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Highlights:

• Application of reinforcement (RL) learning in catalysis and material design is being reviewed.

• RL frameworks are explored for material optimization and nanomaterials design.

• Comparative analysis of reinforcement learning and traditional computational methods.

Abstract: Reinforcement learning (RL) is emerging as a powerful tool in materials science, delivering a
paradigm shift in how we find and optimize high-dimensional chemical and structural spaces. Unlike
traditional methods, RL agents can learn to explore complex energy landscapes in an adaptive manner,
making instant decisions that guide the discovery of novel materials with specific properties. However, the
application of RL to materials discovery faces unique challenges, including data scarcity, computationally
expensive, and the challenge of designing reward functions that can balance multiple material objectives
optimally. In this review, the current challenges and difficulties in applying RL techniques in materials
science, and recent advances combining RL with machine learning, generative models, and domain
knowledge are emphasized. We also outlined promising future directions, such as transfer learning,
hybrid models, and the creation of collaborative, open-access data infrastructures. By addressing these
challenges, RL has the potential to transform the discovery and design of functional materials for catalysis,
energy storage, and sustainability applications.
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1. Introduction

The unique properties of nanoclusters and nanoalloys provide unparalleled potential for innovation and
technological progress based on their size-dependent properties and quantum confinement effects, enabling
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innovation in fields ranging from clean energy and catalysis to electronics and medicine. Nanomaterials,
specifically nanoclusters and nanoalloys, have attracted enormous interest because of their size and
composition-dependent properties, which are different from those of bulk materials. These nanoclusters
exhibit distinct electronic, optical, magnetic, and chemical properties driven primarily by quantum
confinement effects and their very high surface-to-volume ratio [1,2].

However, optimal use of such properties depends on accurate knowledge of the atomic-scale structure,
since the performance of nanoclusters is inherently governed by their geometric and energetic configurations.
One of the central challenges in this context is the identification of the global minimum (GM) structure, the
most thermodynamically stable arrangement of atoms. The GM search is extremely difficult due to the vast
number of possible atomic configurations, which increases exponentially with the size and composition
of the cluster. Consequently, the potential energy surface (PES) of nanoclusters is often rugged and
multidimensional, with numerous local minima, making it particularly challenging for conventional
optimization methods to reliably converge to the true GM structure.

Traditional methods such as genetics (GA) and basin hopping (BH) are extremely popular for global
minimum searches in nanoclusters. GA has been successfully applied in nanoalloy systems, particularly
Au–Ag nanoalloys, to identify stable surface configurations that influence their structural and electronic
properties [3,4]. However, GAs often converge slowly, lose diversity, and become trapped in local minima,
especially as the complexity of the system increases [5]. Basin hopping has also been utilized in many
applications, demonstrating its utility in optimizing atomic arrangements [6,7]. However, it remains less
effective in high-dimensional landscapes due to step size sensitivity and inefficiency in more complex
systems, indicating the need for a more advanced and scalable approach [8,9].

In recent years, machine learning (ML) and artificial intelligence have revolutionized materials
discovery by enabling data-driven approaches to discover new materials more efficiently. Among the
various ML techniques, reinforcement learning (RL) has emerged as one of the most promising paradigms
for guiding the search for new materials. In nanomaterials discovery, RL is particularly effective in
navigating the vast and complex space of potential material configurations, identifying ideal atomic
structures, and predicting accompanying properties, such as stability, electron behavior, and mechanical
resilience [10,11]. RL is capable of accelerating the discovery of stable materials, and the understanding of
their mechanisms substantially by structurally optimizing structural configurations and energy landscapes.

RL has proven to have significant potential to optimize chemical reactions, synthesize new molecules,
and predict the properties of materials, and thus makes it a viable tool in chemistry and material science [12].
RL has increasingly been applied in materials science, particularly in recent years. There has been a
steady increase in the applications of RL algorithms in the field of material science since their initial
adoption in 2019, as illustrated in Figure 2, based on publication data retrieved from the Scopus database
[ https://www.scopus.com/sources.uri] . This represents a growing awareness of the potential of RL to
optimize the material properties, and to improve the computational effectiveness in materials science.
The increased usage reflects gains in machine learning techniques, improved computational power, and
increased usage of AI-driven methodologies in scientific research.
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Figure 1. Application of Reinforcement
Learning in Catalyst and Material Design.

Figure 2. Adoption of reinforcement learning in
materials research

2. Theoretical foundations of reinforcement learning frameworks

The RL process is described as a loop generating a sequence of actions, states, and rewards. Based on the
Markov Decision Process (MDP), the agent chooses an action at in every time step from a set of possible
actions, the action space A, based on the current state st from the state space S. In response to the selected
action, the environment provides a reward rt for the state-action pair (st ,at), and transitions to the next
state according to the transition probability P(st+1|st ,at) [13]. The agent learns a policy πt , which is a
probabilistic distribution over actions conditioned on the states. This policy maps the state space S to the
action space A, and functions as the agent’s “brain,” directing its decision-making process at each time
step [14,15]. The MDP can be mathematically represented as,

MDP = ⟨S,A,P(st+1 | st ,at),R(st ,at),s0⟩

In any RL setup, it is essential to explicitly define the state space, action space, and reward function,
as they form the core components of the learning environment. The state space represents the set of all
possible environmental states, where each state contains the environment’s present state. In the work
by Simm et al [16], the state space is made up of two parts: a canvas Ct and a “bag” of atoms, as given
in equation 1. The canvas refers to the current structure containing all the atoms that have already been
placed by the agent up to that point.

St = ⟨Ct , t⟩ (1)

Ct =C0 ∪{(ei,xi)}t−1
i=0 t = {e,m(e)}

Where (ei, xi) each corresponds to an atom with chemical element ei and spatial position xi,
representing all atoms that have been placed up to time (t − 1), and m(e) denotes the multiplicity
of each chemical element. The second part of the state is the bag t, where the available atoms are stored.
For each type of atoms in the bag, there is a number indicating how many of that type of atoms are
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left. This helps the agent keep track of atoms that are left to use, and guides its choices as it constructs
molecules or materials. Together, the canvas and the bag fully describe the current state of the system at
any point in the construction process.

In the study by Raju et al, the state space represents the current configuration of the nanocluster
using atom-centered symmetric functions (ACSFs) [17], which encode structural features from two- and
three-body atomic interactions. The state also includes energies, forces, and binary vectors that indicate
conditions such as overlapping atoms, dissociation, local minima, and convergence (e.g., discovery of five
distinct local minima). These elements are processed through neural networks to form a state embedding,
which is fed into the reinforcement learning agent.

In this framework, action space includes all possible actions that the agent can take. In the study by
Raju et al, it is defined as a discrete set of two actions: The first action involves selecting one atom at
random from the entire cluster. The second action determines how that selected atom will move, choosing
between a displacement of +2.0 Å or −2.0 Å. This allows the agent to explore different structural
configurations by shifting atoms within the cluster [17].

at =
(
a1

t , a2
t
)

(2)

Simm et al, defines the action space as decisions made by the agent at each step of molecule construction[18].
At each time step, the agent selects one atom and chooses a specific position in 3D space to place that atom.
Each action tells the system which atom to place next and exactly where it should go in the structure. This
process continues until all atoms have been placed to complete the molecules.

The design of an effective reward function is essential for the performance of an RL model. It is
typically more effective when it provides a gradient. This will allow the agent to better understand when
it gets closer or farther from the target. In their study, Matignon et al. [19] proposed a reward function
based on a Gaussian distribution that assigns constant rewards to distant states s from the goal Sg to avoid
destabilizing the learned policies. In this formulation, the parameter β controls the reward amplitude,
while σ determines the standard deviation, which defines the extent of the region influenced by gradients
(Equation 3).

R(s,u,s′) = β e−
d(s,sg)2

2σ (3)

Spielberg et al. [20] proposed a reward function formula, which is specifically designed for process
control problems, as they are often set-point tracker-based. When the process output is within the error
tolerance of the set-point, the agent receives the maximum reward c. If the output deviates beyond this
tolerance, the agent is penalized with a negative reward proportional to the deviation from the set point.
The regions of the state space where negative rewards dominate can lead the agent to prioritize reaching a
termination point quickly to minimize negative rewards. Nevertheless, negative values can be added to
the reward to accelerate the learning phase. Thus, selecting the appropriate negative reward amplitude is
crucial to balance effective exploration and efficient learning.

R(s,u,s′) =


c, ε > |sg,i − si|,

0, otherwise.
(4)
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In developing the DRL framework for exploring nanocluster configurations, as proposed by K. Raju et al. [17], the
reward function is carefully designed to guide the agent effectively toward the identification of multiple
local energy minima within PES. The reward design combines both incentives and penalties to shape
the agent’s behavior during exploration. A penalty of −10 is applied for undesirable actions, such as
cluster dissociation, atom overlapping, and revisiting previously visited minima. Conversely, if the agent
discovers a new local minimum with energy lower than the initial configuration, it receives a positive
reward calculated by:

Reward = ∆E ·1000 (5)

where ∆ E is the relative energy with respect to the initial configuration in eV. Specifically, the reward is
greater if the new minimum has a lower energy level, thus incentivizing the discovery of energetically
favorable configurations. If the agent identifies a new configuration that has a higher energy value than the
initial setup, it will receive no reward (i.e., reward = 0). This discourages the exploration of less favorable
energy states. This reward structure is carefully designed to balance between penalizing unproductive
explorations, and rewarding the discovery of new, energetically favourable configurations, thus guiding
the DRL agent in the efficient exploration of nanocluster configuration space.

Table 1. Conceptual comparison between on-policy and off-policy RL methods.

Aspect On-policy Off-policy

Principal data source Trajectories generated by the current
policy π

Experience generated by a behaviour
policy µ (which may differ from π)

Sample efficiency Usually lower (requires fresh
interaction)

Usually higher (can reuse old data /
replay buffers)

Stability & convergence Typically more stable; lower risk of
divergence

Can be less stable due to distribution
shift; requires careful off-policy
correction

Exploration–exploitation Same policy governs both Can explore with one policy while
learning another

Bias–variance trade-off Lower bias, higher variance Potentially higher bias from
off-policy correction, but lower
variance

Typical learning update On-policy, policy gradient, or
advantage-based update

Importance-weighted or value-based
off-policy update

Example algorithms SARSA, REINFORCE, A2C, PPO Q-learning, DQN, DDPG, TD3, SAC

In RL algorithms are often categorized as either on-policy or off-policy according to how they exploit
experience. On-policy methods improve the behavior policy using data collected by that same policy,
whereas off-policy methods decouple data collection from learning and can profit from experience gathered
by the behavior of the policy. This distinction has important implications for sample efficiency, stability,
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and exploration/exploitation trade-offs (Table 1). Moreover, the suitability of a particular algorithm depends
on whether the environment’s action space is discrete or continuous (Table 2).

Table 2. Representative RL algorithms grouped by learning family, policy paradigm,
and native action space support.

Algorithm (Year) Family Policy paradigm Native action space

Q-learning (1992) [21] Value-based Off-policy Discrete

SARSA (1994) [22] Value-based On-policy Discrete

Deep Q-Network (DQN,
2015) [23]

Value-based (deep) Off-policy Discrete

REINFORCE (1992)
[24]

Policy-gradient On-policy Discrete / Continuous

Advantage Actor-Critic
(A2C, 2017) [25]

Actor-critic On-policy Discrete / Continuous

Proximal Policy
Optimisation (PPO,

2017) [26]

Actor-critic On-policy Discrete / Continuous

Deep Deterministic
Policy Gradient (DDPG,

2016) [27]

Actor-critic Off-policy Continuous

Twin Delayed DDPG
(TD3, 2018) [28]

Actor-critic Off-policy Continuous

Soft Actor-Critic (SAC,
2018) [29]

Actor-critic Off-policy Continuous

Trust Region Policy
Optimization (TRPO)

(SAC, 2018) [30]

Actor-critic On-policy Continuous

RL algorithms are typically categorized into several core methodologies, enabling the agent to learn
optimal strategies by interacting with the environment [31]. These approaches are commonly classified
into value-based, policy-based, and model-based methods. Value-based methods, such as Q-learning and
deep Q-learning (DQN), are based on estimating the value function to predict the reward, and the Q-value
of each state is learned by a neural network [32,33]. In contrast, policy-based methods directly optimize
the policy function that maps states to actions, bypassing the need to estimate value functions [34].

The popular policy-based RL algorithms are proximal policy optimization (PPO) [27,35], trust region
policy optimization (TRPO) [36], deep deterministic policy gradients (DDPG) [26] and soft-actor-critic
(SAC) [37]. These methods typically use a neural network to determine the policy, which is updated with
gradients calculated using a variety of methods. The combination of both value-based and policy-based
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methods, such as the actor-critic method, is being used to leverage their respective strengths [25].
Model-based reinforcement learning is an approach that uses a model of the environment to make

decisions. This is in contrast to model-free methods, in which policies or value functions are learned by
directly interacting with the environment without explicitly modeling the dynamics of the environment.
It typically involves learning a dynamic model from data obtained through interactions, and then using
it for planning or policy optimization [38]. This approach is especially useful when interactions in the
real world are expensive or restricted, since learning is possibly effective with simulated experience.
Key algorithms in model-based reinforcement learning (MBRL) include Dyna, model-based policy
optimization (MBPO), model-based offline policy optimization (MOPO), and probabilistic inference for
learning control (PILCO), each employing different modeling techniques to improve policy optimization
in various fields [39,40].

A deep reinforcement learning (DRL) model architecture combines RL with deep neural networks
(DNN) to deal with complex environments (Figure 3) [41–43]. Based on the algorithms used, such as
DQN, proximal policy optimization (PPO), or actor-critic algorithm, the architecture varies significantly.
These frameworks consist of three layers: an input layer, hidden layers, and an output layer, as displayed
in Figure 4. The input layer processes the environment’s state. The hidden layers are responsible for
extracting features from the input data, and the output layer differs based on the type of DRL algorithm.
For example, the DQN output layer approximates the Q-value of all possible actions and regulates the
agent to perform in a way such that the expected reward is maximized [44]. PPO, however, provides output
of action probability and utilizes the clipping method for stable policy updates, as well as preventing
abrupt policy shifting [45].

Figure 3. Deep Neural Network Figure 4. Deep Reinforcement
Learning Framework

Training of the DRL agent is an iterative process in which the agent interacts with an environment to
gain the maximum cumulative reward. The algorithm begins with a randomly initialized network, and an
exploration policy, in which the action is chosen randomly with probability based on learned values [46].
The policy balances between exploring new actions and exploiting learned actions. As the agent moves
around in the environment, it gains experiences, which are the current state, the action taken, the reward
received, and the next state. These experiences are normally buffered in a replay buffer such that the
agent learns from a variety of experiences. The agent updates its model by minimizing a loss function,
which improves the model’s predictions such that they better align with target values. The reward function
plays the central role of guiding the agent’s learning in DRL. It should be specified in relation to the

7



AI Mater. Review

task objectives, providing information that encourages appropriate behavior. Rewards could be sparse
or dense: sparse rewards give feedback at task completion, and learning is more difficult, while dense
rewards provide feedback at every step, and learning is faster. Reward shaping can also nudge the agent
towards the objective by providing the intermediate rewards, while penalty terms discourage undesirable
actions [47].

3. RL in material discovery and property prediction

The use of RL for materials discovery is a paradigm shift in computational materials science that offers a
very effective framework for automating the search of vast and complex chemical and structural spaces.
A unique DRL framework as shown in the Figure 5, consiting of states, reward, and actor-critic network,
is specifically designed to explore the PES of nanoclusters to find the GM configurations along with other
low-energy states [17]. This study demonstrates the effectiveness of the DRL framework in managing
various types of nanoclusters, including mono- and multimetallic compositions, and its proficiency in
navigating intricate energy landscapes.

An offline RL method was used to enhance the synthesis of 2D quantum materials like MoS2 by chemical
vapor deposition. By utilizing available molecular dynamics simulation data, a generative model was employed
to predict and adjust crucial synthesis parameters, e.g., temperature and gas concentrations [48]. This approach
optimizes the material properties and results in improved knowledge of the synthesis process, producing a
more effective and scalable solution than traditional trial-and-error material design techniques. Offline RL
has also been applied to the design of crystalline materials with target properties, e.g., specific band gaps.
Both stability and electronic properties are optimized by this approach at reduced computational cost.
It shows the ability of offline RL to generate valid crystals with target properties, offering a promising
pathway for large-scale and efficient materials discovery [18].

Figure 5. (a) Schematic representation of the DRL framework proposed by Raju et al.
(b) GM and low-energy configurations generated by using the deep reinforcement
learning technique. [17]

Building on the need for more scalable and adaptable RL models, Banik et al. [49] presented an
RL framework as illustrated in Figure 6. The CASTING (Continuous Action Space Tree Search for
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Inverse Design) framework is used to avoid the limitations of the conventional RL methods for continuous
materials search spaces. Through the combination of a Monte Carlo Tree Search (MCTS) algorithm and
modified policies and sampling methods, CASTING enables effective exploration of complex potential
energy landscapes. Extended to systems from elemental metals like silver (Ag) to covalent materials
like carbon (C) and multicomponent compounds like graphene, boron nitride, and correlated oxide. The
scheme showed high accuracy, rapid convergence, and excellent scalability, representing a great leap in
data-driven inverse material design. The convergence of the MCTS optimizer for the sampling of gold
nanoclusters of different sizes and their global minima obtained by MCTS for each case is illustrated in
Figure 7.

Figure 6. Schematic depiction of the workflow of the CASTING framework for
performing inverse design [49].

Figure 7. (a) The convergence of MCTS optimizer for the sampling of gold nanoclus-
ters of different sizes, and (b) shows the global minima obtained by MCTS for Au13,
Au20 , Au40 nanoclusters [49].

Complementing these developments, Modee et al. [50] proposed a novel actor-critic architecture,
that generates low-lying isomers of gallium metal clusters at a fraction of the computational cost in
comparison to conventional methods. Their approach emphasizes the generation of low-energy 3D metal
cluster structures depends on the efficiency of the search algorithm and the accuracy of the description
of the interatomic interaction. Their RL-based search algorithm uses a previously developed deep
learning-enabled topological interaction (DART) model [51], as a reward function to describe interatomic
interactions to validate predicted structures. Using the DART model as a reward function incentivizes the
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RL model to generate low-energy structures, and helps generate valid structures. They demonstrate the
advantages of their approach over conventional methods for scanning local minima on the PES (Figure 8).
Furthermore, Pan et al. [52] explore the use of RL for the inverse design of inorganic materials, focusing
on discovering materials with specific properties. Simm et al. [16] developed an RL framework guided
by quantum mechanics, enabling the design of molecules with optimized properties. Their approach
uses quantum-chemical methods, allowing for efficient exploration of molecular spaces to identify novel
catalyst candidates with enhanced properties.

Figure 8. Workflow to generate GS/low-energy gallium clusters using reinforcement
learning. [50].

4. RL in property prediction and optimization

In a broader context, RL advances material discovery by efficiently identifying materials with extreme
properties. When combined with big data techniques, it enables precise control over nanomaterial
structures, properties, and synthesis methods [53]. RL not only guides the selection of molecular
fragments, but also aids in the design of new molecules with optimized properties [54]. The workflow of
material prediction and optimization through RL is demonstrated in Figure 9.

Figure 9. Workflow of material prediction and optimization through artificial intelligence.

This approach enables search in vast chemical spaces and rapid discovery of high-performance
materials. Zhang et al. [55] recently created a DRL algorithm to forecast molecular properties in drug
design and material discovery. The strongest advantage of the approach is that it predicts the structure
of a molecule from historical data, enabling faster and more efficient discovery without the requirement
of new experimental samples. Moreover, a multi-objective RL approach is used in catalyst design to
optimize the balance of several performance metrics [56].
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The geometry optimization of nanoclusters via DRL is proposed by Mubeen et al. [57], uses an
actor-critic architecture to navigate efficiently PES, and identify the most stable geometries of Ag15

nanocluster. By bypassing traditional optimization methods, such as GA, the DRL system achieves
significant improvements in computational efficiency and precision. Anderson et al.’s [58], study of
gallium-metal clusters shows the power of model-based RL for streamlining material synthesis. Their
approach used a transition model that forecasts the effect of different synthesis conditions on the formation of
stable metal clusters, which offers important insights into the optimization of nanoalloys. Meldgaard et al. [59],
present the Atomistic Structure Learning Algorithm (ASLA), an RL-driven method for predicting reconstructed
crystalline surface structures. This method effectively reconstructs complex structures using transfer learning,
significantly cutting down computational costs compared to traditional approaches, demonstrating the
scalability of RL in structure prediction. Additionally, the autonomous optimization of molecular geometry
has been markedly improved in both efficiency and accuracy through the application of multi-agent RL [60].
Elsborg et al. [61], developed an actor-critic RL method utilizing equivariant graph representations to
identify low-energy nanoparticle structures. Their approach effectively discovers stable configurations for
mono- and bimetallic clusters. While successful in finding known stable configurations, the study also
highlights challenges such as the agent’s limited generalization ability, suggesting the need for further
improvements to achieve broader applicability in nanoparticle design.

The catalytic reaction mechanisms over various processes are studied via a DRL framework [62] coupled
with first-principles calculations. In this approach, the optimal reaction channels are identified in a self-
controlled manner and uncover reduced energy barriers, showcasing the potential of AI-assisted methods
to accelerate the identification of catalytic reactions, and improve catalyst efficiency [62]. Tian et al. [63],
explore the catalytic reaction mechanism of ammonia synthesis on the Fe surface via the high throughput
deep reinforcement learning (HDRL) framework, which integrates DRL and first-principles calculations
for the autonomous exploration of reaction pathways. Both Langmuir-Hinshelwood (LH) and Eley-Rideal
(ER) mechanisms for hydrogen migration have been successfully discovered in their research, and a
pathway with a lower energy barrier compared to the nudged elastic band (NEB) method. Figure 10
displays the process of the DRL approach applied to catalyst optimization, demonstrating the integration
of AI techniques in accelerating catalytic design, and Figure 11 shows the inference process for molecular
generation, highlighting both the generation pathway and the corresponding evolution of molecular properties.

Figure 10. Deep Reinforcement Learning for Catalyst Optimization.
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Figure 11. Inference process for molecular generation. (a) An example of a molecular
generation process, (b) shows the property changes for generated molecules [54].

The AI-driven approach by Yoon et al. [64], improves the design process by identifying metastable
surface phases and accelerating the discovery of optimal catalytic systems. On a ternary Ni3Pd3Au2 alloy,
their CatGym DRL framework outperforms traditional methods like minima hopping to efficiently explore
disparate surface compositions and predict reconstruction pathways with greater accuracy. Chang et al. [65],
demonstrated that integrating chemical information into RL enhances catalyst design by predicting optimal
atomic arrangements, and identifying metastable states that improve catalytic activity. Their approach
incorporates a graph-based topological method, accelerates the discovery of novel catalysts by improving
reaction efficiency and selectivity in catalytic processes. The study by Mills et al. [66] explores the use of
RL to effectively navigate PES in molecular systems. Through the application of RL to complex PES
landscapes, it demonstrated the capability of RL to optimize molecular geometries and computational
efficiency in molecular simulations, opening up a new avenue for the investigation and design of catalytic
systems. The MolOpt framework developed by Modee et al. [67] shows promise for advancing catalyst
design by enhancing the optimization of molecular structures for catalytic applications. It efficiently
optimized molecules like propane and octane, outperforming traditional methods such as MDMin and
FIRE. The DRL method is proposed [68] to automate the diagnostic process of nanocatalysts by analyzing
data from techniques like X-ray absorption spectroscopy (XAS). This approach enhances the understanding
of nanocatalyst behavior, leading to improved design and optimization for catalytic applications.

5. Comparative study: DRL vs. conventional optimization approaches

A comparative study of DRL and traditional optimization techniques shows significant differences in their
performance metrics, including computational cost, convergence rate, and success rate in identifying global
minima. DRL has shown significant capability in dynamically optimizing intricate systems in real time; for
instance, a study proved its application in industrial catalytic processes, where it achieved results comparable
to mathematical optimization standards at faster inference times [69]. Regarding computational costs, the
DRL models prove cost-efficient due to converging faster than standard methods [70]. RL frameworks have
been used effectively to optimize the microstructural material properties, like silica aerogels with outstanding
fast convergence in low-complexity and high-complexity cases [71]. Traditional optimization algorithms
like GA and BH are typically in the form of pre-defined fitness functions, and become trapped in local
minima, leading to worse success rates of finding global optima compared to iterative learning by RL [72].
While traditional methods may make it easier to interpret and require less initial computation, they lack
the flexibility that DRL allows in dynamically changing environments [73]. Overall, while RL provides
flexibility and efficiency advantages in solving hard optimization problems, traditional methods are also
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usable on specific applications where established protocols can be employed optimally. The choice between
these methods ultimately hinges on the specific requirements of the material design problem at hand.

Experiments on the performance of RL, GA, and BH on optimization problems provide clear
findings on the differences between RL and traditional search-based algorithms. It is the extreme
ruggedness, fast convergence, and nature of a global minima-based approach attained with utmost
flexibility that differentiates RL [74]. Such properties render RL particularly suitable for complex and
dynamic environments, where fast feedback and being adaptable are critical [75]. For example, GA has
high invariance, which makes it robust and enables it to be widely used for optimization problems, although
GA also comparatively has slow convergence, especially in high-dimensional solutions. Moreover, GA can
struggle with reliably finding global minima, particularly on more complex or non-convex optimization
surfaces. In contrast, BH sometimes has speed advantages over GA, but not always, and offers poorer
robustness than GA, along with a poorer chance of finding global minima in tougher optimization cases.
Furthermore, BH is limited in its adaptability [76], which may hinder its performance in dynamic or
evolving problem spaces. These synthesized findings suggest that while RL represents a powerful and
versatile optimization tool, particularly for dynamic and complex problems, GA and BH may remain
suitable for simpler tasks or when computational resources are constrained. Despite these generalizations,
a direct comparison of these algorithms on the same dataset, along with quantitative metrics, is a significant
challenge. Such comparative studies are necessary to rigorously benchmark these optimization methods
and contrast their relative strengths in diverse real-world applications. A summary of these findings can
be found in Table 3.

Table 3. Comparison of different optimization methods based on various metrics.

Metric RL GA BH

Robustness High High Moderate

Speed/Convergence High Moderate Moderate

Global Minimum Identification High Moderate Moderate

Adaptability High Low Low

6. Current challenges and future perspectives

The RL has surfaced as a viable approach in material discovery that could automate and accelerate the
design of materials with desired properties. Various issues that have to be tackled to gain full advantage
from its potential, including data scarcity and quality issues, reward function design complexity, and
generalization and validation issues [52]. RL holds a lot of promise for future breakthroughs. It can be
further developed with hybrid model-based approaches, physics-informed rewards, and meta learning to
improve sample efficiency and generalization. For instance, RL-based combinatorial chemistry has been
shown to be successful for the discovery of molecules with extreme properties, outperforming probability
distribution-learning models in generating chemically valid molecules.

Future directions include integrating RL with foundation multi-modal models that can process
different data modalities, such as spectroscopic and crystallographic data, understanding material behavior
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in an integrated manner [77]. This could lead to novel domains such as catalysis, drug discovery,
and energy storage because it would enable the discovery of materials with unprecedented properties.
Furthermore, modular RL structures like MANDREL facilitate flexible experimentation and design via
mixing different chemical representations and RL strategies to accelerate the discovery of new molecular
species [78]. Overall, resolving such challenges as well as the embracing of such future trends could
make RL a groundbreaking tool in materials science to propel advancements in sustainability, medicine,
and innovative manufacturing

7. Conclusion

The integration of reinforcement learning (RL) in materials discovery is a significant advance in the
quest for efficient, sustainable technologies. By leveraging the capabilities of RL, researchers can tune
complex systems, enhance the performance of catalytic materials, and accelerate the identification of
new compounds with desirable properties. The ability of RL to handle big data and anticipate optimal
configurations allows for more efficient probing of chemical spaces, reducing the time and cost of
traditional experimental methods. Application of RL systems, as described in many studies demonstrates
efficiency in improving the activity of catalysts through self-guided search and optimization of reaction
paths. Specifically, the progress of RL has enabled the application of more sophisticated strategies in
simulating complex environments, thereby enabling a more comprehensive understanding and control
over material properties.

Besides, the continuous development of RL approaches, such as model-based methods, and multi-
objective optimization, provides great opportunities for solving intricate problems in material science.
These RL methods have the potential to generate new avenues for innovation in materials and catalyst
design, with enhanced energy sustainability and environmental protection. The intersection of RL with
materials discovery not only accelerates the research, but also holds the key to the development of
next-generation materials that can keep up with the demands of a changing world in a high-speed manner.
The ongoing pursuit and evolution of these AI-based methods are important in unshackling their full
capabilities in both scientific inquiry and industrial applications.
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