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Highlights:  

⚫ Distributed recycling and additive manufacturing (DRAM) offers a path to a circular economy. 

⚫ Custom colors can increase value of DRAM polymers. 

⚫ Open-source software named SpecOptiBlend developed to target specific recycled plastic colors. 

⚫ Waste plastic spectral reflectance taken, Kubelka-Munk theory initial estimate for color mixing. 

⚫  Nelder-Mead method gave optimal balance between precision of color differences and RMS. 

Abstract: Distributed recycling and additive manufacturing (DRAM) offer a unique promise for 

obtaining a circular economy. To maintain or even enhance the value of common 3D printing feedstocks 

like polylactic acid (PLA) waste an approach to further incentivize prosumers to use recycled feedstocks 

is to provide something the market currently does not—custom filament colors. To enable prosumers to 

create custom colors from their own recycled 3D printing waste this article presents a new open-source 

software named SpecOptiBlend. Specifically, this study introduces a novel method for customizing color 

filaments by recycling waste 3D printing samples, thereby enhancing the capabilities of color 3D 

printing. Traditional 3D printing is limited by a narrow range of filament colors, and even multi-color 

printing heads can utilize only a limited number of colored filaments among the available options. The 

new approach here repurposes discarded prototypes and unused samples back into the printing cycle 

with desired colors, allowing for a broader spectrum of colors and gradients. This enables engineers and 

designers to create more intricate and functionally graded materials. To do this, waste plastics are 

quantified after processing for spectral reflectance, then Kubelka-Munk theory provides the initial 

estimate for color mixing. Three discrete optimization techniques are applied: Nelder-Mead, Limited-

memory BFGS with bounds, and Sequential Least Squares Quadratic Programming. To determine the 
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optimal method, assessment criteria include the application of root mean square (RMS) and the color 

difference (ΔE CIE-2000). Three case studies were conducted, and the Nelder-Mead method was found 

to provide an optimal balance between the precision of color differences and the RMS, essential for 

producing high-quality colors. This research has provided a free tool that will now enable prosumers to 

convert their plastic waste into specific custom colors to enable DRAM. 

Keywords: waste plastic, opaque paints, color matching, spectroscopy, 3D printing 

1. Introduction 

Although materials extrusion 3D printing was historically used primarily for rapid prototyping, the creation 

of the open source self-replicating rapid (RepRap)   prototyper project reduced costs [4] to such a degree 

that true distributed manufacturing using commons-based peer production was possible [5]. In this model, 

prosumers (a portmanteau of producing consumers) [6,7] are able to select from millions of open source 

3D printable designs  and digitally replicate finished products for themselves using fused filament 

fabrication (FFF). As distributed production is so much more economically efficient, prosumers can easily 

justify the costs of desktop 3D printers by manufacturing only one product a week [8] for common 

household items over a year. In some cases the simple payback time is reduced to a weekend for specific 

products like scientific [9] or medical tool [10–12], a piece of an expensive hobby equipment like 

drones [13,14], or sporting goods [15]. Distributed 3D printing of high end tools and models is already 

supported by the NIH 3D Print Exchange [16,17] but also NASA 3D Resources and the Smithsonian 

X3D [18]. Prosumers are creating products for children from toys [19] and educational aids [20] to products 

for geriatrics like arthritic aids [21]. Based on downloaded substitution value and the number of downloads 

prosumers are already savings millions of dollars [22]. 

Unsurprisingly the global 3-D printing market is expanding rapidly and is expected to reach $7.7 

billion by 2024 [23]. As the number of RepRap-class 3D printers and compatible designs has exploded 

there have become concerns about the increasingly significant amount of 3D printing plastic waste, 

particularly of the most popular 3D printing plastics like polylactic acid (PLA) and polyethylene 

terephthalate glycol (PETG) being landfilled [24]. One approach to moving 3D printing waste into a 

circular economy [25] is to use distributed recycling for additive manufacturing (DRAM) [26]. Unlike 

traditional recycling that fails to provide economic incentives for consumers to recycle plastic DRAM 

enables consumers to save money by offsetting additive manufacturing (AM) feedstock, which costs ~$20/kg 

with their own waste. DRAM generally uses a type of recyclebot (waste plastic extruder) [27] to 

manufacture filament for FFF. DRAM has been demonstrated successfully with PLA [27,28] and 

PETG [29] and can provide 98% savings when used for replacing purchased products [22]. An issue, 

however, is that with each DRAM cycle the mechanical properties of the PLA [30] and PETG [29] 

degrade making it a lower value feedstock. To maintain or even enhance the value of PLA or PETG 

waste an approach to further incentivizing prosumers to use recycled feedstocks is to provide something 

the market currently does not—custom filament colors. Although the market provides dozens of filament 

colors, prosumers are limited to these colors, or the generally aesthetically displeasing colors that are the 

result of mixing many wastes [31]. 

Color plays a pivotal role in both the aesthetic appeal and functional performance of 3D printed 

objects [32]. For example, matte black filaments are often used for optics components to reduce spectral 
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errors from reflections. Traditional 3D printing methods often rely on a narrow palette of filament colors, 

which restricts the ability to replicate complex designs with accurate color fidelity. Moreover, 

discrepancies between intended and actual colors can affect not only the appearance, but also the 

functional properties of printed components, such as light absorption, thermal properties, and even 

mechanical strength in functionally graded materials [33]. 

Material extrusion in FFF involves the deposition of thermoplastic materials layer by layer to build 

objects. The molding principles of FFF are influenced by factors such as filament composition, extrusion 

temperature, nozzle diameter, and layer height, all of which can impact the final appearance and 

mechanical properties of the printed object. In terms of color reproduction, these factors play a critical 

role in how colors blend and how consistent the coloration is throughout the object. For instance, 

variations in extrusion temperature can cause color shifts due to thermal degradation of pigments or dyes 

within the filament [32]. In DRAM, the data flow characteristics involve the digital management of 

design files, material properties, and process parameters to ensure consistent production across 

decentralized locations [34]. Creation of specific colors based on the recycled plastics has never, 

however, been a target. 

To enable the potential to create custom colors from their own recycled 3D printing waste this article 

presents a new open-source software named SpecOptiBlend [35]. In SpecOptiBlend approach, the 

objective is to create a specific color through the mixture of various waste plastic constituents. Initially, 

individual waste plastics undergo shredding, and compression molding for quantification of their 

spectral reflectance. Then Kubelka-Munk theory [36] provides the initial estimate for optimization 

procedures. Then, three discrete optimization techniques are applied to determine the most suitable 

proportions of each color within the composite. These optimization methods consist of one primary 

Python library [37]. The methods involve the utilization of the “minimize” function from the SciPy 

library [38], employing three minimization techniques, namely Nelder-Mead [39], Limited-memory 

BFGS with bounds [40], and Sequential Least Squares Quadratic Programming [41]. To determine the 

optimal method, assessment criteria include the application of root mean square (RMS) and the color 

difference (DELTAE). First, RMS assesses a model’s prediction accuracy by measuring the average 

difference between predicted and actual values [42]. Second, DELTA E CIE-2000 [43], which is a 

standard measurement by the CIE (Commission Internationale de l’Eclairage, International Commission 

on Illumination) [44], quantifies color differences. CIE2000 is derived from CIELAB and incorporates 

weighting functions for lightness, chroma, and hue. Additionally, it features an interaction term between 

chroma and hue differences to enhance accuracy for blue shades, and a scaling factor for the CIELAB 

a* scale to boost performance when dealing with gray shades [45]. The preferred optimization method 

is determined by selecting the one with the lowest values in both metrics when they are computed 

through various optimization approaches. In this study, reflectance data from recycled 3D printed waste 

was processed and subjected to optimizations using a Python library, SciPy, and the Kubelka-Munk 

theory was employed to assess the initial proportions for commencing the optimization process. To 

identify the optimal algorithm, three distinct colors were selected as case studies and replicated using 

the reflectance data of available waste plastic materials.  
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2. Background 

Equation 1 illustrates the methodology for measuring DELTAE CIE2000. These metrics serve as reliable 

indicators of precision. 
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∆𝐿′, ∆𝐶′, and ∆𝐶′indicate the difference in lightness, chroma, and hue, respectively. KL, KC, and KH are 

weighting factors for the lightness, chroma, and hue differences, respectively. SL, SC, and SH are scaling 

factors for the respective terms and are used to adjust the sensitivity of the formula to lightness, chroma, 

and hue variations. They are based on the average values of lightness, chroma, and hue for the two 

samples being compared. RT is a rotation term that accounts for the interaction between chroma and hue 

differences in the blue regions of the color space. 

To blend waste plastics to reproduce a specific color the principles of subtractive color mixing are 

used. Subtractive color mixing takes place when a light source interacts with tangible substances like dyes. 

During this process, specific portions of the light spectrum are absorbed, while the remaining portions are 

reflected for human visual perception. For instance, when we consider red pigment, it absorbs all segments 

of the visible spectrum except for the red portion, which results in the perception of the color red. 

Subtractive color mixing is a complex process involving colorants and concentrations to create specific 

colors, which presents a significant predictive challenge [46]. Berns introduced a two-step approach: a 

linear model for spectral data and colorant components, emphasizing scalability and additivity, and 

linking user controls to colorant quantity to improve color mixing comprehension [47]. Figure 1shows 

subtractive mixing. 

 

Figure 1. Subtractive mixing of colors. 

Kubelka–Munk theory [48] has found application in modeling opaque paint mixtures, which is the 

closest analog for filament coloring. In this approach, the absorption and scattering characteristics of each 

colorant are employed to establish in a linear model. The equation for the two-constant Kubelka–Munk 

theory, featuring two independent scattering and absorption units for each color, is presented in equation 2: 

(
K

S
)

λ,mixture

=
ce,1kλ,1 + ce,2kλ,2 + ce,3kλ,3 + ⋯

ce,1sλ,1 + ce,2sλ,2 + ce,3sλ,3 + ⋯
 (2) 

Here, 𝑘𝜆 and 𝑠𝜆 represent the absorption (dB) and scattering (m2) characteristics of a colorant at a 

standardized quantity, while 𝑐𝑒,1  signifies the precise amount of each colorant. The choice of 

measurement units for these colorants may vary depending on the initial physical state of the samples. 
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In this particular case, as the samples consist of ground plastics, the unit of measurement adopted is 

grams. Furthermore, the conversion from the reflectance factor to the 𝑘 𝑠⁄
𝜆,𝑚𝑖𝑥𝑡𝑢𝑟𝑒  of each blend is 

depicted by: 

(
K

S
)

λ,mixture

=
(1 − Rλ,i)

2

2Rλ,i
 

(3) 

Through the process of combining precise quantities of individual colorants, measuring the resulting 

reflectance, and applying these mathematical formulations, a foundational framework will be established 

for initiating an optimization procedure aimed at determining the absorption and scattering coefficients of 

each colorant. Subsequently, this leads to the creation of a comprehensive tint ladder, encompassing various 

mixtures of individual colors and white colorants, each characterized by distinct concentration ratios [49]. 

To optimize this process, one effective approach involves employing the method of linear least 

squares [50]. This method entails generating various combinations of individual colorants and white 

substrate/colorant pairs, thereby establishing distinct linear equations for scattering and absorption 

properties of each mixture. Equations 4–6 illustrate an example of such a matrix equation. Through 

optimization, the values of K (absorption) and S (scattering) for each of the primary colorants can be 

derived, enabling the computation of the 𝑘 𝑠⁄
𝜆,𝑚𝑖𝑥𝑡𝑢𝑟𝑒  for custom mixtures of these colorants. 

Consequently, this can predict the reflection and, ultimately, the resultant color of these custom blends [50]. 

Xm,1 = −C1 (4a) 

Xm,2 = −C2 (4b) 

Xm,3 = −C3 (4c) 

Xm,4 = −C4 (4d) 

Xm,5 = −C1(K S⁄ )mix (4e) 

Xm,6 = −C2(K S⁄ )mix (4f) 

Xm,7 = −C3(K S⁄ )mix (4g) 

Xm,8 = −C4(K S⁄ )mix (4h) 

KSCOEFS = [

X1,1 ⋯ X1,8

⋮ ⋱ ⋮
Xm,1 ⋯ Xm,n

1 … 1

] (5) 
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KANDS =
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= (KSCOEFS′KSCOEFS)−1KSCOEFS′OBS (6) 

3. Methods and Instruments 

In the following sections, the color reproduction process will be explored through experimental 

procedures. The Kubelka-Munk [36] methodology will be examined to establish initial color 

proportions. The objective function, central to quality assessment, will be discussed alongside distinct 

error metrics. Optimization methods, boundaries for proportion refinement, and interpolation for 

reflectance data standardization will be detailed. 

3.1 Experiment 

In this study, eight different samples made from PLA were used from recycled 3D printing scrap. The 

samples are each identified by their color hex code, which is a means of representing colors in a format 

that computers can read and display. These samples included various colors: cyan (HEX Code- #0066D9), 

magenta (HEX Code- #F2306E), black (HEX Code- #080A0D), navy blue (HEX Code- #003776), 

green (HEX Code- #06924D), cream (HEX Code- #E5C8A2), purple (HEX Code- #6C47B2), and red 

(HEX Code- #E0191E). All samples were created using filaments from Polymaker [51]. First, these 

previously 3D printed samples were shredded using a shredder (Filabot Reclaimer 220VAC [52]). 12 mm 

diameter shredded plastic was transferred to the granulator to be reduced in size less than 10 mm. Then, 

the shredded plastics were transformed into rectangular prisms shapes through compression 

molding (Figure 2). Compression molding provides a simple method to form thermoplastic regrind into 

a solid with a consistent flat surface for subsequent spectroscopy. This process relies on the ability of 

thermoplastics to flow above their glass transition temperature to reform the regrind into a homogenous 

solid. To accomplish this, the plastic must first be loaded into a prepared mold and softened under 

elevated temperatures before applying an external pressure to force the melted plastic to adopt the 

internal shape of the mold. These molds must consist of a cavity matching the desired final plastic form 

and some form of a plug or punch to force the plastic into this cavity (Figure 3) [53]. 

To produce the desired spectroscopy blanks for this study, the mold consisted of 12 equally sized 

rectangular pockets measuring 1/2 inch × 1 inch and 1 inch in depth. Each pocket was associated with a 

plug with a slightly undersized footprint and a 1/2 inch height. This mold allowed a single compression 

process to produce an array of PETG or PLA color samples simultaneously at a reduced testing and 

cycle time. To complement this mold, an upper and lower “lid” of 1/8 inch aluminum was used to seal 

the plastic inside during compression molding while simultaneously allowing trapped air to escape. To 

process this mold, the open-source scientific press [54] was used which provided a 12 inch × 12 inch 
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upper and lower platen to heat the aluminum mold and melt the enclosed plastic charge. Once heated, 

the incorporated 4-ton hydraulic bottle jack was actuated to form the plastic into the mold.  

To prepare the mold, the colors of interest were first cut from waste PLA 3D prints into grounds 

just small enough to fit within the 1/2 inch × 1/2 inch × 1 inch pocket or shredded into smaller grain 

sizes for ease of mold loading [53]. Based on the volume of the mold and the density of the thermoplastic 

of interest, the required weight of plastic necessary to occupy the mold cavity was calculated and 

weighed out for each color. Due to the air gaps between plastic grains, the small footprint being loaded, 

and the depth of the cavity, the mold had to be filled and compressed in stages (Figure 3). 

 

Figure 2. Compressed waste plastic samples: Top row (left to right) - red, blue, black, gray; 

Bottom row (left to right) - dark purple, purple, white, and cream. 

 

Figure 3. Laser-cut aluminum mold used for sample production [53]. (A) Mold Lid X2, (B) ASTM 

D695 Mold, (C) Mold Plug X12 and (D) the open-source scientific hot press. 

As such, the cavity was nearly filled to the top surface of the mold and, once the hot press had 

reached the melting temperature of the plastic, the mold was placed between the two heated platens. The 

plastic was allowed to soften for approximately 5 minutes, before it was removed and the partially loaded 

cavities manually compressed (using clean pliers, a screwdriver, or similar handheld tool). The mold 

was topped up, returned to the hot press, and the process repeated until all weighed plastic was used. 

Once complete, a plug was placed inside each pocket, the remaining aluminum lid placed on top, and 
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the entire mold returned to the hot press. At this point, the hydraulic bottle jack was actuated, and the 

pressure increases until the mold was sealed. The system can apply pressures up to 0.38 MPa. The fully 

loaded mold was allowed to sit for up to 10 minutes to ensure the plastic had settled to form a 

homogenous brick, at which point the hot press was turned off. The samples were cooled under pressure 

to avoid warping before being ejected from the mold. Upon part removal, all flash was trimmed to 

prepare the sample for spectroscopy. It is important to note that all mold components were cleaned and 

scraped using acetone in between sample production to prevent color contamination from previous trials. 

Spectroscopy was used to obtain the reflectance spectrum of each of the samples [55]. The 

measurements produce a dataset of percent absorption (%) for wavelengths along the visible spectrum. 

The absorption measurement used an Ocean Insight HL-2000-LL light source, QR400-7- VIS-NIR fiber 

optic probe [56] and SR4 UV-VIS spectrometer. A reflection probe holder was 3-D printed (Figure 4) 

for the purpose of maintaining a constant distance and angle between the sample and probe (5cm and 90 

degrees between surface and probe). The probe was positioned at 90 degrees to the sample as 

recommended by the spectrometer manufacturer. Signal to noise ratio is reduced by keeping the sample 

as close to the probe as possible. After experimentation, 5 cm was determined to be a reasonable distance 

to maintain signal integrity and was used here. Ocean Insight software requires a reference sample 

reading and background reading before sample measurements can be taken [55]. A pure white PETG 

sample was used as the reference sample to maintain material consistency while only altering the color 

profile. The background reading was taken by placing the probe directly on a matte black surface while 

the light source was off. For samples, reflectance scans to average were set to 25 and boxcar width set 

to 25 for a total dwell time of 4 seconds. Three measurements were taken on different areas of each of 

the samples. Spectral data for each sample was obtained from the spectrometer, with reflectance values 

ranging from 0 to 100. The data, however, needs to be standardized with an even step size and reported 

in percentage format so it was exported into a spreadsheet and subsequent data analysis was performed 

using Python [37] using the whole wavelength interpolation code. After determining the color 

proportions, the samples were extruded using a ProtoCycler+ [57] recyclebot and molded one more into 

uniform cube shapes using the hot press to facilitate thorough blending. The reflectance measurements 

were then repeated.  

 

Figure 4. 3-D printed probe holder. 
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As a proof-of-concept the specific color, Western University purple, was used. It is represented by 

the hex color code #4F2683, and is characterized by RGB values of (79, 38, 131) [58]. Although purple 

is typically composed of cyan, magenta, and black (CMYK:40,71,0,49) [59], its exact composition may 

vary depending on the different shades and available colors. To ensure a precise match with the target 

sample, adjustments might be needed, such as the addition of white, black, or various shades of either 

blue or red, depending on the specific shade of purple. The case study demonstrates how to get any 

specific color. The novel color composed of waste plastic scraps is then extruded into filament to recreate 

the Western Purple. 

3.2. Kubelka-Munk 

Once the initial proportions are determined through the Kubelka–Munk methodology, an objective 

function is formulated, and initial guesses are defined for optimization through distinct optimization 

methods. The objective function [35], is used to assess and quantify the quality of color reproduction 

based on specified proportions of color components available. It operates by calculating an objective 

value that combines two fundamental error metrics: the RMS error and the ∆E error. The RMS error 

quantifies the overall disparity between the color predicted by the model and the target color. This is 

achieved by computing the square root of the mean of squared differences between corresponding color 

components. Simultaneously, the ∆E error measures perceptual differences between the predicted and 

target colors by transforming both into the LAB color space. This transformation considers LAB 

components L, a, and b and then measures CIE2000, enabling a comprehensive evaluation of perceptual 

differences. The objective function was independently formulated with the primary objective of 

minimizing both errors through experimentation with various divisions. The adjustments for color 

difference demonstrated minimal impact compared to RMS, indicating a greater emphasis on replicating 

the curves. Consequently, the objective function combines these error metrics, assigning different 

weights to each (0.9 for RMS and 0.1 for ∆E), to provide a unified measure of color reproduction quality. 

Thus, the algorithm targets the lowest RMS and ∆E simultaneously. Among the others, this algorithm 

was the optimum meaning that it neither had the highest or lowest of each evaluation metric. 

3.2 OS software 

This section discusses the experimental steps, including data interpolation, initial color proportion 

estimation using Kubelka-Munk theory, and the application of three optimization methods. These 

methods are compared based on RMS error and color difference (∆E) values, contributing to the 

exploration of color optimization in waste plastic transformation [35]. 

3.2.1. Interpolation 

To enhance data quality and achieve a uniform 10-nanometer step size for reflectance data, an 

interpolation function was employed for each color’s reflectance data. This function confines the 

wavelength range between 400 and 700 nanometers. The number of data points generated is determined 

by dividing the difference between the upper and lower bounds by 10, ensuring the desired 10-

nanometer intervals. For data points for a function f(x) at X1, X2, ..., Xn, to find the value of f(x) for a 

point 𝑥𝑖−1 < x < 𝑥𝑖, it is crucial to note that if the difference between xi and 𝑥𝑖, 𝑥𝑖−1, denoted as 𝑎𝑖, is 



Adv. Manuf.   Article 

 10 

relatively small, linear interpolation is accurate enough, especially when the function is continuous [60]. 

This approach can, however, introduce errors when the value change sharply. Figure 5 presents the 

reflectance data both before and after undergoing interpolation for three of the samples. As shown, 

interpolated curves exhibit a notably smoother appearance in comparison to curves before the operation.  

Figure 6 shows the available colors used in the experiments for the test after the interpolation. 

 

Figure 5. Reflectance curve for the colors red, pre- and post-interpolation for a) Red, b) Blue, and 

c) Purple samples. 
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Figure 6. Reflectance curve for the recycled colors after the interpolation. 

3.2.2. Functions 

Subsequently, the Kubelka-Munk theory was applied to derive initial estimations for each color’s 

proportions as the starting point for the optimization process. The Walowit [48] approach for Kubelka-

Munk theory was used to obtain the starting points for the mixtures. To perform this for each sample, a 

tint ladder was established, where the colors with white in six different concentration ratios: 0:100 (full 

white), 20:80, 40:60, 60:40, 80:20, and 100:0 (mass tone). In the optimization phase, all three methods 

were employed, and their results were compared to identify the one with the lowest RMS error and color 

difference ∆𝐸 values. The procedures for all optimization methods remained consistent and included the 

following steps. Initially, the dataset with a 10-nanometer step size was imported from a spreadsheet, 

and each color’s data was separated into individual columns. A function named ‘ref2lab’ was employed 

for the conversion of reflectance data into the CIELAB color space, which is essential for achieving 

consistent and precise color reproduction [61]. CIELAB, also known as CIE L*a*b*, represents a three-

dimensional, device-independent color space, facilitating the accurate measurement and comparison of 

all discernible colors through three color values [62]. Within this color space, numerical variations in 

values are indicative of the perceptible differences in color as perceived by humans. Utilizing the L*a*b* 

chart values, precise calculations enable the quantification of the difference between specific colors, 

known as delta (Δ) [63]. This calculation is done through ‘cal_delta_e’ function. To measure the RMS 

error, a ‘weighted_rms’ function was defined to return the root mean square between the weighted rms 

of the reconstructed and the actual curve. The blue region of the spectrum and the red region needed 

more attention compared to the mid-spectrum. Consequently, the proportion of the contributing colors 

are weighted during the optimization through the RMS. 

Next, a function named ‘objective function’ was used for evaluating the quality of a color matching 

process. Input proportions are multiplied by their corresponding curve, and a predicted color was 
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determined through weighted combinations of distinct color components. Subsequently, the RMS error 

and ΔE functions are called. The evaluation metrics were then harmonized by the objective function, 

with a 90% emphasis on the RMS error and a 10% emphasis on the ΔE error because it is important to 

reconstruct the same reflectance curve. This resulted in a single assessment value for the optimization 

and color matching procedures. 

3.2.3. Optimization methods 

The boundaries for each proportion are determined and the initial estimates obtained from the Kubelka-

Munk method are employed. In this process, all proportions are constrained within a range from 0 to 1. 

Subsequently, each of the selected optimization methods is individually applied to the objective function 

and the optimized proportions are utilized to reconstruct the new reflectance curve. A comparison is 

made between the reconstructed curve and the actual color’s reflectance data using RMS and ΔE as 

evaluation criteria.  

All optimization methods are from the SciPy [38] library and employ the ‘minimize’ function, 

offering three different minimization methods. These methods are capable of working with bounds and 

avoid returning negative quantities. In this study, returning negative values is physically impossible.  

The first method is ‘Nelder-Mead’, which utilizes the Simplex algorithm and is robust in various 

applications [39]. When reliable numerical derivatives are available, however, algorithms using first 

and/or second derivatives information might be preferred for their generally better performance [40]. 

The Nelder-Mead algorithm effectively minimized the objective function in the study [64], achieving 

small mean differences in profile dose in depth-dose in phase space optimization highlighting the 

algorithm’s simplicity and faster initial convergence. 

The L-BFGS-B (limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) method employs 

the L-BFGS-B algorithm to perform minimization with bound constraints [65,66]. 

SLSQP, sequential least quadratic programming, is valuable for process optimization but often 

requires many function evaluations [67].The core concept of SLQP is to create a simplified quadratic 

model during each iteration at Xk. This model is utilized to update Xk with the step Sk, and the approach 

can be readily expanded to incorporate inequality constraints [68]. 

3.2.4. Validation tests 

Three colors were selected to perform a validation test on the method to evaluate the real-world 

applicability of the optimized algorithm. This was employed to reconstruct: 1) Western University purple, 

2) Navy Blue [51] and 3) the pink petals of the wildflower bouquet LEGO set [69]. To verify the efficiency 

of the selected algorithms, all three algorithms were applied to reconstruct the three colors. The aim was 

to determine the best method among the proposed algorithms by finding the one that produces the least 

amount of error in terms of accuracy, as defined by the objective function. This experiment utilized the 

primary colors associated with subtractive mixing (Figure 1), as well as additional colors. There may be 

instances, however, where not all the necessary colors are available. Consequently, this study simulated 

this situation by reconstructing the case study target colors using only four colors.  

Figures 7–9 show a summary of the whole process. 
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Figure 7. A summary of data and sample preparations. 

 

Figure 8. A summary of how the software works. 

 

Figure 9. A summary of steps for reproduction of the colors with the proportions. 

4. Results and discussions 

Table 1 indicates the proportion of each sample output by the software to reconstruct the Western 

University purple. Table 2 presents the RMS and 𝛥𝐸 errors associated with each optimization technique 

in reproducing the Western Purple and Navy-blue color. Figure 10 and Figure 11 present reconstructed 

reflectance data alongside the target reflectance for all three algorithms, represented by the Western 

University purple and Navy-Blue samples, for comparison.  

Table 1. Ratios of individual colors to reconstruct Western Purple in various optimization methods 

with constraints ranging from 0 to 1. 

Color Method cyan magenta green navy blue black red light blue cream 

L-BFGS-B 2 × 10−4 2.08 × 10−1 0 8.65 × 10−2 1.04 × 10−1 2.7 × 10−3 6.68 × 10−1 0 

Nelder-Mead 1.2 ×10−3 2.23 × 10−1 2.1 × 10−1 3.9 × 10−2 2.9 × 10−3 3.3 × 10−1 7.31 × 10−1 1 × 10−4 

SLSQP 0.37 0.11 0.03 0.14 0.18 0.13 0.24 0.29 
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Table 2. RMS and Delta E values for various optimization methods to reconstruct Western Purple 

and Navy Blue. 

 Western Purple Navy Blue 

Optimization 𝛥𝐸 RMS 𝛥𝐸 RMS 

L-BFSG-B6 0.665 0.0396 2.874 0.0217 

Nelder - Mead 3 × 10−5 0.0241 1.2 × 10−4 0.0386 

SLSQP 8.4143 0.0821 3.628 0.0318 

 

Figure 10. Reconstruction of the Western Purple using three optimization algorithms. Insets: 

a) the reconstructed color using the plastics and b) the original purple (target) used to reproduce. 

Upon analyzing the outcomes and applying a custom function, it becomes evident that, for these 

colors, the Nelder-Mead minimization method in the SciPy library stands out as the preferable choice, 

despite not having the lowest values in both accuracy measures. To illustrate how this could be used, 

Figure 12 presents a comparison of the reconstructed curve with the actual measured sample for the 

Lego pink color. The DELTA E value recorded for this sample is 1.5 × 10−4, and the RMS error is 

0.0234, indicating minor discrepancies as clearly shown in Figure 12. 

Next the potential source colors were limited to better illustrate resource constrained settings. As a 

result of limiting the number of colors used to reconstruct the three case study colors, the accuracy of 

the outcomes diminished due to the reduced spectral data available for reconstruction across various 

parts of the spectrum. Nevertheless, it is feasible to achieve a nearly accurate result, but the accuracy 

improves as the number of source colors increases. Figures 13 and 14 show the reconstructed spectral 

curve of Western Purple and Navy Blue, respectively using only four samples. Table 3 indicates the 
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color difference and the RMS for these samples. The findings indicate that the Nelder-Mead algorithm 

remains the optimal choice even when limited to using only four samples. 

 

Figure 11. Reconstruction of the Navy Blue using three optimization algorithms. Insets: a) the 

original color used to reproduce and b) the reconstructed color using the plastics. 

 

Figure 12. Reconstruction of the LEGO pink using Nelder-Mead optimization algorithm. 

Insets: a) the petals of the flower used to reproduce and b) the reconstructed color using the 

recycled plastics. 
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A recommendation for industries is to compile a color palette encompassing all previously printed 

samples and record their reflectance data to develop a comprehensive dataset. This approach enhances 

the accuracy of reconstructions, as a larger data set provides more data for analysis. It is, however, 

important to consider the infill of the prints, as prints with low infill may not yield high-quality reflectance 

data. Therefore, it is advisable to ensure the infill is adequate before proceeding with measurements. 

Given the consistent objective function and initial guess across all optimization methods, the 

Nelder-Mead method stood out as the most efficient approach among the three libraries and eight 

combinations tested. It achieved the optimal level of error for both metrics and demonstrated exceptional 

computational efficiency and speed. Using this method coupled to DRAM will add to the literature 

moving forwards in sustainable manufacturing [70] and industry 4.0 [71]. 

Table 3. RMS And Delta E Values for Various Optimization Methods to Reconstruct Western 

purple and Navy Blue with 4 colors. 

 Western Purple Navy Blue 

Optimization 𝛥𝐸 RMS 𝛥𝐸 RMS 

L-BFSG-B6 6.5497 0.1408 4.880 0.0251 

Nelder–Mead 2.8239 0.1541 2.988 0.0292 

SLSQP 6.6889 0.1884 4.1529 0.0312 

 

Figure 13. Reconstruction of the Western Purple color using four colors (cyan, magenta, green, and 

black). The optimization methods employed are Nelder-Mead, L-BFGS-B, and SLSQP. Insets: a) the 

original purple used to reproduce and b) the reconstructed color using the mixture of recycled plastics. 
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Figure 14. Reconstruction of the Navy-Blue color using four colors (cyan, magenta, green, and 

black). The optimization methods employed are Nelder-Mead, L-BFGS-B, and SLSQP. Insets: a) 

the original purple used to reproduce and b) the reconstructed color using the recycled plastics. 

4.1. Limitations  

When employing waste plastic for reproduction of specific colors for 3-D printing, several challenges 

may arise. One of the primary challenges involves the potential variation in the spectral reproduction 

equation, contingent upon the availability and intensity of colors. For example, to replicate the color 

purple, the necessity of blue and red is apparent. For example, if the available blue color differs in terms 

of its shade or intensity, it is crucial to measure the spectra again and begin the optimization process 

afresh to determine the revised proportions. In some cases, achieving an exact match to the target color 

may be unattainable due to the absence of the necessary initial colors for reconstruction. For instance, 

in this study utilizing a green sample for spectral data reproduction can contribute to error reduction, as 

it involves measuring L*, a*, and b* values through RGB values, however, even in the absence of the 

green color, both errors remained minimal.  

The results here show the utility of the approach for three colors, future work could evaluate a 

broader range of colors to ensure that there were no issues from this approach to practical applications. 

For example, blending plastics with diverse materials necessitates the inclusion of additional substances 

to ensure their suitability for 3-D printing by imparting dependable physical properties [72]. This may 

cause challenges with measuring the color for the algorithm. 

In addition, the prudent practice of preparing and documenting the spectral data of available base 

samples at the outset facilitates color measurement and decision-making. This pre-existing database can 

expedite the process, particularly in cases where waste samples lack information or possess unclear 

material properties. Moreover, it helps with the time-consuming necessity of grinding, molding, and 
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individually measuring each sample as needed. It is recommended that manufacturers make this data 

available to their customers to help encourage recycling of their materials.  

It should be noted that even for a given color if manufacturers make it in a different way (e.g., 

different additives) and the color is truly different this method will work. This method would get a 

spectra for each filament/plastic from a given manufacturer. Then this value would be used to do the 

color mixing. The ratio that the software outputs may be different for different manufacturers if the color 

of their filaments differ. In addition, surface roughness can impact the refraction/reflection of light and 

thus impact color. This method does not completely control this effect. The way the colors are measured 

are all with a relatively flat low roughness surface from the press—but when printed these colors will be 

impacted by surface roughness. Future work is needed in this area. 

The method developed here worked, and could readily be applied to schools, libraries, community 

centers, makerspaces and fab labs because of the concentration of 3D printing waste, however it may be 

challenging for individual users. Although open-source spectrometers [73–76] exist, they are not readily 

available and still may be cost prohibitive for some families. Utilizing online tools for acquiring RGB 

values simplifies the process of deriving XYZ and subsequently CIELAB values of a color and could 

represent a limited solution to the problem. This method does not capture the spectral data, which 

contains critical information about a color’s saturation. In cases where only the target sample’s CIELAB 

values are available, the evaluation of color accuracy in optimization methods is confined to using color 

difference metrics. To validate this assertion, a color picker tool named Colorzilla [77] was used as a 

Google Chrome extension to ascertain the RGB values from Western University’s website. Attempting 

to reconstruct the color without spectral data resulted in a color difference of 12.097, indicating a 

substantial deviation from the actual color. The three optimizations functions all worked, but future work 

could also investigate the other minimization options available in the SciPy [38] library. 

A Delta E value of 12.097 indicates a noticeable color difference between two colors. The Delta E 

formula is a metric for understanding how the human eye perceives color difference. Therefore, a ΔE 

value of 12.097 means that the color difference is very apparent, and the two colors can be clearly 

distinguished from each other even without close examination. This level of difference is typically 

considered unacceptable in contexts where color matching is critical, such as in textile manufacturing, 

paint production, and digital media. The difference achieved by the SpecOptiBlend for all the three 

samples using the optimized algorithm, reached amounts close to zero. This indicated the closeness of 

the results to the actual colors. 

4.2. Future work  

A preference for employing a standardized white reference for reflectance measurement is suggested. In 

subsequent research, the inclusion of all fundamental colors, including cyan, magenta, yellow, black, 

red, green, and blue, is deemed advantageous, enhancing the potential for color reproduction. 

Furthermore, leveraging online color pickers enables the extraction of RGB values, facilitating their 

conversion to CIELAB. A comparative analysis can then be conducted between these CIELAB values 

and those resulting from the amalgamation of available colors with optimized proportions. 

The excellent results of this study demonstrate that custom colored AM feedstock can be made from 

waste plastic only during DRAM to create a higher value product by employing the open source 

SpecOptiBlend software released and demonstrated here. In the most eco-friendly form of DRAM, 
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prosumers create their own products using 3-D printing materials in their homes. This approach aims to 

minimize the energy and greenhouse gas emissions associated with product manufacturing [22]. DRAM 

is a versatile technology with global applicability, even in regions where recycling services are lacking, 

and in extreme cases, where electricity availability may be limited [8,78]. The latter of which can be 

overcome by the use of solar photovoltaic powered recyclebots [79,80] and 3-D printers [81–84]. DRAM 

holds the potential to influence global value chains, particularly as 3-D printing and localized 

manufacturing trends continue to reshape these chains. Lastly, it should be noted, a more effective 

method for DRAM has been introduced, which involves the direct extrusion of recycled plastic waste in 

3-D printing. This technique is known as fused granular fabrication (FGF) or fused particle 

fabrication (FPF) and has been demonstrated for a wide range of waste plastics [28,29,84–86]. In 

essence, it improves the efficiency of the DRAM process because the material only needs to be melted 

once. While it is feasible to implement FPF/FGF on desktop printers, this approach is more complex and 

better suited for larger plastic items. When considering greenhouse gas (GHG) emissions, substantial 

plastic products like furniture or building components, with extended lifecycles, serve as long-term 

carbon storage solutions and have the capacity to consume significant amounts of plastic waste [87]. 

Future work is needed to determine if the color customization approach demonstrated here with FFF can 

be adapted to FPF/FGF. There are other areas of future work. First, as it has been shown that color 

impacts mechanical properties [33], future work is needed to quantify the impacts of color targeting on 

the mechanical properties of the different waste plastic feedstocks. In addition, DRAM has been 

demonstrated for a wide array of waste plastics in addition to PLA/PETG and should be evaluated for 

SpecOptiBlend color picking. These plastics include: high-density polyethylene (HDPE) [87–89], low-

density polyethylene (LDPE) [90], acrylonitrile butadiene styrene (ABS) [78,83,84,87], polypropylene 

(PP) and polystyrene (PS) [88], thermoplastic polyurethane (TPU) [91], polyethylene terephthalate 

(PET) [92,93], and polycarbonate (PC) [94]. Finally, in DRAM one of the means of changing/improving 

properties of a material are with the use of additives such as waste wood [95], fiber [96,97], glass [98,99], 

carbon fiber [100], and blends [101,102]. The impacts of these additives on color optimization also need 

to be evaluated.  

5. Conclusions 

The open-source SpecOptiBlend software has shown remarkable effectiveness in producing customized 

colors from recycled plastics, addressing the prevalent issue of color inconsistency in recycling processes. 

This enhancement marks a significant step forward in integrating circular economy principles into 3D 

printing practices. A range of sophisticated optimization algorithms—Nelder–Mead, L-BFGS-B, and 

SLSQP—enabled the matching of colors using mixed waste plastics. Among these, the Nelder-Mead 

method stood out, striking an optimal balance between the precision of color differences (ΔE) and root 

mean square error (RMS), essential for producing high-quality colors. 

This research has provided a free tool that will now enable prosumers to convert their plastic waste 

into specific custom colors to enable DRAM. Future work could provide integration of online color 

identification tools to further refine color matching accuracy. Additionally, extending the range of 

recyclable plastics and incorporating different additives could improve the mechanical properties and 

fidelity of colors in recycled products. 
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