indicating that extra
diverse information can be aggregated from the atypical perspective to aid classification. Detailed results
are provided in Appendix.

We analyze the F1-Macro value in the different range of GCD on T-Finance and FDCompCN datasets.
The result are reported in Figure 6 and more metrics analysis is in Appendix. We compare our model with
the most competitive model PMP [9]. As shown in Figure 6. We find that GCD-GNN outperforms in
most range of GCD, from low to high concretely from 0.1 to 0.8, which demonstrates that: (1) nodes with
low GCD absorb more information that differs from their own features, (2) nodes with high GCD absorb

more similar features, and (3) incorporating atypical information positively impacts model performance.

1.0 ‘ /3‘\‘ N . ,20004_, 1.0
) TN ey S o
(@] W AN ! O 0.81
v X b \ O v
w0 0.5 ~ 11000 ;W
— X \ T |
L > v o oo
/ ¥ =2
X
0 0v\'%\'m\'«,\'o\'«,\'ﬁ,\v";\'v\'@\'é/\\v%\vq\'x\' 0 0'40\' SDD DD DD D 0
S SN S O O S S, S 2 o NS A O SO O e
BTSRRI VOSSN e
GCD Range GCD Range
—— F1 GCD-GNN F1 PMP -~ Node Count

Figure 6. F1-Macro score on GCD-GNN and PMP across different ranges of GCD
on T-Finance (left) and FDCompCN (right).

12



Artif. Intell. Auton. Syst. Article

4.5. Sensitive Analyze

We explore the model’s sensitivity to the important parameters GCD drop rate and hidden dimenssion. All
results are presented in Figure 7, where GCDR means GCD drop rate and HD means hidden dimension.

Detailed values in the figure are provided in the Appendix.

1.00 1.00
(0]
=0.95 0.95
©

>
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o
g

Metric value
o
[e)]

0.5
0 0.1 0.3 0.5 64 128 256 512 1024
FDCompCN GCDR FDCompCN HD
—— AUC F1 —=— G-Mean

Figure 7. Hyperparameters sensitive results.

* The GCD Drop Rate. During the training of our model, we observed potential overfitting when
generating weights through GCD attention mechanism. To address this, in addition to the dropout
layer at the end of the network, a GCD dropout layer was incorporated into the model. As a
result, we find that the optimal GCD drop rate with the highest AUC is 0 for T-Finance and 0.1
for FDCompCN, suggesting that T-Finance avoids overfitting during the generation of weights,
whereas FDCompCN may suffer from slight overfitting.

* The Hidden Dimenssion. The hidden dimension in the model is also crucial to performance; A low
hidden dimension leads to inadequate explanation of data features, while a high hidden dimension
can result in overfitting. We find that the model performs best with a feature dimension of 48 on
T-Finance, while FDCompCN achieves optimal performance with a dimension of 512, which is

proportional to the feature dimension of the respective datasets.

5. Conclusion

In this work, we introduce the concept of GCD and define its role in the process of information aggregation.
We analyze the reasoning behind the effectiveness of GCD in enhancing the detection of fraudulent
activities and propose a novel GNN-based model named GCD-GNN. Specifically, our model utilizes
GCD for feature optimization, message filtering and aggregation from typical and atypical perspectives.
Experimental results demonstrate that GCD-GNN outperforms state-of-the-art methods in terms of AUC,
F1-Macro, G-Mean, and convergence speed. We also design a lightweight GCD-GNN (GCD-GNNj;q;)
that outperforms the baselines on almost all metrics, is slightly weaker than GCD-GNN on fraud detection,

but obviously outperforms it in convergence and inference speed.
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Appendix A: implementation details

The proposed GCD-GNN provides an implementation in PyTorch. All experiments are run on a server
with 32 cores, 120 GB memory, 1 NVIDIA RTX 4090 GPU, and Ubuntu 20.04 as the operating system.
The hyper-parameter setting of GCD-GNN is listed in Table A3.

Table A3. Hyper-parameters setting on T-Finance and FDCompCN datasets.

Parameter T-Finance FDCompCN
learning rate 0.005 0.005
batch size 1024 128
dropout 0.292 0
hidden dimension 64 512
n layer 1 1
weight decay 0 0
optimizer Adam Adam
thres 0.5 0.5
GCD drop 0 0.1

We use grid search to find the best hyperparameters, with results rounded to three decimal places.
Detailed results can be found in the configuration files in the config directory within the code. The code is

publicly available on Github..

Appendix B: metrics

Following reference [26], we use AUC, F1-Macro and G-Mean as our experiments metrics. AUC measures
the area under the ROC curve and reflects the model’s ability to distinguish between positive and negative

classes across all possible classification thresholds. F1-Macro calculates the F1 score for each class

https://github.com/GCDGNN/GCD-GNN/
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independently and then takes the average. The G-Mean, or geometric mean, is the square root of the
product of sensitivity and specificity, showing the balance between true positive rate and true negative

rate. Higher values for these metrics indicate better method performance.

Appendix C: baseline models introduction

In this section, we describe the baseline models used for comparison.
The general models are as follows:

* GCN [28], A graph convolutional network utilizing the first-order approximation of localized
spectral filters on graphs.

* GAT [25], A graph attention network that employs the attention mechanism for neighbor aggregation.

* GraphSAGE [23], A graph neural network model based on sampling a fixed number of neighbor nodes.

The fraud detection models are as follows:

» Care-GNN [4], A camouflage-resistant GNN that enhances the aggregation process with three
unique modules designed to counter camouflages and incorporates reinforcement learning.

* PC-GNN [7], A GNN-based method for addressing category imbalance in graph-based fraud
detection through resampling techniques.

* BWGNN [26], A graph neural network utilizing a label-aware high-frequency indicator to prune
the heterogeneous edges, effectively reducing heterophily and boosting graph anomaly detection
performance.

* SplitGNN [27], A spectral GNN that addresses fraud detection in heterophilic graphs by splitting
the graph into subgraphs and applying band-pass filters to capture diverse frequency signals.

* GHRN [29], A graph neural network using Beta wavelet filters to improve anomaly detection by
addressing spectral energy ‘right-shift’ in large-scale datasets.

* PMP [9], A graph neural network enhancing fraud detection by distinguishing between homophilic
and heterophilic neighbors in message passing, addressing label imbalance and mixed homophily-

heterophily.

Appendix D: training AUC and time details

In Table D4 we present the detailed AUC value and convergence time consumption.
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Table D4. Traing AUC and time.

model AUC Time (s)
PCGNN 93.49 369.40
Care-GNN 87.22 287.09
BWGNN 92.33 16.04

SplitGNN 95.51 5592.14
GHRN 95.78 191.42

PMP 97.07 1661.78
GCD-GNNyjop 97.06 97.68
GCD-GNN 97.26 624.38

Appendix E: sensitive analyze details

In Tables ES—ES8, We present the detailed value of AUC, F1, G-Mean influenced by hyperparameters.

Table ES5. Performance metrics for different hidden dimension on T-Finance.

hiddim AUC F1-Macro G-Mean
48 97.1419.01 92.0710.03 88.1919.10
64 97.2640.01 92.3740.05 88.6210.11
96 97~03i0.02 92.16i0,02 88.60i0.07
128 97.1340.01 92.1440.03 88.2040.12
256 97.1119.02 92.3010.01 88.4710.06

Table E6. Performance metrics for FDCompCN with different hidden dimensions.

hiddim AUC F1-Macro G-Mean
64 70.9510.14 58.4640.61 46.8345 25
128 70.0640.12 60.1649.21 57.3310.40
256 71.5140.12 57.04 1953 51.6045 51
512 71.7240.18 59.6810.31 57.99.10.31
1024 70.5240.10 58.8940.18 59.4840.20

Table E7. Performance metrics on T-Finance with different attention drop rates.

GCD_drop AUC F1-Macro G-Mean
0 97.26i0.01 92.37i0.05 88.62i0,11

0.1 97.2210.02 92.0619.02 88.4210.08

0.3 97.1640.02 92.3240.02 88.5110.07

0.5 97.2110.02 92.1940.02 88.8510.15
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Table E8. Performance metrics for FDCompCN with different attention drop rates.

GCD_drop AUC F1-Macro G-Mean
0 71.5140.12 57.0419.53 51.604, 51

0.1 71.7210.18 59.6810.31 57.99.10.31

0.3 69.77+0.20 58.024+0.43 60.07£9.25

0.5 71.3310.04 60.5310.06 59.27 1035

Appendix F: performance in the different range of GCD on T-Finance and FDCompCN datasets

We visualize AUC and F1-MARCO in diffrent range on the test set on T-Finance and FDCompCN
datasets, as shown in Figure F8. The missing AUC values are due to the presence of only one category of

nodes within the specific GCD range.
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Figure F8. Performance in the different range of GCD on T-Finance (top) and
FDCompCN (bottom) datasets

Appendix G: typical and atypical GCD weighted distance analysis

We calculate the atypical GCD weighted distance according to Section 4.4. Typical and atypical GCD

weighted distances are calculated as follows:
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where o and o®”? are calculated as the method mentioned in Section 3.6.
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As the result shown in Figure G9, we find that, d{"” tends to be larger compared to d;’”, indicating

that extra diverse information can be aggregated from the atypical perspective to aid classification.
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Figure G9. GCD weighted distance analysis
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