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Abstract: Semi-solid die casting of aluminum alloy has been successfully employed to 
manufacture high-performance components with precise net shapes. However, the quality of 
these components is highly susceptible to variations in both environmental conditions and 
process parameters, leading to a narrow process window that restricts its widespread 
application in engineering. In this study, a machine learning (ML) model has been developed 
to identify defective products through the detection of injection pressure, thereby providing 
a foundation for monitoring and further optimizing the manufacturing process. Among 
various ML algorithms, the Multilayer Perceptron (MLP) is the most effective for overall 
quality prediction. Additionally, the mechanism for identifying defect types based on 
pressure curves has been revealed: the filling pressure at the gate entrance has been found to 
exhibit a strong correlation with the internal quality of the casting, while the V-P transition 
point has been identified as a reliable indicator of the external quality. 

Keywords: semi-solid processing; die casting; machine learning; quality classification; 
injection pressure 

1. Introduction 

Semi-solid processing (SSP), in which the liquid-solid mixed slurry is used as the feedstock, 
is a promising forming technology for fabricating high-performance components with low 
loss and a short process [1–3]. Compared to traditional die casting with full liquid melt, semi-
solid die casting applies a higher viscous slurry and fills the die cavity with laminar flow, 
thus avoiding entrapment defects and enhancing the mechanical properties [4,5]. SSP has 
been successfully applied in 5G communication cavities, automotive inverter main boxes, 
battery brackets, and other components [6].  
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Despite the above-mentioned advantages of SSP, the final quality of the semi-solid die 
casting is more difficult to control due to the narrow process window. Process parameters 
such as filling pressure and injection velocity, which are significantly affected by slurry 
temperature, play crucial roles in determining the final quality of the manufactured 
components [7–11]. The quality of castings is closely related to the defect levels. In semi-
solid die castings, defects are mainly classified into two categories: external defects and 
internal defects. External defects primarily refer to non-filling because of insufficient melt 
fluidity, while internal defects primarily refer to gas pores entrapped during mold filling and 
shrinkage cavities resulting from inadequate feeding during solidification [12,13]. Therefore, 
there may be a way to predict the possibility of defects in the manufactured components by 
studying filling pressure [14,15].  

In previous work on die-casting, quality prediction has been performed mainly based on 
processing parameters or detecting environmental parameters. Winkler [16] emphasized the 
impact of real-time parameters like piston speed and temperature on porosity rate. Soban [17] 
explored the relationship between acceleration positions, velocity, and air entrapment 
profiles to optimize process parameters. Kittur [18] utilized a neural network algorithm to 
relate process parameters to quality parameters like surface roughness and porosity. Gim [19] 
utilized transfer learning to optimize artificial neural networks and successfully predicted the 
surface quality of injection-molded parts using five essential process parameters. Kim [20] 
developed defect rate diagnostic systems based on velocity and pressure time series, favoring 
tree-based regression algorithms. Lin [21] and Weiderer [22] employed data filtering and 
transformation techniques to improve efficiency and uncover quality-related issues. 
Chanbeom [23] used feature selection and neural networks to identify optimal manufacturing 
parameters. Deng [24] introduced time interval importance curves for classification, 
improving computational efficiency in analyzing time series data. All of these works were 
successful in building up the relationship between process parameters and the cast 
components, leading to the improvement of component quality and production efficiency. 
Semi-solid processing (SSP) uses semi-solid slurry instead of liquid metals as in conventional 
casting processes, and rheological characteristics play a crucial role in process control and 
component quality. Therefore, the conventional casting quality prediction approaches are 
difficult to adapt directly to the SSP process. In this work, a prediction model for the quality 
of semi-solid die-castings will be developed to predict the quality of SSP-processed 
components in terms of the injection pressure. 

2. Methods 

Figure 1 shows the basic flow of the die-casting quality prediction module and the evaluation 
of important processing intervals. First, the pressure and displacement data from the die-
casting plunger sensors are processed, and then features are extracted from the processed 
data. The model building was based on both the raw data and the processed characteristics. 
Furthermore, both sets will be compared with each other. It is clear that two quality prediction 
systems have been developed: one for the diagnosis of internal defects and another for the 
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diagnosis of external defects. A validation set is set up, with data sourced from the pressure 
casting of 319s aluminum alloy. The best results will be based on the comparison of the 
scores of the models training. 

 

Figure 1. Basic flow of the die casting quality prediction module and evaluation of 
important processing intervals. 

2.1. Slurry preparation and die casting 

Table 1 shows the chemical composition of commercial aluminum alloys A357 and 319s used 
in this study. There is a difference in the contents of Mg, Si, and Cu between these two alloys. 
Figure 2 shows the flow of the experiments. About 55 kg of aluminum alloy materials were 
melted in the furnace and degassed at 770 °C for 30 min. A crucible was used to take 
approximately 1.65 kg of melt from the furnace and then cooled down to specified temperatures. 
The semi-solid slurry was prepared using the swirled enthalpy equilibration device 
(SEED) [25]. Four different groups of parameters of the rotation time and the pouring 
temperatures in SEED processes are given in Table 2. 

The slurry was die-cast into tensile specimens by a die-casting machine (FRECH K380–40) 
with the max plunger velocity of 0.5 m/s (constant). The maximum pressure of the plunger 
was set to 460 bar. The preheating temperature of the mold was 260 ℃. The experiment 
samples were die-casted using the tooling shown in Figure 3a, and four rods were cut off and 
then machined into tensile testing specimens, as shown in Figure 3b. 
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Table 1. Chemical composition of the experimental aluminum alloys (wt %). 

Alloy Al Mg Cu Si 
A357 Bal. 0.61 <0.01 7.30 
319s Bal. 0.36 3.05 6.10 

Table 2. Rotation time and pouring temperature in semi-solid slurry preparation. 

Alloys Groups A B C D 

A357 
Pouring temperature (°C) 615 630 630 675 

Rotation time (s) 90 90 150 150 

319s 
Pouring temperature (°C) 615 635 635 675 

Rotation time (s) 90 90 150 150 

 

Figure 2. The experiment flow of slurry making and die casting in this research. 

 

Figure 3. (a) Die casting component and (b) sample size for tensile testing. 

2.2. Record of plunger pressures 

Three sensors were installed at the die-casting machine's plunger, which recorded the 
pressure at the head of the plunger, the pressure at the rod part of the plunger, and the 
displacement of the plunger, respectively. Data were collected at intervals of 2 ms, and each 
sensor recorded 2000 data during die-casting. Figure 4 shows the pressure and plunger 
displacement changes obtained from the three sensors with processing time. 
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Figure 4. Pressures obtained from the sensors of the plunger head and rod, and 
displacement with time. 

2.3. Tensile tests and defect identification 

A INSTRON 3382 tensile testing machine was employed to perform the tensile tests. The 
movement speed of the testing head was 0.5 mm/s until the strain of 0.6 and 5 mm/s after 
removing the extensometer. The static toughness of the testing sample 𝑇𝑇(𝑁𝑁) was determined 
as follows: 

𝑇𝑇(𝑁𝑁) =
1
2�((𝜎𝜎𝑁𝑁 + 𝜎𝜎𝑁𝑁+1) ∙ (𝜀𝜀𝑁𝑁 − 𝜀𝜀𝑁𝑁+1))
𝑛𝑛−1

0

 (1) 

where n is the amount of data set, tensile strain 𝜀𝜀 = [𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑛𝑛] and tensile stress  
𝜎𝜎 = [𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑛𝑛]. The defect level was determined by the liquid static weighing method. 
Each value was the average data of three measurements. The mass densities were measured 
by a density measurement device based on Archimedes principle. The relative defect ratio 𝑑𝑑 
was calculated by: 

𝑑𝑑 =
𝑑𝑑𝑚𝑚 − 𝑑𝑑𝑎𝑎
𝑑𝑑𝑚𝑚

× 100% (2) 

where 𝑑𝑑𝑎𝑎 is the density of the testing sample and 𝑑𝑑𝑚𝑚 is the standard density of this alloy. 

2.4. Casting quality definition 

There are two definitions for casting quality, i.e., internal defects and externally visible 
defects. The evaluation indicators for internal quality were the defect rate of castings and 
static toughness, but it was challenging to define thresholds for the two quality categories. 
As a highly popular clustering algorithm for unsupervised learning, the K-means clustering 
was employed to divide these two data types into several clusters, as shown in Figure 5a. 
Finally, clusters with low defect rates and excellent mechanical performance were selected 
as class I1, while the rest will be categorized as I0. A t-distribution is used for the result, 
using a 95% confidence interval. In addition, the proportion of data for different categories 
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is also taken into consideration. Figure 5b shows the relevant details: samples labeled as E0 
exhibit a non-fill phenomenon, while those labeled as E1 do not. At the bottom of Figure 5, 
categories with both positive and negative proportions under each standard are displayed, 
and this proportion is relatively reasonable. 

 

Figure 5. Two quality classifications: (a) internal quality measurement (K-means 
clusters), (b) external defects, which are mainly the non-filled castings defined as class 
E0, while fully cast components defined as class E1. 

2.5. Machine learning models and evaluation  

Machine learning algorithms such as support vector machine (SVM) [26,27], the multilayer 
perceptron (MLP) [28], random forest (RF) [29], gradient boosting classifier (GBC) [30], 
extreme gradient boosting (XGB) [31], decision tree (DT) [32], logic regression (LR) [33]  
and Light Gradient Boosting Machine (LGB) [34] are employed in this research. These 
models are commonly used for quality prediction of manufactured components [35]. 

The selected features data were normalized before training the machine learning system. 
The average score was determined using ten k-fold cross-validations, and the best strategy was 
found by comparing the experimental results. The validation assessment of the models was 
achieved using the accuracy (ACC), the areas under the ROC curve (AUC), the F1 score, the 
Recall score, and the Precision score. ACC and F1 scores [36–38] are expressed as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇 (3) 

𝐹𝐹1 =
2 ⋅ 𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇 (4) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 (5) 

𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 (6) 
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Where 𝑇𝑇𝑇𝑇  is the abnormal castings that are classified correctly, 𝑇𝑇𝑁𝑁  is that the normal 
castings are identified correctly, 𝐹𝐹𝑇𝑇 represents that the class 1 castings are misclassified as 
class 0 ones, and 𝐹𝐹𝑁𝑁 represents the class 0 castings are mistakenly classified as class 1 ones. 

3. Results and discussion 

3.1. Recorded data analysis 

The pressure data, defined as the injection pressure 𝑇𝑇𝑝𝑝, measured by the sensor installed in 
the plunger of the die casting machine, were employed to be the input data of the machine 
learning modelling, as they can reflect the resistance of the semi-solid slurry filled into the 
tooling. The injection pressure 𝑇𝑇𝑝𝑝 can be expressed as: 

𝑇𝑇𝑝𝑝 = 𝑇𝑇𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐻𝐻 (7) 

where 𝑇𝑇𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻 is the pressure at the plunger head, 𝑇𝑇𝑅𝑅𝑅𝑅𝐻𝐻 is the pressure at the plunger rod. Due 
to the difference in slurry weight among different dies, the offset displacement, i.e., the 
abscissa of the die-casting curve, is corrected. The corrected abscissa formula is that: 

𝐷𝐷𝑐𝑐 = 𝐷𝐷𝑝𝑝– (𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚 −
𝑉𝑉
𝑆𝑆𝑝𝑝

) (8) 

where 𝐷𝐷𝑐𝑐  is the corrected displacement coordinate, 𝐷𝐷𝑝𝑝  is the displacement coordinate 
coming from the plunger position sensor, 𝑉𝑉 is the volume of the casting, 𝑆𝑆𝑝𝑝 is the area of the 
plunger, 𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚 is the maximum value of the displacement of the plunger. Figure 6 shows the 
changes in pressure and velocity following the alteration of the abscissa. 

 

Figure 6. The pressure Pp and plunger speed versus the plunger displacement after the 
slurry contacts the slider.  

During a semi-solid die-casting process, the slurry contacts the slider at the displacement 
of 0 mm, and then the plunger pushes the slurry to move at the set speed (0.5 m/s). At this 
time, the pressure mainly reflects the resistance of the plunger pushing the slurry to move in 
the pipeline. With the plunger moving continuously, pressure increases quickly as the slurry 
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is pushed into the gate. The velocity of the plunger is no longer stable, falling to less than 
98% of the set value. When the plunger reaches the position of 86 mm, the pressure reaches 
the maximum, and the velocity closes to zero. At this time, the slurry almost fills the mold, 
and the plunger can hardly move. Thus, the plunger position of 50–86 mm is regarded as an 
essential interval of die casting. Figure 7 shows the evolution characteristics of both the raw 
recorded pressure data and the processing pressure data with displacement movement at this 
crucial stage. Figure 7a shows the original injection data. Dividing this important interval 
into 36 equal parts, the average pressure for each part forms the curve shown in Figure 7b.  

 

Figure 7. The pressure versus the corrected displacement 𝐷𝐷𝑐𝑐: (a) injection pressure Pp 
and (b) processing data within the interval. 

In order to enhance the results, five characteristics were determined, i.e., the pressure at 
the plunger displacement of 423 mm (the maximal displacement), an average pressure at the 
plunger position of 50–86 mm, points where pressurization is started, and points that the 
value of the rod pressure is 0. The maximum pressure reading from the head pressure sensor 
within 1.5 s is taken as the critical value. Any point thereafter where the pressure exceeds 
this value is considered as the moment when pressurization begins. In general, 41 features 
exist for data training. Compared to the raw data recorded by sensors, this dataset has reduced 
its scale from 6000 to 41. Table 3 shows the recorded characteristic data of the pressure curve 
and its related quality classification, which will be employed in the model training. To assess 
the efficiency of the data selection, the raw data from three sensors and the selected data were 
separately used as the features for training.  

Table 3. The recorded characteristic data of the pressure curve and its related quality class. 

Number Interval 1 
(bar) 

Interval 
2 (bar) 

… Interval 36 
(bar) 

Pressurization 
point (mm) 

Internal 
quality 

External 
quality 

0 4.93 5.25 … 459.36 82.78 I1 E0 
1 6.25 6.35 … 460.68 82.28 I1 E0 
⋮ ⋮ ⋮  ⋮ ⋮ ⋮ ⋮ 

107 9.17 9.46 … 460.84 79.25 I0 E1 
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3.2. Model training results 

The results of ten-fold cross-validation were compared, as shown in Figure 8. The training 
results used raw data on both internal and external defects without considering the data 
characteristics. The model SVM achieved the highest accuracy ACC score of 0.8429, with 
an AUC score of 0.8828 and an F1 score of 0.8677. The models LGB and RF achieved a 
recall score of 0.90, indicating good classification performance for positive samples, while 
MLP achieved only 0.7383, which did not meet the requirements for this study. For the 
selected characteristic data, however, the performance of the MLP achieved an ACC score 
of 0.9238, an F1 score of 0.9373, and an AUC score of 0.9525, the best model for quality 
prediction for both internal and external defects, as shown in Figure 8c,d, and significant 
higher ACC than using the raw data with increases of 9.6% in ACC score, 8% in F1 score, 
and 5.6% in AUC. Therefore, training with filtered data in this classification contributes to 
enhancing the model's generalization ability. The model MLP would be employed to be 
trained by the characteristic data and to predict the casting quality. 

 

Figure 8. The results of predicted quality determined by all the models considered in 
this study for (a) raw data for internal, (b) raw data for external defects, (c) 
characterized data for internal, (d) characterized data for external defects. 
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The tenfold cross-validation results for training on raw data are presented in Figure 8b. 
Unfortunately, none of the models achieved a validation accuracy exceeding 0.7. 
Additionally, the performance in terms of AUC and F1 scores was also not good. Therefore, 
the raw pressure values alone as characteristic data were insufficient to meet the requirements 
of external defect classification. In addition to the characterized plunger pressure, 
characteristic data such as the pressurization point and the maximum plunger displacement 
were also considered in training the models. These characteristic data are also correlated with 
external defects (i.e., quality). Figure 8d shows the training results after incorporating these 
characteristic data. 

The classification model trained by the MLP model made the best scores of ACC and AUC 
and could predict the casting quality with a confidence of 0.89. However, it is worth noting that 
the F1 score of the MLP model is lower than the RF and SVM models. In terms of recall scores, 
the MLP model scored 6.3% lower than the other two models, while the precision score is 4.5% 
and 6.0% higher. This means that the MLP model predicts the correct sample better, and there 
are a few false positive cases, but it cannot find all of the positives. In practice, predicting 
negatives as positives is not permissible; the cost of missing positives is relatively smaller. 
Therefore, the MLP model is the best prediction strategy for this classification. 

3.3. Application of the trained models for the 319s alloy castings 

The trained MLP, XGB, and LGB models were applied to predict the quality of semi-solid 
die castings of the aluminum alloy 319s, which has higher contents of Cu and Si but lower 
content of Mg. The semi-solid die casting of this alloy had almost no external defects, so only 
internal defects were predicted and compared with experimental results. Generally, the 
models were used to produce predictive probabilities for both positive and negative instances. 
They were then translated into confidence levels for positive predictions in practical 
applications. Figure 9 shows the validation results of the three models on the 319s die-casting 
pressure dataset mentioned above. In this case, the probability of being predicted as positive 
issues (good quality) was taken as the Z-axis, while the X and Y coordinates represent 
mechanical properties and defect rates. Mechanical properties and defect rates are assessment 
metrics for internal quality, respectively. The yellow areas in the figures indicate regions 
classified as positive issues, while the blue planes (Z = 0.5) represent the boundaries between 
positive and negative predictions. The results indicate that XGB and MLP get the best 
validation ACC scores of 0.8517. XGB identifies all positive samples, while LGB 
misclassifies 57% of positives as negatives. Conversely, LGB can find all negatives, but XGB 
exhibits excessive sensitivity to positives. Therefore, it can be observed in Figure 9d that 
LGB has a lower F1 score than others. For the AUC score, XGB is above 0.9 and gets the 
best performance, which implies that different thresholds result in stronger classification 
capability. For the F1 score, The LGB model is lower than that of MLP and XGB. Therefore, 
compared to LGB and MLP, XGB demonstrates superior generalization ability, undoubtedly 
making it more suitable for serving as the final predictive model. 
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Figure 9. The prediction results of internal quality of the aluminum alloy 319s semi-
solid die-castings by different models: (a) LGB, (b) XGB, (c) MLP, and (d) testing 
scores of validations of these models: ACC, AUC, F1. 

3.4. Interval feature results 

In order to understand the detailed relationship between casting quality and displacement of 
the plunger during die casting, the displacement between 50 and 86, which represents the start 
and end of filling the mold of semi-solid slurry, was divided into 36 intervals. Figure 10a 
presents four typical curves of pressure versus displacement, i.e., without internal defects 
(internal 1) and without external defects (external 1), without internal defects (internal 1) and 
with external defects (external 0), with internal defects (internal 0) and without external defects 
(external 1) as well with internal defects (internal 0) and with external defects (external 0).  

The injection pressure curves for different categories are compared in Figure 10b, along 
with the plunger position at the onset of pressurization. The orange boxed area in the picture 
represents a section after the slurry enters the gate. The pressure in this section can reflect the 
internal quality of the castings. At this point, the pressure mainly reflects the resistance during 
the cavity filling. The enlarged area in the picture shows pressure changes after entering the 
sprue. It is apparent that during the filling stage, poor internal quality correlates with high 
pressure. The greater the filling resistance, the more likely internal defects are to occur. 

For external defects, the green-boxed region holds significant influence. It is worth 
noting that the nodes of velocity-pressure conversion also wield considerable external 
impact, which confirms the necessity of individually extracting this data. As depicted in the 
figure, castings without noticeable external defects exhibit nodes quite early. When entering 
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the area of the green box on the left, the pressure values of different external quality classes 
have already begun to diverge. At this point, the pressure curve corresponding to the castings 
with better surface quality significantly increases, indicating the beginning of pressurization. 
If the temperature of the semi-solid slurry is high, resulting in a more considerable volume 
shrinkage, it manifests as a greater distance of movement of the piston after pressurization. 
Higher temperature semi-solid slurry results in better surface quality due to its stronger filling 
capability. If the temperature of the slurry is low, the flow may cease prematurely. Once grain 
coalescence forms a network, it significantly increases the resistance to filling, reflecting a 
rapid rise in pressure. In other words, the pressure values in the figure swiftly rise from below 
50 bar to 300 bar. Because the model can capture these key features and nodes during 
training, it can accurately assess the filling capacity of the slurry and provide a reasonable 
likelihood of defect occurrence. 

 

Figure 10. (a) The feature importance results are provided by the extreme gradient 
boosting (XGB), (b) corresponding die casting curves for four typical curves of 
pressure versus displacement.  

4. Conclusion 

The paper presents a quality prediction model for semi-solid die-cast components, leveraging 
displacement and plunger pressure as foundational parameters. The final verification results 
demonstrate that this prediction model can be applied to Al-Si alloys and SSP processes. In 
particular, some conclusions are summarized as follows:  
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(1) For data preparation, due to the introduction of data slicing and curve node extraction 
based on domain knowledge, important processing intervals corresponding to each casting 
can be accurately identified, which plays a crucial role in successfully identifying defective 
die castings. Training with selected data yields better results than with the raw data recorded 
by the three sensors. For accuracy (ACC) scores, internal diagnostic prediction improves by 
9.6%, while external diagnostic prediction improves by 53%. 

(2) These features were used for training and comparing eight machine learning 
algorithms. The best prediction effect obtained in the overall quality prediction is MLP, 
where the ten k-fold cross-validation accuracy score reaches 0.9238. In predicting 319s Al 
alloy quality, MLP and XGB models obtained equal results with additional conditions, and 
the ACC score is 0.8571. The generalizability of the model is proved, and it can be used to 
predict other alloy processing.  

(3) The feature importance analysis indicates that, in the proposed gating-pressure 
coordinate system, the filling pressure upon entering the gate can be correlated with the 
internal quality of the casting, while the V-P transition point during die casting reflects the 
external quality of the casting. To obtain castings with fewer defects and better surface finish, 
it is necessary to reduce the filling pressure and provide sufficient movement distance to the 
plunger after the V-P transition. Therefore, in semi-solid die casting, attention needs to be 
paid to the filling pressure and the V-P transition point. 

Supplementary data 

The data supporting the findings of this study are available within the paper. 
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