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Highlights:  

⚫ AI applications, especially ML, for predicting and designing fuel cell material properties reviewed. 

⚫ Machine learning and high-throughput methods boost efficiency while cutting costs. 

⚫ General strategies and structured workflows for data-driven material discovery are proposed. 

⚫ Challenges in AI, like sparse data, are addressed, with SHAP and ensemble solutions analyzed. 

Abstract: The increasing global energy demand and the growing environmental problems have 

intensified the pursuit of clean and sustainable energy solutions. Hydrogen, with its high energy density 

and clean by-products, is a promising candidate as an energy source. Fuel cells play a key role in 

harnessing hydrogen energy, but this technology faces challenges such as the trade-off between material 

stability and ion conductivity, which limits its widespread application. To address these challenges, 

designing material properties and adjusting system parameters are highly desirable. However, the 

traditional trial-and-error approach is no longer feasible when dealing with the vast array of possibilities. 

Fortunately, the advancement of artificial intelligence (AI) offers a new approach which can dramatically 

speed up the material design and parameter control. This article reviews the application of AI in fuel 

cells, especially its ability to accelerate material development. The review begins by outlining the 

mechanisms and classifications of fuel cells, as well as the property requirements for each part of the 

fuel cells. Subsequently, the article introduces the basic concepts of AI and its application in materials 

science, including the workflows of data aggregation, feature construction, model training, and 

experimental validation. Importantly, the applications of AI in predicting fuel cell material performance 

are highly emphasized and discussed. In addition, the challenges encountered in AI applications are 

introduced, including sparse datasets, complex feature engineering, the limitations of general models, 

and the weak interpretability of AI models, along with their respective development blueprints. 

https://creativecommons.org/licenses/by/4.0/
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1. Introduction 

In the last few decades, technological and industrial development has reached a new height worldwide. 

These developments have led to high energy consumption, prompting the search for clean, secure, 

affordable, and sustainable energy resources. Consequently, scientists from various science branches 

worldwide are collaborating to find such sources. Traditionally, fossil fuel-based sources are used to 

meet energy demands. Hydrogen, as an excellent clean energy source, has an energy density of 143 

MJ/kg, which is three times higher than that of liquid hydrocarbon fuels [1]. At the same time, the 

utilization of hydrogen as a fuel generates minimal harmful emissions, with water being the sole 

byproduct [2]. The final key to the hydrogen energy system lies in using the fuel efficiently in internal 

combustion engines, conventional combustion turbines, and fuel cells. In 1839, the British physicist Sir 

William Grove demonstrated that hydrogen and oxygen could be electrochemically combined to produce 

water and electricity through devices now known as fuel cells [3]. To this day, fuel cells, with their high 

energy efficiency, extremely low emissions, and nearly silent operation, have become one of the most 

forward-looking and potential technologies for the utilization of hydrogen [4]. 

At present, the actual fuel utilization rate of Solid oxide fuel cells can reach up to 85% [5,6], much 

more than the 40% of conventional internal combustion engines [7]. However, there are still numerous 

difficulties and challenges in the research and development of fuel cell materials such as the lack of 

catalyst activity, which limits the overall performance of the fuel cell [8,9]. Meanwhile, poor durability 

is also a significant problem, for example, structural degradation and corrosion in long-term operation 

can lead to a shortened lifespan of the cell [10–12]. In addition, the high cost, especially the reliance on 

precious metal catalysts, also restricts the sustainable deployment of fuel cells [13]. Hence, a significant 

barrier persists before fuel cells can be widely adopted for large-scale commercial use. 

The future development of fuel cells heavily relies on the enhancement of material properties and 

system control. Nevertheless, the traditional research method of trial-and-error is inefficient and makes 

it challenging to identify high-performance materials from a large number of candidates. As early as 

1995, Xiang et al., invented an experimental method known as a “high-throughput composite material 

chip” to enhance the efficiency of discovering new materials [14]. Drawing inspiration from integrated 

circuits and gene chips, this technique merges and evaluates a diverse array of thin film libraries, each 

with uniform composition, structure, and material properties, on a single substrate. Utilizing any element 

as the fundamental building block, it achieves this through sophisticated design, allowing for rapid 

characterization. The method features a minimal sample size of 200 microns by 200 microns, translating 

to a library density of 10,000 sites per square inch. In terms of artificial intelligence (AI), researchers 

such as Amil Merchant and Ekin Dogus Cubuk at Google DeepMind have used graph networks for 

materials exploration (GNoME) and deep learning techniques to greatly speed up the process of 

discovering new materials [15]. The graph networks trained at scale can reach unprecedented levels of 

generalization, improving the efficiency of materials discovery by an order of magnitude. Rational use 

of artificial intelligence to accelerate material research is imperative. The role of AI in accelerating 

research in the field of lithium-ion batteries and solar cells has been demonstrated [16–19], but there is 
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not much research using AI in the fuel of fuel cells. Therefore, this article provides a brief review of AI 

research in the field of fuel cells. 

This review will be developed from the following aspects: firstly, the requirements and research 

status of the fuel cell materials; secondly, an introduction of artificial intelligence; thirdly, the application 

of artificial intelligence in the field of fuel cell material research; and finally, the summary. The review 

conducted in this paper can promote the application of AI in the research of fuel cell materials and 

accelerate the development and application of fuel cells. 

2. Requirements and research status of fuel cell materials 

2.1. The working principles and main types of fuel cells 

A fuel cell is a device that generates electricity through a chemical reaction. It consists of two electrodes: 

an anode (negative electrode) and a cathode (positive electrode), separated by an electrolyte [20]. Fuel 

cells can operate continuously by supplying fuel to the anode and oxidant (typically air) to the cathode. 

On the cathode (anode) and oxygen ions (protons), the fuel and oxidants react separately and produce 

ions, which are conducted in the electrolyte to maintain the charge balance in the system, produce water, 

and heat. At the same time, the electrons flow through an external circuit, creating an electric current [21,22]. 

Compared with conventional power generation methods, fuel cells offer several advantages, including 

high efficiencies, high power densities, compact size, low emissions, low noise, and high-quality power. 

Fuel cells are modular and maintain their efficiency even at small scales, making them well-suited for 

aerospace applications and distributed power generation, thus reducing transmission and distribution 

losses [23].  

Based on the choice of fuel, electrolyte type, operating temperature, efficiency, application, and 

cost, fuel cells are divided into 6 main categories: alkaline fuel cell (AFC), phosphate acid fuel cell 

(PAFC), solid oxide fuel cell (SOFC), molten carbonate fuel cell (MCFC), proton exchange membrane 

fuel cell (PEMFC), and direct methanol fuel cell (DMFC) [24]. The chemical reactions and components 

of these 6 types of fuel cells are shown in Table 1 and Figure 1, respectively. 

Table 1. Chemical reactions of the 6 main fuel cells. 

 Anode reaction Cathode reaction Overall reaction 

AFC H2+2OH−→2H2O+2e− 1/2O2+H2O+2e−→2OH− 2H2+O2→2H2O 

PAFC H2→2H++2e− 1/2O2+2H++2e−→H2O H2+1/2O2→H2O 

SOFC 
H2→2H++2e− 2H++2e−+1/2O2→H2O 

H2+1/2O2→H2O 
H2+O2−→H2O+2e− 1/2O2+2e−→O2− 

MCFC H2+CO3
2-→H2O+CO2+2e− CO2+1/2O2+2e−→CO3

2− H2+1/2O2→H2O 

PEMFC H2→2H++2e− 1/2O2+2H+ +2e−→H2O H2+1/2O2→H2O 

DMFC CH3OH+H2O→CO2+6H++6e- 3/2O2+6H++6e-→3H2O 
CH3OH+H2O+3/2O2→

CO2+3H2O 
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Figure 1. (a) Typical schematic of AFC working principle; (b) Typical schematic of PAFC 

working principle; (c) Typical schematic of SOFC working principle, which is divided into oxygen 

ion conduction type and proton conduction type; (d) Typical schematic of MCFC working 

principle; (e) Typical schematic of PEMFC working principle; (f) Typical schematic of DMFC 

working principle. 
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2.2. Requirements for materials of fuel cells 

The electrolyte constitutes the most critical component of a fuel cell, serving as a basis for classifying 

various fuel cell technologies (for instance, in SOFC, the electrolyte is in solid form, whereas in PEMFC, 

a polymer film is utilized as the electrolyte). The primary function of the electrolyte is to inhibit electron 

diffusion within the cell body, thereby acting as an insulator between the fuel and oxidizer. Furthermore, 

oxide ions (or protons) need to traverse the electrolyte to engage in redox reactions, so the electrolyte 

must exhibit high ionic conductivity. In addition, electrolyte must be stable, which means it should have 

thermal, chemical, and phase stability, and it should be compatible with both electrodes. 

During the fuel cell reaction process, the oxidation or combustion of the fuel occurs on the anode 

side. Therefore, the anode must possess high electrocatalytic activity for fuel oxidation. The porosity of 

the anode structure is another crucial factor, as it ensures the transport of fuel to the reaction sites. When 

the porosity of the anode reaches 30–40%, the single fuel cell powered by pure hydrogen fuel shows 

better gas diffusion and current conduction characteristics, and the corresponding output voltage is also 

relatively high [25]. Another important aspect is the chemical compatibility of the anode, which means 

it should not react with the interconnects and electrolyte, even at high temperature. 

Oxygen reduction, a process which produces oxygen ions, occurs at the cathode. Therefore, the 

cathode must exhibit high catalytic activity for oxygen reduction. Similar to the anode, the cathode must 

have sufficient porosity to facilitate oxygen flow and excellent exhibit chemical compatibility with other 

fuel cell components. The requirement of materials in a fuel cell is summarized in Table 2. 

Table 2. The requirements of materials in fuel cells. 

Type Requirement 

Electrolytes 
High ionic conductivity, chemical stability, temperature resistance, 

low electronic conductivity, low permeability 

Catalysts (Unnecessary in 

high temperature) 

High catalytic activity, high temperature resistance and corrosion 

resistance, durability 

Anode and cathode 

High electronic conductivity, certain ionic conductivity, appropriate 

porosity, matching thermal expansion coefficients, high stability, 

catalytic activity 

2.3. Typical challenges among material research of fuel cells 

Among these 6 types of fuel cells, the most famous two are PEMFC and SOFC, which will be taken as 

examples and discussed in detail. 

PEMFC is classified as low-temperature fuel cells, operating within a temperature range of 60 ℃ 

to 100 ℃ [26]. The fundamental principle of PEMFC is proton conduction, which is typically the 

primary characteristic assessed for the suitability of a membrane in fuel cell applications. As the core 

component of the proton exchange fuel cell, the proton exchange membrane should fulfill the roles of 

conducting protons, isolating anode and cathode reactants and preventing electron flow. Based on the 

latest membrane research, the use of composite materials and material doping modification remain the 

primary approach for proton exchange membrane development. The future of proton exchange 

membranes is trending toward high-temperature operation [27]. 
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The most critical challenges facing current fuel cell membranes include high-temperature 

degradation, fuel crossover, water condensation, and balancing production costs with safety issues. 

Therefore, the optimization of fuel cell membranes requires extensive research involving the selection 

and modification of materials, the utilization of various technologies and conditions, and an in-depth 

study of the membranes’ structure and morphology [28]. 

Unlike PEMFC, which can only use pure H2 as fuel, SOFC utilizes not only pure hydrogen but also 

hydrocarbon as fuel. However, SOFC is a high-temperature fuel cell that usually operates above 800 ℃. 

Although the resultant heat is often harnessed to generate additional electricity via gas turbines, raising 

cogeneration efficiency to 70% to 80% [29], more efforts are being made to reduce the working 

temperature of SOFC to the range of 450 ℃ to 650 ℃. The oxide electrolyte is the key component that 

determines the operating temperature of a SOFC. At present, yttrium oxide-stabilized zirconia (YSZ) is 

the most commonly used electrolyte in SOFC. However, YSZ has disadvantages such as a narrow 

operating temperature range and low ionic conductivity [30]. 

For the anode, nickel-based oxide is widely used due to its good catalytic ability. However, there 

are several practical issues with nickel-based anode materials, such as carbon deposition, sulfur 

poisoning, low redox cycle stability, and particle growth. Similarly, hydrocarbon fuels contain a certain 

amount of sulfur, which can form hydrogen sulfide (H2S) in the reducing atmosphere of the anode. The 

entry of H₂S into the anode leads to a decrease in fuel cell performance [31,32]. 

In SOFC, perovskite-based materials, such as strontium-doped lanthanum manganite (LSM), are 

commonly used as cathodes. LSM possesses high electrical conductivity and a thermal expansion 

coefficient comparable to that of YSZ electrolyte. As a cathode, its advantages include a stable structure, 

good compatibility with the electrolyte, and high electronic conductivity [33]. However, due to the lack 

of oxygen vacancies in the structure, LSM exhibits low ionic conductivity during operation, a 

characteristic typical of electron-conducting cathode materials [34]. At present, to improve ionic 

conductivity, it is a common practice to introduce materials with high ionic conductivity [35–37]. 

Based on the above problems faced by the materials, how to efficiently develop electrode or 

electrolyte materials with excellent performance remains a focus for current scientific researchers. 

However, the typical experimental methods are time-consuming and laborious, especially the sintering 

process, which is inseparable from the fabrication of electrolytes of SOFC. This process usually requires 

a long processing time and high energy consumption (1200–1800 ℃). Taking La0.9Sr 0.1Ga0.8Mg0.2O3-

δ(LSGM) as a famous example of electrolyte material. LSGM powder was prepared using a solid phase 

reaction method with La2O3, MgO, Ga2O3, and SrCO3. The preparation process requires repeated 

sintering and calcining (at temperatures above 1300 ℃), with a total duration of 111 hours [38]. 

Obviously, such complicated and time-consuming fabrication processes are not suitable for studying a large 

number of materials. 

Theoretical research significantly enhances the efficiency of new material development. First-principles 

calculations, particularly those based on density functional theory (DFT), have long been the preferred 

approach for investigating material properties. For example, Liu et al. used DFT to explore defective 

carbon materials for catalytic nitrogen reduction reactions (NRR), assessing the impact of various doping 

methods, locations, and amounts [39]. However, due to the complexity of material structures and the 

variability in compositions, first-principles calculations remain resource-intensive and are not widely adopted.  
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Fortunately, emerging methods that combine machine learning (ML) with high-throughput 

screening have significantly enhanced the efficiency of developing new materials, making this approach 

a hot topic and a development trend in the field of materials. Numerous studies have demonstrated that 

predicting material properties through ML, followed by high-throughput screening, and then 

experimental research on the selected materials, can greatly reduce trial and error costs and enhance the 

success rate of discovering materials with superior properties [40,41]. These cases illustrate that the 

integration of artificial intelligence technologies has not only significantly enhanced the efficiency of 

new material design and performance optimization, but has also substantially improved material 

discovery and manufacturing processes, thereby accelerating the overall research and development of 

novel materials. This trend is similarly applicable in the domain of fuel cell material design. In Figure 2, 

we present a trend chart depicting the annual increase in the number of publications related to “ML + 

Fuel cell” in the Web of Science (WOS) database. This provides a clear visualization of the growing 

research interest and practical applications in this field. 

 

Figure 2. (a) The number of papers on the combination of ML with SOFC, PEMFC, and Fuel 

Cells in WOS; (b) Keywords network; (c) Keyword novelty. 

3. Introduction to AI 

3.1. Basic characteristics of AI 

AI is a system that uses probabilistic models to learn from data and make predictions, mimicking human 

intelligence [42]. These data can come from a variety of sources and include various aspects, such as 

material conductivity recorded during tests. Given a database focused on a specific problem, an 

appropriate mathematical model of artificial intelligence is selected to solve the problem through a 

programming language. The algorithm is used to obtain the answer to the initial question and then to 

perform further analysis on the final result [43,44]. The emerging technologies of AI are triggering a 

revolution in the field of material design [45–47]. 

The application of AI in the fuel cell field is becoming increasingly important, and it can facilitate 

the development and optimization of fuel cell technology in several ways. For material discovery, AI 

technologies, especially ML and data mining, can accelerate the discovery of new materials. This can 

help researchers identify materials with potential applications and optimize the properties of materials [48]. 

For system optimization, AI is capable of processing complex datasets to provide accurate predictions. 

It has been used to predict the performance and lifetime of fuel cells, as well as for fault diagnosis, 

facilitating battery design and operation [49]. AI can also be used to develop intelligent control systems 
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for fuel cells to achieve real-time monitoring and to optimize the working status of the cell, such as the 

hydrogen-oxygen flow ratio and temperature [50]. 

AI has broad application prospects in the field of fuel cells. It can not only accelerate the 

development speed and efficiency of fuel cell materials but also improve the performance and efficiency 

of fuel cell systems. It can also help reduce costs and promote the commercialization process. With the 

continuous progress of AI technology, its future applications in the field of fuel cells are expected to be 

more in-depth. 

3.2. AI in material design solutions 

Driven by advancements in ML technologies and the increasing availability of high-quality data, AI has 

made significant progress in predicting material properties, optimizing material design, and accelerating 

the discovery of new materials [51]. In terms of data collection and analysis, large language models such 

as ChatGPT can transform traditional research paradigms by efficiently processing vast amounts of 

research resources and extracting insights from complex literature. This approach addresses various 

challenges, including the fragmentation of research literature, difficulties in identifying relevant 

information, and the time-consuming iterations involved in research design [52].  

In addition to training models using material features, SHapley Additive exPlanations (SHAP) can 

be employed to analyze the relationship between features and target performance, helping to uncover 

the factors influencing performance and deepening our understanding of it. Furthermore, feature 

heatmaps can be used to explore the interactions and correlations between different features with respect 

to target performance. In Figure 3, we present the two types of ML problems—classification and 

regression. Classification problems focus on grouping material types, while regression problems aim to 

predict the properties of unknown materials and display the synergistic or antagonistic relationships 

between features in the heatmap. 

 

Figure 3. (a) Classification of material types [53] (Copyright 2020, Journal of Applied 

Physics); (b) Prediction of material properties [54] (Copyright 2022, Chemical Physics); (c) 

Feature relationships in the heatmap [55] (Copyright 2022, Advanced Materials). 
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3.3. Steps of ML to accelerate material development 

The three key aspects of ML are: (1) data integration, normalization, and formatting; (2) feature 

engineering, including feature extraction, selection, and construction; (3) model training and evaluation. 

The steps of ML process are shown in Figure 4. 

 

Figure 4. Machine learning flowchart. 

The process of ML in accelerating material development is similar to the diagram above, but there 

are many details worth our attention. The following key stages are typically involved and shown in 

Figure 5, and Table 3 provides a list of authoritative databases developed in the field of materials. 

 

Figure 5. The process of ML in accelerating material development. 
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Table 3. Famous database. 

Database Brief Description Website 

Materials 

Project [56] 

As of 2024, it contains over 150,000 materials with a focus on 

inorganic compounds, including both crystalline and non-

crystalline structures. 

http://materialsproject.org/ 

The Open 

Quantum 

Materials 

Database 

(OQMD) 

[57,58] 

It is a database of DFT calculated thermodynamic and structural 

properties of 1,226,781 materials, created in Chris Wolverton’s 

group at Northwestern University. 

http://oqmd.org/ 

Computationa

l Materials 

Repository 

(CMR) [59] 

It contains data on approximately 4,000 two-dimensional (2D) 

materials distributed across more than 40 different crystal structures. 
https://cmr.fysik.dtu.dk/ 

AFLOW [60] 
A globally available database of 3,530,330 material compounds 

with over 734,308,640 calculated properties, and growing. 
http://www.aflowlib.org/ 

Inorganic 

Crystal 

Structure 

Database 

(ICSD)  

[61–63] 

It contains detailed information on the structure of more than 

210,000 inorganic crystals published since 1913, covering 

structural data for pure elements, minerals, metals, and 

intermetallic compounds. 

https://icsd.nist.gov/ 

Cambridge 

Structural 

Database 

(CSD) [64] 

It contains more than 1.25 million structures, all derived from 

experimental results. 

https://www.ccdc.cam.ac.uk/

solutions/software/csd/ 

Crystallograp

hy Open 

Database 

(COD)  

[65–67] 

It contains more than 520,000 entries. Open-access collection of 

crystal structures of organic, inorganic, metal-organic compounds 

and minerals, excluding biopolymers. 

https://www.crystallography.

net/cod/ 

Springer 

Materials 

It contains more than 290,000 materials and 3,000 properties, 

incorporating integrated multi-source data from all major topics in 

the fields of materials science, chemistry, physics, and engineering. 

https://materials.springer.com/ 

http://oqmd.org/
https://icsd.nist.gov/
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4. ML applications in fuel cells  

Fuel cells are complex systems with several components and a large number of parameters. For one 

component, there are numerous properties such as thermodynamic phase stability, ion conductivity, 

electrical conductivity, catalytic performance, etc. Between two components, there are issues such as 

matching problems, interface effects, phase transitions, etc. For the entire system, many factors such as 

temperature, atmosphere, and fuel flux have a significant effect on the overall efficiency. These variables 

are interrelated and complex, making the design and optimization of fuel cell very difficult.  

After the application of ML has been extended into the experimental field, it offers a highly efficient 

method to develop, characterize, and optimize devices, saving time and effort by avoiding numerous 

manual experiments [68]. Especially, ML has attracted the attention of many scholars due to its rapid 

and precise capabilities in simulating and predicting the properties of materials and devices. The 

parameters involved in applying ML for device optimization have been discussed in some articles [69–72]. 

Therefore, this paper only summarizes and discusses the use of ML to predict the properties of materials. 

In Figure 6, we illustrate some actual workflows of applying ML to material design.  

Figure 6. (a) After ML prediction and screening, the selected materials are experimentally 

prepared and undergo characterization tests, which are combined with using DFT calculations to 

verify their properties simultaneously [73] (Copyright 2022, Nature Energy); (b) Simplified 

cathode material development framework based on the experimental design paradigm (EDP). 

Selection of elements, selection of factorial design matrix, synthesis of cathode materials series, 

fabrication and testing of samples, and analysis of results [74] (Copyright 2023, Chemical 

Engineering Journal); (c) Comparative illustration of conventional and LLM-transformed research 

paradigms [52]. 

The application of ML in the field of fuel cell material performance is summarized in Table 4 and 

Table 5, and some important examples are discussed below. 
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Table 4. Summary of ML in material development for PEMFC. 

Research content 
Model 

classification 
Method 

Method selection 

basis 
Dataset 

Performance 

indicator 

Development 

SPARK to predict 

the performance and 

durability of 

PEMFC [75] 

Regression 

Extreme Gradient Boosting, 

Artificial Neural Networks 

(ANN), Light Gradient 

Boosting, Machine Gradient 

Boosting Decision Tree 

ANN is chosen for its 

strong nonlinear 

fitting capability and 

CatB for 

demonstrating the 

best performance in 

durability prediction 

The 

polarization 

curve with 

405 records 

and a 

dataset for 

OCV 

degradation 

with 1585 

records 

r > 0.965, RMSE < 

5.00x10-3 and R2 > 

0.845 

Streamlining the 

development 

process for 

platinum-based 

intermetallic 

nanoparticle 

catalysts [76] 

Regression 
Gaussian Process 

Regression (GPR) 

Its non-parametric 

nature and good 

performance on small 

datasets help avoid 

overfitting, while 

allowing updates with 

new data—critical in 

materials research 

where data is costly 

The 

formation 

energies of 

300 ordered 

and 300 

random, 

and 3800 

structures 

with 

varying 

ordering 

degrees 

Two elements, Ni 

and Cu, were 

selected to be 

incorporated into the 

Pt2CoM system 

Integrating DFT 

with ML to 

investigate the 

chemisorption 

behavior of oxygen 

atoms [77] 

Regression 
Multivariate, Linear 

Regression 

It can effectively 

predict the 

chemisorption energy 

of oxygen atoms 

\ 
0.847 < R2 <0.969, 0.085 

MAEs < 0.167 eV 

The structural 

stability of Pt-Ni alloy 

nanoclusters [78] 

Regression GPR 

The model provides 

uncertainty 

estimates, captures 

data correlations via 

its kernel function, 

and handles small 

sample datasets 

500 DFT-

calculated 

configurations 

were 

constructed, 

including 84 

compositions 

MSE < 0.13 

Exploring the 

phenomenon of gold 

segregation and its 

consequential effects 

on the electrocatalytic 

activity in the Oxygen 

Reduction Reaction 

(ORR) [79] 

Regression 
Neural Networks (NN), 

Genetic Algorithm 

The model, based 

on physical 

principles, predicts 

the structural 

stability of alloy 

nanoclusters 

A total of 

42,348 

structures 

computed by 

DFT 

RMSE < 8.7 meV 

per atom 
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Table 4. Cont. 

Research content 
Model 

classification 
Method 

Method selection 

basis 
Dataset Performance indicator 

The limit potential of 

graphene-supported 

single-atom catalysts in 

ORR、OER、HER [80] 

Regression 
Random Forest 

(RF) 

It enhances model 

accuracy and 

robustness, while 

providing feature 

importance to 

reveal the 

relationship 

between physical 

properties and 

catalyst 

performance 

104 records MSE=0.027 V 

Establishing the ideal 

synthesis parameters and 

material characteristics 

necessary for facilitating 

four-electron transfers in 

the ORR process [81] 

Regression 19 ML models 

It chooses a 

variety of ML 

models and 

selects the model 

with the best 

prediction results 

\ 
RMSE = 0.31449, R2 = 

0.67 

Structural analysis of 

metal nanoparticle 

catalysts [53] 

Classification 

and 

Regression 

Iterative Label 

Spreading, Extra 

Trees Classifier, 

Extra Trees 

Regressor 

It can analyze the 

relationship 

between multiple 

structures and 

performance, 

based on the 

average 

performance 

across many 

structures 

The 179 

structural 

features, 

including 

atomic, 

crystallographic, 

and 

topological 

descriptors, 

are reduced 

and 

standardized 

to 121 

dimensions 

Both Category 1 

(disordered) and Category 

2 (ordered) nanoparticles 

scored highly 

ORR activity of 

complex solid solution 

Electrocatalyst [82] 

Classification 

and Regression 

Three optimized 

models based on 

Sequential Least 

Squares 

These models 

predict ORR 

activity by 

considering 

binding and site 

interactions, and 

are compared with 

experimental data 

to validate their 

accuracy 

3317 DFT 

calculated 

*OH and *O 

binding 

energies 

\ 
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Table 4. Cont. 

Research content 
Model 

classification 
Method 

Method selection 

basis 
Dataset Performance indicator 

Efficient fuel cell 

electrocatalysts [83] 
Regression 

Slab-graph 

Convolutional 

Neural Network 

(SGCNN), 

CGCNN, CNN 

They can predict 

the adsorption 

energies of 

various 

adsorbates, 

including H, CO, 

O, OH, and OOH 

surface 

database of 

9267 

adsorption 

energies of 

five 

adsorbates 

SGCNN under 5-fold 

cross-validation MAE = 

0.16 eV 

Oxygen reduction 

reaction Fe-N-C 

electrocatalysts [84] 

Regression GPR, ANN, RF 

The screened 

catalyst was 33% 

more active than 

the best in the 

initial database, 

with ORR activity 

7 times higher 

than similar 

materials 

The initial 36 

samples were 

combined 

with 14 new 

samples 

synthesized 

by adaptive 

learning 

strategies 

Sample #20 from the 

adaptive learning 

framework showed the 

best ORR1 activity, 16.3 

± 0.4 mA/mg 

Development of High-

Entropy Alloy Catalysts [85] 
Regression NN 

The catalytic 

properties of high 

entropy alloys can 

be accurately 

predicted, and 

their structural 

sensitivity is 

quantified for the 

first time 

over 1,000 

data points 

MAE = 0.094eV, RMSE 

= 0.117eV 

Table 5. Summary of ML in material development for SOFC. 

Research content Model classification Method Method selection basis Dataset Performance indicator 

Stability of 
perovskite 

oxides [86] 

Classification and 
Regression 

1. Logistic 
Regression, 

Support Vector 
Machine (SVM), 
Decision Tree, 

NN, Extra Trees 
Regression 

(ETR) 

2. Linear 
Regression, 

Kernel Ridge 
Regression 

(KRR), Decision 
Tree Regressor, 

ETR, ANN 

1. Further validated 
the model by 

predicting the stability 
of compounds outside 

the training set   

2. Tested three feature 
selection methods to 
remove redundant or 

irrelevant features 

More than 1900 
DFT-calculated 
perovskite oxide 

energies 

The best F1 score 
achieve for 

classification is 0.881 
(± 0.032) and the best 

RMSE value for 
regression of Ehull is 

28.5 (± 7.5) 
meV/atom 
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Table 5. Cont. 

Research content 
Model 

classification 
Method 

Method selection 
basis 

Dataset 
Performance 

indicator 

Oxygen ionic conductivities [54] Regression 

SVM, 
Partial Least 

Squares, 
ANN, and 
Quadratic 

Approximat

ion, GPR 

Use the same 117 

samples to rebuild 
the GRP model 
following the 

fashion of 
constructing M2 

128 samples from 
References 

include tolerance 
factor, charge of 

the A/B side, 
Electronegativity 
of the A/B side, 

and A complex 
descriptor 

The final model, 

M2, has a CC, 
RMSE, and MAE 

of 99.87%, 
0.1577, and 

0.1048 

Perovskites with high 
conductivity [87] 

Classification 
and 

Regression 

XG-Boost, 
Lasso, 
Ridge, 

Elastic Net, 
7-layer 

ANN (100 
nodes), 

SVM, RF 

The model 
identifies the key 

predictors of 
conductivity and 

carrier type 

7230 perovskite 
cases (585 

compositions) 

The test set 
RMSE is 0.24, R2 

is 0.987. The 
cross-validation 

set RMSE is 0.25 
and R2 is 0.986 

Oxygen reduction reaction 
activity of perovskite oxides [73] 

Regression 

Four linear 
regression 

methods and 

four 
nonlinear 
regression 
methods  

BISA (Lewis acid) 
shows the greatest 
importance in the 

model 

95 sets of data 

The log_10 area 
specific resistance 

(ASR) MSE of the 
best model ANN is 

0.012 

Predict the proton absorption 
amount of Co/Fe based perovskite 

oxides [88] 
Regression 

RF, XG-
Boost 

The importance 
ranking of features 
in PAA prediction 

of XG-Boost model 
is given as the 

interpretation result 
of model features 

792 samples 
involve 29 

features as the 
input variables 
and one output 

PAA as the target 
variable 

PMSE=0.021±0.0
4 

MAE=0.01±0.002 
R2 =0.901±0.045 

ML models were developed to 
predict perovskite catalysis [89] 

Regression 

RF, NN, 

GPR, Linear 
Regression 

Follow the approach 
of Palmer et al. to 

develop calibrated 
uncertainty 
estimates 

749 data points 
spanning 299 

unique perovskite 
compositions 

ASR RMSE of 

0.367 ± 0.049 
Ohm-cm2 

An efficient ML navigation of 
reaction space [90] 

Classification 
and 

Regression 
SVM 

It has significant 
advantages in 

processing complex, 
non-linear and high-

dimensional data 

74 samples 

RMSE-CV of 
0.7556 layers, a 
coefficient of 

determination of 
0.895 

Combining deep learning with FIB-
SEM analysis to improve image 
quality and eliminate artifacts in 

electron microscopy [91] 

Deep learning 
DeepLabV3 

+ CNN 

The DeepLabV3+ 
algorithm is used 

for automated 
semantic 

segmentation to 

extract the 
microstructure 

parameters 

\ 

The relative errors 

range from 5.9 to 
8.5% and the 
triple phase 

boundaries are 
calculated to be 
3.2 counts/μm2 
with a relative 
error of 16.8% 

Predicted the hydrated proton 
concentration (HPC) and proton 

conductivity of 3200 oxides, 
accelerating the development of 
efficient hybrid proton-electron 

conductive oxides for air 
electrodes [55] 

Regression 

RF, SVM, 
KNN, GPR, 

Gradient 

Boosting 
Machine 
(GBM) 

The HPC predicted 
by the ML model is 
in good agreement 

with the 
experimental 

measurements, 
which verifies the 

accuracy of the 
model 

Contained 795 
oxides under 

varying 
experimental 

conditions, total 
66 combined 

features 

The RMSE of the 
best model RF is 

0.0236 
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Table 5. Cont. 

Research content 
Model 

classification 
Method 

Method selection 
basis 

Dataset 
Performance 

indicator 

Develop a selective sampling 
procedure to efficiently identify 

low-energy regions, especially for 
atomic diffusion and ion 

conduction processes [92] 

Regression GPR 

The proposed 

program can 
effectively identify 
low-energy regions 

characterizing 
proton conduction 
in the host crystal 

lattice 

From the 
Database and 

DFT calculations, 
a set of 1768 grid 
points related to 

potential energy 
values is obtained 

In GP4, the 

average number 
of sampling steps 

required for 
identifying all the 
points in the low-

PE region was 
only 394.1 

Study on auxiliary prediction of 
degradation of chrome-poisoned 

SOFC cathodes [93] 
Regression deep-DRT 

It can combine 
experimental 

parameters (e.g. 
temperature, oxygen 
partial pressure) as 

inputs to make 
predictions 

Up to 96 hours of 
data were 

collected by 
electrochemical 

impedance 
spectroscopy 

(EIS) 

The predicted 
156-hour data is 

in good 
agreement with 

the experimental 
results 

The microstructure characteristics 

of SOFC three-phase composite 
cathode materials were quantified 

by automated semantic 
segmentation [94] 

Deep learning 

DeepLabV3
+ CNN 

combine 
with an 
atrous 

convolution 
and an 
atrous 
spatial 

pyramid 
pooling 
(ASPP) 
module 

The images inferred 
by deep learning 

closely match those 
of the human 

experts in terms of 
area (or volume) 

scores and 
interconnections 

\ 

A total of 640 512 

x 512-pixel 
electron 

micrographs is 
employed 

The thermal expansion coefficient 
(TEC) of perovskite oxide was 

modeled and the microstructure of 
SOFC was optimized to improve 

the battery performance [95] 

Classification 
and 

Regression 

ANFIS and 
ANN 

ML models identify 
intrinsic 

connections 
between material 

properties, 
microstructure, 

chemical 
composition, and 

external conditions 
in SOFC cathode 

studies 

\ \ 

A generative adversarial network 
(GAN) framework is used to learn 

and generate three-dimensional 
(3D) microstructure of SOFC 

cathodes [96] 

Deep learning GAN 

The microstructure 
generated by AN 
closely resembles 

the original in terms 
of visual, statistical, 

and topological 

features, and 
matches the 

property distribution 
of the original 

SOFC material in 
electrochemical 

performance 
simulations 

3D volume image 
data obtained 

using FIB-SEM, 
as well as 
multiphase 

microstructure 
generated using 

DREAM.3D code 
package, were 
generated by 
ellipsoidal 

stacking scheme 

\ 

4.1. ML used for PEMFC 

For PEMFC, the electrocatalyst is crucial due to the fact that it fundamentally determines the rate of 

electrochemical reactions at the microscopic level. Therefore, accelerating the selection process of 

electrocatalysts is the main target that researchers aim to achieve using ML. 
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4.1.1. Pt-based electrocatalysts 

ML must be highly accurate to provide reliable guidance for subsequent work. To enhance the accuracy 

of model predictions, one approach is to incorporate multiple descriptors into the model. Rocabado and 

colleagues conducted multiple regression analyses to characterize the oxygen (O) binding energy on Pt 

surfaces and nanoparticles (NPs), which is regarded as a crucial descriptor for the rate-determining step [77]. 

The ML model they proposed uses five descriptors, derived from the structural and electronic properties 

of Pt NPs, to predict the O binding energy with high precision. Consequently, the multivariate-descriptor 

model they developed has significantly outperformed traditional single-descriptor models. 

ML algorithms are highly effective at quickly generating accurate predictions about material 

properties. This capability made them popular and promising for future developments in material 

science. Zhen and colleagues created a physical niche genetic (PNG) ML program designed to 

identify the relationship between structural configuration and stability within the Pt-Ni alloy 

nanocluster framework [78]. To construct the ML model, a dataset comprising 500 optimized samples, 

obtained through DFT calculations, was used for training. Consequently, the ML model proved to be an 

accurate surrogate, capable of making predictions with a margin of error below 0.13 eV. Notably, the 

computational time required for the ML model, known as post-training, is virtually insignificant. Taking 

advantage of this benefit, the researchers employed the ML model, which requires substantially fewer 

computational resources, to screen 2.5×105 candidate structures. Ultimately, they determined the most 

stable configuration to be the Pt43Ni42. 

Chen et al. trained a neural network potential (NNP) combined with a genetic algorithm (GA) to 

investigate a similar system of the 55-atom Au13Pt42 cluster [79]. A total of 42348 structures computed 

by DFT were used as training sets. After training, the ML model could precisely reproduce the DFT 

results with a RMSE of less than 8.7 meV per atom. Hence, searching a complex global configurational 

space for the most stable structures became practical, avoiding the immense computational expense of 

direct enumeration via DFT simulation at an astronomical level. 

Lin et al. trained a RF as a surrogate model for the first principal simulation to compute the limiting 

potentials of graphene-supported SACs with different coordination structures (M@C3, M@C4, 

M@pyridine-N4, and M@pyrrole-N4) as electrocatalysts for the oxygen reduction reaction (ORR), 

oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), respectively [80].  

4.1.2. Nonprecious electrocatalysts 

SACs represent a new research frontier due to their high active site coverage and maximum metal 

utilization. Lin et al. constructed an ML model based on the relationship between physical properties and 

adsorption strength of reaction intermediates to rapidly screen catalysts with specific properties [97]. The 

ML model successfully predicted the catalytic performance of 260 other graphene-supported SACs, and 

the prediction error was very small, comparable to the accuracy of the DFT calculations. Two OER 

catalysts, Ir@pyridine-N3C1 and Ir@pyridine-N2C2, were identified to perform better than the precious 

metal oxides RuO2 and IrO2, and one HER catalyst, Ni@pyridine-N3C1, was identified to perform better 

than the commonly used precious metal Pt. This study provides a new paradigm for predicting catalytic 

performance directly from the physical properties of catalyst candidates, significantly accelerating the 

design process of catalysts. 
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It should be noted that for nonprecious electrocatalysts, the M-N-C material system is more complex 

than that of Pt-based alloy NPs. For instance, the pore structure significantly influences the mass transfer 

process, which finally reflects the ORR performance [98]. Therefore, DFT simulations offer only a very 

partial description of nonprecious electrocatalysts, and more information needs to be obtained from 

experimental data. 

Dan et al. used a ML algorithm to construct a predictive model to determine the number of electrons 

transferred during an ORR [81]. The model utilizes experimental conditions, the results from different 

characterization techniques, and the material’s response to ORR as input variables. The authors trained 

19 different types of ML regression algorithms to predict the number of electrons transferred during 

ORR. Through training, the Stepwise Linear Regression model was identified as the most effective. 

The authors applied a reverse engineering process to determine the optimal synthesis conditions or 

material properties. The reverse prediction function is applied to predicted values and identifies the most 

important variables to guide the investigation of structure-ORR response relationships. This approach 

also helps to understand how to modify the material for an improved ORR response. 

The authors used a ML model to predict the optimal synthesis conditions required for the transfer 

of four electrons during the ORR process. The predicted parameters serve as a guide for enhancing 

material properties. This work demonstrates the potential of ML techniques in optimizing the synthesis 

conditions and designing nitrogen-doped graphene materials, as well as their application value in 

predicting ORR properties. 

4.2. ML used for SOFC 

SOFC is mainly divided into two types, proton conduction types and oxygen ion conduction types. For 

oxygen ion conductive, air-grade materials, the primary concern is the material’s oxygen ion 

conductivity and ORR activity. Zhang et al. developed a Gaussian Process Regression model based on 

atomic properties derived from electron negativity and ion radius to predict the oxygen ion conductivity 

of ABO3 perovskites [54]. They constructed descriptors using fundamental physicochemical parameters, 

which were validated by both experimental and simulation, such as ionic radius and electron negativity, 

as these parameters are closely related to oxygen ion conductivity. A dataset comprising 128 samples, 

including experimental values of oxygen ion conductivity for different perovskite oxides was 

investigated. The characteristics analyzed included the radii of the A-site and B-site ions, the difference 

in electron negativity, the charge, and other factors related to the radius of the oxygen ion. 

After hyperparameter adjustment and model training, the final test model (M2) demonstrated high 

accuracy and stability. The correlation coefficient (R2) reached 99.87%, the RMSR was 0.1577, and the 

MAE was 0.1048. Compared with four other models (SVM, partial least squares, ANN, and quadratic 

approximation), the performance of Gaussian process regression model is better. 

The authors also investigated the correlation between features and calculated the correlation 

coefficients between features to identify and select those features that significantly affect the model’s 

predictive performance. They constructed multiple models, each with different combinations of features 

removed, and assessed their performance. Additionally, they attempted to build a model by eliminating 

highly correlated features to avoid potential multicollinearity issues. But the final results indicated that 

the model incorporating all six features provided better performance. 
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The GPR model developed by the authors is a fast, robust, and low-cost tool for estimating oxygen 

ion conductivity. This model is applicable to all kinds of perovskites, including ordered, disordered, and 

non-stoichiometric varieties. It correlates readily available alloying element properties with oxygen ion 

conductivity, which aids in designing doped perovskites with desired ranges of oxygen ion transport performance. 

In terms of ORR, by introducing Ionic Lewis Acid Strength (ISA) as an effective physical descriptor 

of oxygen reduction reactivity, Shuo Zhai et al. developed an efficient ML driven method to accelerate 

the screening of high-efficiency cathode materials from a large number of perovskites compositions [73].  

The authors collected oxygen reduction reaction (ORR) activity data for different perovskite oxides 

as an initial dataset and discarded materials with very large area specific resistance (ASR) values (>5 Ω·cm2) 

to prevent potential negative impacts on model stability. The resulting dataset comprised 85 different 

perovskite materials with a total of 162 different ASR values at 700 ℃ and 650 ℃. 

By selecting nine ion descriptors including ISA values of A-position and B-position, ion 

electronegativity, ion radius, ionization energy, and tolerance factor, the dataset was fitted using different 

regression methods including linear and nonlinear models. Finally, an ANN model was obtained having 

the best performance. The study found that the accuracy of the model with A-bit and B-bit ISA values 

was much higher than that of the model without this feature. 

Then, the ANN model was used to predict the activity of unexplored materials, and those with low 

predicted values were selected for synthesis and characterization. Finally, four kinds of perovskite oxides 

were successfully synthesized and confirmed to have a superior activity index. In particular, 

Sr0.9Cs0.1Co0.9Nb0.1O3 (SCCN) exhibited an extremely low ASR. 

Through DFT calculations, the relationship between the polarization distribution of ISA at the A 

and B positions and the transfer of electron pairs was investigated. It was found that the enhanced activity 

is mainly attributed to the polarization distribution of ISA at the A and B positions, which greatly reduces 

the formation energy and migration barrier of oxygen vacancies. This provides a mechanism explanation 

for the design of oxygen reduction electrodes. 

In terms of material design, the work by Shuo Zhai et al. offers a valuable template. This involves 

selecting a specific type of material with excellent properties using ML, investigating the influence of 

particular characteristics on these properties, experimental preparation and verifying the material’s 

properties, and finally analyzing the calculation results through theoretical methods such as DFT to 

comprehend the physical mechanisms behind the material’s properties. 

For proton conduction fuel cells, proton conductivity is the primary concern for researchers. To 

address the performance bottleneck of air electrode materials in proton conductive solid oxide fuel cells 

(P-SOCs), Ning Wang et al. used ML methods to quickly and accurately predict the proton absorption 

capacity (PAA) of Co/Fe-based perovskite oxides, which is a key indicator for evaluating their 

performance as P-SOCs air electrodes [88]. They constructed a ML model based on the Extreme 

Gradient Lift (XG-Boost) algorithm to predict the PAA of 27 different elements doped with Co/Fe based 

perovskite oxides at the B site. By combining the ML model and DFT calculations, La (Co0.9Ni0.1) O3 

(LCN91) was selected as a potential air electrode material. In particular, they also prepared the designed 

LCN91 using laboratory synthesis methods and successfully applied it to P-SOCs. When used as an air 

electrode, it exhibits excellent electrochemical performance in both fuel cell and electrolytic modes. In 

particular, at 600 ℃, the current density in electrolytic mode reaches 843 mA cm⁻² and the peak power 

density in fuel cell mode is 591 mW cm⁻². 
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For fuel cell electrolytes, knowing the total conductivity and carrier type of material is very 

important for designing electrolyte materials with high conductivity. Priya et al. used ML tools to design 

and identify ABO3 type perovskite oxides with high electrical conductivity, suitable for various energy 

applications [87]. Utilizing over 7000 data points from the literature, more than 100 characteristics to 

determine the key predictors that influence perovskite conductivity and charge carrier type. 

ML models, such as XG-Boost, lasso, ridge, elastic net, a 7-layer ANN with 100 nodes, SVM, and 

RF, operate by selecting feature subsets at random and constructing decision trees from limited data. 

The predictions from these models are then averaged to generate the final prediction. A robust learning 

framework was constructed and the total electrical conductivity of perovskites was classified based on 

temperature and environmental conditions. 

It is found that the mean ionic radius, minimum electronegativity, minimum atomic mass, and 

minimum oxide formation energy of B-site ions are the key characteristics that determine the 

conductivity and charge carrier type. 

In the future, perovskite materials with high electrical conductivity can be designed according to 

these key characteristics.  

Catalysts are an integral part of SOFC, and those with high catalytic performance can greatly 

enhance the power generation efficiency of fuel cells. Jacobs et al. used ML models to conduct the 

following three types of studies [89]:  

(1) The ML model for predicting perovskite catalytic performance was developed and proved to be 

superior to the prediction of the O-p band center descriptor method. The research showed that the ML 

model based on element characteristics can provide higher average accuracy than the O-p band center 

correlation in predicting key properties. It can be used to make predictions faster than O-p band center 

correlation, because ML does not require DFT computations to develop and evaluate ML models for 

ASR prediction. 

(2) An ML model for ASR prediction was developed and evaluated. Our ASR model can achieve 

low error by combining elemental characteristics, single thermal coding of electrolyte type, and a novel 

characterization scheme for predicting the ASR activation energy barrier with a separate ML model. 

This characterization is then used as a feature in the ASR prediction model. The addition of ASR energy 

barrier makes temperature-dependent ASR prediction possible. In addition, our ASR model shows the 

ability to predict future promising materials using time cross-validation and provides calibrated 

estimates of uncertainty. 

(3) Data on approximately 19 million perovskite components were searched using the ASR ML 

model and new promising, inexpensive, abundant perovskite materials with high stability and catalytic 

activity were identified. Materials containing less studied but promising elements (such as K, Bi, Y, Ni, 

Cu) were found and are worthy of further study. 

The stability of the material is crucial for the proper operation of the fuel cell within its operating 

environment. Li et al. utilized more than 1900 datasets of perovskite oxide energies calculated by DFT 

to determine phase stability using Ehull analysis. They considered the magnitude of Ehull value as a 

direct measure of stability [86]. The researchers applied a feature generation method to generate 791 

features from element attribute data, and they discovered that the first 70 features were sufficient to train 

accurate models without significant overfitting, using three feature selection methods: stability selection, 

recursive feature elimination, and univariate feature selection based on mutual information. 
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In terms of classification models, the Extra Trees algorithm achieved a prediction accuracy of 0.93 (±0.02) 

and an F1 score of 0.88 (±0.03) in the classification task. In terms of Regression models, Kernel Ridge 

Regression achieved a minimum root-mean-square error (RMSE) of 28.5 (±7.5) meV/atom and a mean 

absolute error (MAE) of 16.7 (±2.3) meV/atom in a 20% cross-validation test. 

To further verify the accuracy of the model, they constructed five test sets to evaluate the model’s 

performance in different groups of molecular Spaces. This was done by removing specific subsets of 

perovskite materials from the complete dataset. These test sets were constructed based on the frequency 

of element occurrence in the training dataset and the type of elements (for example, alkaline earth and 

rare earth metals in position A). For each test set, the authors trained the model on the remaining dataset, 

after excluding the test set, and then applied the optimal model to the excluded data to classify the 

stability of each material and predict the Ehull value. Fifteen new perovskite compounds were manually 

generated and the stability of these new compounds was predicted using the developed model. After the 

prediction was completed, the Ehull values of these new compounds were calculated using DFT and 

compared to the model’s predicted values. By comparing the prediction results with the DFT calculated 

values, the prediction accuracy of the model in different molecular Spaces was validated. The paper 

demonstrates the potential of ML applications in materials science, particularly in predicting the 

thermodynamic stability of materials, thereby significantly reducing the time required for DFT calculations. 

5. Challenge and future of ML application in the field of fuel cells 

5.1. The problem of lack of datasets 

The performance of ML models highly depends on the quantity and quality of the training data. The lack 

of a comprehensive and high-quality database is currently the main factor limiting the widespread 

application of ML in the field of fuel cells. Some researchers have established databases for specific 

problems. For example, databases such as The Materials Project, AFLOW, and others mentioned above 

are widely used in ML training [99,100]. Min Zou et al. have established models for predicting the phase 

structure of cobalt-based superalloys based on the experimental data. These models can predict the 

precipitation of harmful phases and the volume fraction of γ’ phase, thereby enhancing the design of 

new alloys [101]. In some literature, the dataset is incomplete but the accuracy of the final ML model’s 

calculation results is very high, exceeding 90%. The reason may be that the established models are 

simple, and some are linear models, which makes them easy to fit. It is also possible that the established 

models have some limitations and prerequisites for their use, and only have high accuracy in certain 

intervals. Therefore, the establishment of the sufficiently comprehensive dataset is a crucial factor 

influencing the model’s generalization capability. 

If insufficient data can be collected, there are several methods to augment the dataset. For small 

datasets, it can be manually expanded by applying transformations such as rotation, scaling, and 

cropping to generate sufficient training data [102–104]. For instance, Su et al. propose a transfer 

learning approach combined with data augmentation strategies to improve the performance of 

classification tasks [105]. Deep learning models require large amounts of data for training, and in 

real-world scenarios, there is often insufficient data in the target domain. This paper proposes a 

method that combines transfer learning and data augmentation. This method uses data augmentation 

to expand the amount of data in the target domain and applies a transfer learning model to reduce 
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the difference between the source domain and the target domain, thereby addressing the issue of data 

scarcity. A significant number of experiments have been conducted on multiple datasets to validate 

the effectiveness of the proposed method. The results show that data augmentation and transfer 

learning can serve as effective strategies to solve the problem of data scarcity in the target domain  

and enhance the model’s generalization capability by integrating these strategies.  

5.2. The problem of constructing features 

Feature is another key factor that determines the performance of ML models. Nevertheless, for different 

targets or properties, the related features are different and often unknown, which makes it difficult to 

find or construct suitable features for certain properties. Blindly increasing the number of features may 

have the opposite effect, leading to overfitting of the model, and potentially reducing the model’s 

accuracy [106]. Therefore, identifying the most useful features among a large number of candidates 

remains a challenge to be addressed. Some well-known features are highly representative, such as the 

tolerance factor “t” proposed by Goldschmidt a century ago, which still plays a significant role in the 

field of materials development today [107]. Some features are particularly useful for certain properties, 

such as the Lewis acid strength, which is relevant to the oxygen reduction reaction activity of perovskite 

oxides [73].  

To identify appropriate features, constructing complex features is a common approach. Bare et al. 

developed a new tolerance factor “τ” that can reliably predict whether a composition will form a stable 

perovskite structure. This reduces the number of candidate materials that require expensive DFT 

calculations, thereby guiding high-throughput researchers in exploring a wide multi-component space [108]. 

This approach accelerates the process of discovery and design of new materials. Additionally, new 

methods have been developed to filter out the most influential features from a vast array of feature types, 

such as feature selection algorithms like recursive feature elimination (RFE) and model-based feature 

selection. More significantly, the incorporation of physical understanding into the feature construction 

can dramatically enhance the quality of the features. 

5.3. The problem of model generalization 

Model generalization refers to the ability of a ML model to make predictions about new data that has 

not been seen before [109]. A model with good generalization ability can learn universal patterns from 

the training data and successfully apply them to new data. If a model generalizes poorly, it may perform 

well on the training data (overfitting) but poorly on new data. Problems such as data imbalance, 

difficulties in feature selection and dynamically changing data distributions may affect the generalization 

ability of the model [110]. In order to address the generalization issues of ML models, a series of 

strategies can be adopted to enhance the model's predictive performance on new data. This includes 

using multi-task learning to share features between related tasks, increasing the diversity of training 

samples through data augmentation techniques such as rotation and flipping [111], adjusting data 

distribution to avoid model bias against specific types of data, and using larger batches of data to improve 

the stability of model learning. In addition, hyperparameter tuning [112], regularization techniques [113], 

the early stopping method [114], and ensemble learning [115] can effectively prevent overfitting and 

improve the generalization performance of the model. Transfer learning [116] and meta-learning [117] 
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enable models to quickly adapt to new tasks using knowledge gained from other tasks, especially when 

data is scarce. Feature importance analysis [118] and model simplification [119] are also effective 

methods to improve generalization ability. The combination of these methods, tailored to specific 

problems and data characteristics, can help the model maintain high accuracy on unseen data, thereby 

playing a more significant role in practical applications. 

5.4. The problem of poor interpretability 

In the field of fuel cell material prediction, although ML models, especially DL models, have made 

significant progress in terms of prediction accuracy, their “black box” nature leads to a lack of 

transparency and interpretability in the decision-making process. This poses a significant challenge for 

material design as researchers often need to comprehend the underlying basis and internal logic of the 

model’s predictions. To verify the reliability of the model, it is essential to ensure that the predicted 

results are consistent with physical phenomena and chemical principles and to conduct material design 

and process optimization based on these predictions. Therefore, enhancing and improving the 

interpretability of models, developing new interpretative ML algorithms, or integrating model 

predictions with existing theoretical knowledge has become one of the key challenges to be addressed 

in this field. There are already some effective methods to improve the interpretability of models. Such 

as LIME [120] (Locally Interpretable Model-agnostic Explanations) and SHAP [121] are currently 

available, which can provide explanations for individual predictions. PDP (Partial Dependence Plot) and 

ICE (Individual Conditional Expectation) are visualization techniques used to show the marginal effect 

of one or two features on the predicted outcome of a ML model. They can help researchers determine 

how the model’s predictions change when these features are adjusted. 

6. Summary 

This review comprehensively explored the current status, challenges, and potential solutions of AI 

applications in the field of fuel cells. This paper first introduces the working principle, main types, and 

basic requirements of fuel cell materials, and it especially highlights the existing problems in the current 

research of fuel cell materials, such as electrolyte stability and catalyst activity. Following this, the paper 

outlines the basic concepts of AI, including its application steps in materials science, such as data 

collection, feature construction, model training, and validation. 

The review focuses on the specific applications of AI in fuel cell materials research, including 

advancements in predicting catalyst performance, electrolyte conductivity, and material stability. At the 

same time, the paper highlights the challenges in AI applications, such as insufficient datasets, 

complexity of feature construction, limitations in model generalization, and problems with model 

interpretability. To address these issues, the paper introduces a range of possible strategies, including 

expanding datasets, enhancing feature selection methods, improving model generalization, and 

developing novel interpretable ML algorithms. 

Finally, the review summarizes the potential of AI in the development of fuel cell materials and 

looks ahead to future research directions, highlighting the importance of improving model generalization 

and interpretability, optimizing algorithms to accommodate more complex data patterns, and enhancing 
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the cross-integration of ML and materials science. Through these contents, the paper offers a 

comprehensive perspective on the application of AI in material research in the field of fuel cells. 
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