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Abstract: In this article, we propose and study an improved version of the cosine distribution.

Its main features are to be with support [−1,1], to be mainly asymmetric by construction,

and to be simple and flexible from a functional point of view, in particular, it retains the

cosine feature that allows it to generate oscillatory shapes and multimodes, to unify the cosine

distribution and the truncated exponential distribution, and to be used as a statistical model in

different scenarios involving data contained in [−1,1]. We provide the main theory, including

an expression of the key functions, quantiles and moments. Numerical work is carried out

to determine the main measures of skewness and kurtosis. The practicality of the proposed

distribution is illustrated with some data fitting scenarios, supported by graphical analysis.

Keywords: cosine distribution; asymmetric distribution; graphical analysis; reliability;
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1. Introduction

Distributions with bounded support are useful in several areas of research and practical

applications. They provide a balance between mathematical tractability and realistic modelling,

especially when the underlying phenomena have natural limits. Well-known bounded support

distributions include the beta distribution, the arcsine distribution, the Program Evaluation and

Review Technique (PERT) distribution, the uniform distribution, the Irwin-Hall distribution,

the Bates distribution, the logit-normal distribution, the Kumaraswamy distribution, the

logit-metalog distribution, the Marchenko-Pastur distribution, the (raised) cosine distribution,

the reciprocal distribution, the triangular distribution, the trapezoidal distribution, the truncated

exponential distribution, the truncated normal distribution, the U-quadratic distribution, the

von Mises distribution, and the continuous Bernoulli distribution. More details on the most

famous of them can be found in [1].

Note that only a few of the distributions mentioned above belong to the family of symmetric

distributions with support [−1,1]. The cosine distribution is an example, and perhaps one of

the least studied, despite its high quality in several aspects. In order to convey the motivations

of this article, a review of this singular distribution is necessary. As a first property, it is defined
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with the following Probability Density Function (PDF):

f (x) =


1
2
[1+ cos(πx)] if x ∈ [−1,1],

0 otherwise.

(1)

This PDF is symmetric about 0, i.e., f (x) = f (−x) for any x ∈ R, it is bell-shaped and has
support [−1,1]. For this reason, it is often considered a reasonable approximation of the PDF

of the standard normal distribution, but over [−1,1]. The cosine distribution has applications
in various fields such as signal processing and telecommunications. For the basics of it, we

can refer to [2–6]. Recent developments include [7], which provides its main mathematical

characterization, [8], which uses it to skew the normal distribution using the Azzalini scheme,

and [9], which explores a generalization by adding two tuning parameters.

Compared to the other finite support distributions, this cosine distribution has not received

much attention. In particular, we find no trace of an asymmetric version of it. Such a version

is of interest because most data found on bounded intervals such as [−1,1] do not satisfy the
symmetry assumption, making the cosine distribution (and other symmetric distributions)

inappropriate. The development of a simple asymmetric type of cosine distribution could

therefore provide a more flexible and accurate modelling tool for data that exhibit skewness or

other forms of asymmetry within [−1,1], thus filling a gap in current statistical methods.

This article aims to fill this gap by proposing the asymmetric cosine (AC) distribution.

It is defined by adapting an idea of [9] which consists in modulating the cosine term in the

PDF of Equation (1) with a tuning parameter, and considering a multiplicative one-parameter

exponential weight on the resulting function. This weight is the key to breaking the symmetry

while maintaining a certain simplicity. Some advantages of the AC distribution are: (i) it is

mainly asymmetric by construction, which is not so common for a distribution with support

[−1,1], (ii) it is simple from a functional point of view, while retaining the cosine feature that

allows to generate oscillatory shapes and multimodes, (iii) it unifies the cosine distribution and

the truncated exponential distribution (to be presented later), (iv) various estimation methods

can be applied to it quite efficiently, and (v) it can then be used as a statistical model in different

scenarios involving data contained in [−1,1]. In this article, we will support all these aspects
with theoretical and practical work. In particular, several data fitting scenarios are examined to

demonstrate the applicability of the AC distribution. The considered scenarios are simulated,

except for the last two, which use famous real data sets of air quality measurements in New

York and seismic events near Fiji.

The rest of the article consists of the following sections: Section 2 deals with the

presentation and study of the AC distribution. Some applications are given in Section 3. A

conclusion is given in Section 4.
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2. The AC distribution

The definition of the AC distribution and its main characteristics are discussed in this section.

2.1. Definition

We start by defining a valid PDF with support [−1,1]. We take our inspiration from Equation (1)

to derive an asymmetric cosine PDF.

Proposition 2.1 The following function defines a valid PDF:

f (x) =


Kα,β [1+α cos(πx)]eβx if x ∈ [−1,1],

0 if x 6∈ [−1,1],
(2)

where α ∈ [−1,1], β ∈ R and

Kα,β =



β (π2 +β 2)

2[π2 +(1−α)β 2]sinh(β )
if β 6= 0,

1
2

if β = 0.
(3)

We recall that sinh(x) = (ex − e−x)/2, for x ∈ R.
Proof. Clearly, for any x ∈R, f (x) is continuous, except perhaps for one or two values, which
are x = −1 and x = 1. For any x 6∈ [−1,1] we have f (x) = 0. For any x ∈ [−1,1], since
α ∈ [−1,1] and cos(πx) ∈ [−1,1], we have

1+α cos(πx)≥ 1−|α| ≥ 0.

Furthermore, it is obvious that eβx ≥ 0 for any β ∈ R. As a result we have f (x)≥ 0 for any

x ∈ R. Let us now prove that
∫+∞

−∞
f (x)dx = 1. We have∫ +∞

−∞

f (x)dx =
∫ 1

−1
f (x)dx = Kα,β

∫ 1

−1
[1+α cos(πx)]eβxdx.

To go on, for any a ∈R and b ∈Rwith (a,b) 6= (0,0), we need the following primitive formula:∫ x
cos(at)ebtdt =

ebx

a2 +b2 [bcos(ax)+asin(ax)]+C, (4)

where C denotes a certain generic constant. See [10, 2.663, item 3].
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For any β 6= 0, by applying Equation (4) with a = π and b = β , we obtain∫ 1

−1
[1+α cos(πx)]eβxdx =

∫ 1

−1
eβxdx+α

∫ 1

−1
cos(πx)eβxdx

=
1
β
(eβ − e−β )+α

{
eβ

π2 +β 2 [β cos(π)+π sin(π)]− e−β

π2 +β 2 [β cos(π)−π sin(π)]

}

=
1
β
(eβ − e−β )− αβ

π2 +β 2 (e
β − e−β ) = 2

(
1
β
− αβ

π2 +β 2

)
sinh(β )

=
2[π2 +(1−α)β 2]sinh(β )

β (π2 +β 2)
=

1
Kα,β

. (5)

For the case β = 0, we directly obtain∫ 1

−1
[1+α cos(πx)]dx =

∫ 1

−1
dx+α

∫ 1

−1
cos(πx)dx =

1
2
+α ×0 =

1
2
=

1
Kα,0

.

As a result, we have
∫+∞

−∞
f (x)dx = 1. All the conditions are met; f (x) is a valid PDF. �

We define the AC distribution with parameters α ∈ [−1,1] and β ∈ R by the distribution

with the PDF given in Equation (2). Thus, a random variable X having this distribution satisfies,

for any A ⊆ R, P(X ∈ A) =
∫

A f (x)dx, where P denotes the probability operator.

Let us now make some distributional remarks. By taking α = 1 and β = 0, the AC
distribution reduces to the cosine distribution. Furthermore, by taking α = 0, the PDF of the

AC distribution becomes

f (x) =


K0,β eβx if x ∈ [−1,1],

0 if x 6∈ [−1,1],

with β ∈ R and

K0,β =



β

2sinh(β )
if β 6= 0,

1
2

if β = 0,

which is the PDF of the truncated exponential distribution over [−1,1]. See [11]. Note that,
for the special case α = 0 and β = 0, we get the uniform distribution over [−1,1]. Combined

with the above statement, the AC distribution can thus be seen as a compromise between the

cosine distribution and the truncated exponential distribution over [−1,1].
Based on the PDF, the role of the parameter α is to modulate the cosine term, while the

role of β is to activate the exponential function, which is designed to break the symmetry of

the original cosine distribution. Indeed, for any β 6= 0 and any x ∈ [−1,1]/{0}, it is clear that

f (−x) = Kα,β [1+α cos(πx)]e−βx 6= Kα,β [1+α cos(πx)]eβx = f (x).
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Thus, thanks to the combined effects of α and β , the PDF of the AC distributions aims to

benefit from great flexibility, including varying symmetric and asymmetric shapes. This

is immediately apparent from a basic function analysis. In particular, we have the special

value f (0) = Kα,β (1+α), which shows a strong dependence on α and β . Furthermore,

the possible extremum(a) of f (x) obtained by solving f ′(x) = 0, which gives the following
complex equation:

α [β cos(πx)−π sin(πx)] =−β .

Since α ∈ [−1,1] and β ∈ R, with the oscillatory nature of the cosine and sine functions,

the explicit solution(s) of this equation has(have) no analytical expression. To support the

arguments of flexibility and asymmetry, we proceed with a graphical analysis using the

functionalities of the software R (see [12]).

Figure 1 shows a summary of the possible curves of the PDF of the AC distribution for

selected values of the parameters α and β .

Figure 1. Some curves of the PDF of the AC distribution for selected values of the

parameters α and β .

Many different shapes are observed. These include monotonic and non-monotonic shapes

with some ripples.

To visualize the role of α and β in these variations, Figures 2, 3, 4 and 5 complete this by

fixing one parameter, either α or β , and varying the other with positive values only on one

hand and negative values on the other.

Figure 2. Some curves of the PDF of theAC distribution for α = 0.6 and varying values of β .
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Figure 3. Some curves of the PDF of theAC distribution for α =−0.6 and varying values of β .

Figure 4. Some curves of the PDF of the AC distribution for β = 2 and varying values of α .

Figure 5. Some curves of the PDF of theAC distribution for β =−2 and varying values of α .

These figures show the flexibility of the AC distribution and also its rich panel of

asymmetric shapes depending on the values of α and β . This demonstrates the success of our

strategy of introducing varying asymmetry into the PDF of the cosine distribution.

We end this part by a secondary mathematical remark. The PDF of the AC distribution

can be expressed in different summation forms, presented below. First, basically, for any
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x ∈ [−1,1], we can write

f (x) = Kα,β eβx +αKα,β cos(πx)eβx.

We also can write

f (x) = f (x)|
α=1 +(α −1)Kα,β cos(πx)eβx.

More technically, using the formula

[1+α cos(πx)][1−α cos(πx)] = 1−α
2[cos(πx)]2 = 1−α

2{1− [sin(πx)]2},

we have

f (x) = Kα,β

{
1−α2

1−α cos(πx)
+

α2[sin(πx)]2

1−α cos(πx)

}
.

These diverse expressions can base the AC distributions on other existing distributions, or

create new ones that extend the scope of the AC distribution.

2.2. Key functions

The Cumulative Distribution Function (CDF) associated with theAC distribution is determined

in the result below.

Proposition 2.2 The CDF of a random variable X having the AC distribution with parameters

α ∈ [−1,1] and β ∈ R is given by

F(x) = P(X ∈ (−∞,x))

=



0 if x <−1

Kα,β

[
1
β
(eβx − e−β )+

α

π2 +β 2

{
eβx[β cos(πx)+π sin(πx)]+βe−β

}]
if x ∈ [−1,1],

1 if x > 1,

where Kα,β is given as Equation (3).

Proof. The value of F(x) for x <−1 and x > 1 are immediate consequences of the support

[−1,1] of the AC distribution. For any x ∈ [−1,1], we have

F(x) =
∫ x

−∞

f (t)dt =
∫ x

−1
f (t)dt = Kα,β

∫ x

−1
[1+α cos(πt)]eβ tdt.

Let us now proceed as in the proof of Proposition 2.1, using Equation (4) with a = π and
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b = β . We have∫ x

−1
[1+α cos(πt)]eβ tdt =

∫ x

−1
eβ tdt +α

∫ x

−1
cos(πt)eβ tdt

=
1
β
(eβx − e−β )+α

{
eβx

π2 +β 2 [β cos(πx)+π sin(πx)]− e−β

π2 +β 2 [β cos(π)−π sin(π)]

}
=

1
β
(eβx − e−β )+

α

π2 +β 2

{
eβx[β cos(πx)+π sin(πx)]+βe−β

}
.

So, by multiplication with Kα,β , we have

F(x) = Kα,β

[
1
β
(eβx − e−β )+

α

π2 +β 2

{
eβx[β cos(πx)+π sin(πx)]+βe−β

}]
.

The desired expression is obtained, ending the proof. �

Figure 6 shows a summary of the possible curves of this CDF for the same selected values

of the parameters α and β considered in Figure 1.

Figure 6. Some curves of the CDF of the AC distribution for selected values of the

parameters α and β .

Clearly, various concave and convex shapes are observed, validating the flexible nature of

the AC distribution.

Based on its CDF, we can examine the quantiles of the AC distribution. For any p ∈ [0,1],
the quantile of order p, denoted by xp, satisfies the equation F(xp) = p. Due to the complexity

of F(x), there is no closed-form expression for xp. Therefore, a numerical study needs to be

done. In the spirit of [9, Table 1], using the function uniroot of the software R, we provide a

table of values for selected values of the parameters α and β (the same ones considered in

Figure 1), and p. The results are given in Table 1.
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Table 1. Some quantiles of order p of theAC distribution for selected values of the parameters

α and β , and p.

p → 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α =−1, β =−10 −1.00 −0.99 −0.98 −0.97 −0.95 −0.93 −0.91 −0.89 −0.85 −0.79 1.00

α = 0.5, β = 1 −1.00 −0.42 −0.18 −0.02 0.13 0.26 0.39 0.52 0.67 0.83 1.00

α =−0.3, β =−0.7 −1.00 −0.91 −0.82 −0.71 −0.59 −0.44 −0.24 0.04 0.37 0.68 1.00

α =−0.7, β = 3 −1.00 0.49 0.63 0.72 0.78 0.83 0.87 0.91 0.94 0.97 1.00

α = 1, β =−1 −1.00 −0.59 −0.45 −0.34 −0.24 −0.15 −0.05 0.06 0.19 0.36 1.00

For example, considering α = 0.5 and β = 1, and p = 0.4, we have F(xp) = p for

xp = 0.13. This table shows the large variation in the values of the quantiles, and also that
they are quite calculable for all values of α ∈ [−1,1] and β ∈ R. It is also shown that a deep
numerical quantile analysis of the AC distribution is feasible, including the Bowley skewness

and the Moors kurtosis. See [13] and [14], respectively.

Still based on the CDF, we can define some useful reliability functions. In particular, the

survival function of the AC distribution is defined as

S(x) = 1−F(x)

=



1 if x <−1

1−Kα,β

[
1
β
(eβx − e−β )+

α

π2 +β 2

{
eβx[β cos(πx)+π sin(πx)]+βe−β

}]
if x ∈ [−1,1],

0 if x > 1.

The Hazard Rate Function (HRF) of the AC distribution follows as

h(x) =
f (x)
S(x)

=



0 if x <−1

Kα,β [1+α cos(πx)]eβx

1−Kα,β

[
(1/β )(eβx − e−β )+ [α/(π2 +β 2)]

{
eβx[β cos(πx)+π sin(πx)]+βe−β

}] if x ∈ [−1,1],

1 if x > 1.

We expect a certain variety of shapes for this function. This is confirmed in Figure 7,

where some of these curves are shown for selected values of the parameters α and β (the same

ones considered in Figure 1), with a small and a large view with respect to the y-axis to see all
the details.
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(a)

(b)

Figure 7. Some curves of the HRF of theAC distribution for selected values of the parameters

α and β for (a) y-axis ∈ [0,2] for zoom reasons, and (b) y-axis ∈ [0,30].

The HRF corresponding to the singular black curve is typical of that obtained with

trigonometric HRFs. See, for example, [15] in another distributional setting. TheAC distribution

can thus deal with standard and exotic HRFs inherent in data in [−1,1].

2.3. Moments

Since theAC distribution has bounded support, most moment measures exist. With this in mind,

we now examine the moment properties of the AC distribution, starting with the corresponding

moment generating function determined in the proposition below.

Proposition 2.3 The moment generating function of a random variable X having the AC

distribution with parameters α ∈ [−1,1] and β ∈ R is given by

G(s) = E(esX) = Kα,β
2[π2 +(1−α)(β + s)2]sinh(β + s)

(β + s)[π2 +(β + s)2]
, s ∈ R/{−β},

where E denotes the mathematical expectation operator and Kα,β is given as Equation (3).

Proof. We have

G(s) =
∫ +∞

−∞

est f (t)dt = Kα,β

∫ 1

−1
est [1+α cos(πt)]eβ tdt = Kα,β

∫ 1

−1
[1+α cos(πt)]e(β+s)tdt.

This last integral term was almost calculated in Equation (5); it is enough to replace β by β + s.
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We thus have

G(s) = Kα,β
1

Kα,β+s
= Kα,β

2[π2 +(1−α)(β + s)2]sinh(β + s)
(β + s)[π2 +(β + s)2]

.

This ends the proof. �

The special case s =−β will be considered in Proposition 2.6.

From this result, we easily derive the characteristic function of a random variable X having

the AC distribution; it is given as

ϕ(t) = E(eitX) = Kα,β
2[π2 +(1−α)(β + it)2]sinh(β + it)

(β + s)[π2 +(β + it)2]
, t ∈ R,

where i is the imaginary unit, i.e., satisfying i2 =−1.
In addition, as its name suggests, the moment generating function allows moments

of different orders to be derived. The moment of order 1, i.e., the mean, is calculated in

the result below.

Proposition 2.4 The mean of a random variable X having the AC distribution with parameters

α ∈ [−1,1] and β ∈ R is given by

µ1 = E(X) =
(β 2 +π2)β [π2 +(1−α)β 2]coth(β )− (1−α)β 4 −π2(α +2)β 2 −π4

β (β 2 +π2)[π2 +(1−α)β 2]
,

where Kα,β is given as Equation (3). We recall that coth(x) = cosh(x)/sinh(x), with cosh(x) =
(ex + e−x)/2, for x ∈ R.
Proof. We can use the relation that exists between the mean and the moment generating

function of X determined in Proposition 2.3, which is

µ1 = E(X) = G′(s)
∣∣
s=0 ,

where the derivative is taken with respect to s. After tedious manipulations, we get

G′(s) = Kα,β

{
− 2[π2 +(1−α)(β + s)2]sinh(β + s)

(β + s)2[π2 +(β + s)2]
− 4[π2 +(1−α)(β + s)2]sinh(β + s)

[π2 +(β + s)2]2

+
4(1−α)sinh(β + s)

π2 +(β + s)2 +
2[π2 +(1−α)(β + s)2]cosh(β + s)

(β + s)[π2 +(β + s)2]

}
.

Therefore, by taking this derivative at s = 0, we obtain

µ1 = Kα,β
2β (β 2 +π2)[π2 +(1−α)β 2]cosh(β )−2[(1−α)β 4 +π2(α +2)β 2 +π4]sinh(β )

β 2(β 2 +π2)2

=
(β 2 +π2)β [π2 +(1−α)β 2]coth(β )− (1−α)β 4 −π2(α +2)β 2 −π4

β (β 2 +π2)[π2 +(1−α)β 2]
.

This ends the proof. �

This result is completed with the result below, that determines the moment of order 2

associated with the AC distribution.
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Proposition 2.5 The moment of order 2 of a random variable X having the AC distribution

with parameters α ∈ [−1,1] and β ∈ R is given by

µ2 = E(X2) =
Qα,β

β 2(β 2 +π2)2[π2 +(1−α)β 2]
,

where

Qα,β = (1−α)β 8 +[3π
2 +2−2(1+π

2)α]β 6 +π
2[(6−π

2)α +3(2+π
2)]β 4

−2(β 2 +π
2)β [(1−α)β 4 +π

2(α +2)β 2 +π
4]coth(β )+π

4(6+π
2)β 2 +2π

6.

Proof. We can use the relation that exists between the moment of order 2 and the moment

generating function of X determined in Proposition 2.3, which is

µ2 = E(X2) = G′′(s)
∣∣
s=0 .

After tedious developments, we obtained the stated formula. For the sake of space, the details

are omitted. �

These moments are thus expressible, but remain of a certain mathematical complexity. From

a random variable X having theAC distribution, we can also derive the moment measures below.

• The variance of X is defined by V = E(X2)− [E(X)]2 = µ2 − (µ1)
2. It measures the

dispersion of X around its mean. From it, we can also derive the standard deviation of X
defined by σ =

√
V .

• The moment skewness is defined by

SK = E

[(
X −µ1

σ

)3
]
.

It measures the asymmetry of the distribution. A positive value for SK indicates a longer

tail on the right, while a negative value indicates a longer tail on the left. This measure

therefore helps to understand the direction and degree of asymmetry.

• The moment kurtosis is determined by

KU = E

[(
X −µ1

σ

)4
]
.

It measures the “tailedness” of the distribution. A high value for KU indicates heavy tails,

while a low value indicates light tails. This measure therefore helps to assess the extreme

nature of the deviations from the mean.

Obviously, SK and KU cannot be expressed simply. So we provide numerical work to

evaluate them.

In Table 2, we determine the values of these measures for selected values of α and β (the

same ones considered in Figure 1).
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Table 2. Some values of the moment measures associated with the AC distribution for

selected values of the parameters α and β .

µ1 V SK KU

α =−1, β =−10 −0.909 0.008 1.749 7.165

α = 0.5, β = 1 0.225 0.213 −0.362 2.431

α =−0.3, β =−0.7 −0.264 0.346 0.615 2.087

α =−0.7, β = 3 0.759 0.067 −2.781 14.035

α = 1, β =−1 −0.129 0.126 0.212 2.485

We see that SK can be positive, close to 0 or negative, and that KU can be small or large,

illustrating the adaptability of the AC distribution to different statistical scenarios.

We end this section with a secondary result on the expectation of some transformations of

a random variable X having the AC distribution.

Proposition 2.6 Let X be a random variable having the AC distribution with parameters

α ∈ [−1,1] and β ∈ R. Then the moment results below hold.

1. We have

E
[

1
1+α cos(πX)

]
=



π2 +β 2

π2 +(1−α)β 2 if β 6= 0,

1 if β = 0.
.

2. We have

E(e−βX) = 2Kα,β .

3. We have

E

[
e−βX

1+α cos(πX)

]
= 2Kα,β .

Proof. The proof is mainly based on the law of the unconscious statistician.

1. We have

E
[

1
1+α cos(πX)

]
=

∫ +∞

−∞

1
1+α cos(πx)

f (x)dx

=
∫ 1

−1

1
1+α cos(πx)

Kα,β [1+α cos(πx)]eβxdx

= Kα,β

∫ 1

−1
eβxdx =



π2 +β 2

π2 +(1−α)β 2 if β 6= 0,

1 if β = 0.
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2. We have

E(e−βX) =
∫ +∞

−∞

e−βx f (x)dx =
∫ 1

−1
e−βxKα,β [1+α cos(πx)]eβxdx

= Kα,β

∫ 1

−1
[1+α cos(πx)]dx = Kα,β

[
2+

α

π
(sin(π)− sin(−π))

]
= 2Kα,β .

3. We have

E

[
e−βX

1+α cos(πX)

]
=

∫ +∞

−∞

e−βx

1+α cos(πx)
f (x)dx

=
∫ 1

−1

e−βx

1+α cos(πx)
Kα,β [1+α cos(πx)]eβxdx = Kα,β

∫ 1

−1
dx = 2Kα,β .

The desired formulas are obtained. �

The rest of the article is devoted to the practicality of AC distribution.

3. Applications

Some examples of statistical applications of the AC distribution are now presented.

3.1. Parametric estimation

In practice, when the AC distribution may be appropriate for the analysis of some data, the

parameters α and β remain unknown. We therefore need to estimate them as best we can

from the data. A popular method for doing this is the maximum likelihood (ML) estimation.

Let us briefly introduce it. Let n be the number of data and x1, . . . ,xn be the data that we

know to be contained in [−1,1]. Then we define the likelihood function of the AC distribution

as Lα,β = ∏
n
i=1 f (xi) (where f (x) is the corresponding PDF) and its logarithmic version as

`α,β = ln(Lα,β ) = ∑
n
i=1 ln[ f (xi)]. Then the ML estimates (MLEs) of α and β , say α̂ and β̂ ,

are obtained as

(α̂, β̂ ) = argmax(α,β )∈[−1,1]×R`α,β .

These estimates can be determined in the R software using the function nlminb. Based on the

MLEs, we can estimate the PDF of the AC distribution using the following function:

f̂ (x) = f (x)|
(α,β )=(α̂,β̂ )

= K
α̂,β̂

[1+ α̂ cos(πx)]eβ̂x, x ∈ [−1,1].

Conceptually, this function must efficiently fit the shape of the normalised histogram of the

data. The accuracy of MLEs and f̂ (x) is well documented in the literature, even for n of

moderate value. More details on this aspect can be found in [16].

Two different criteria can be associated with this estimation: the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC). In terms of formulas, by taking

into account the setting of the AC distribution, the AIC is defined by

AIC = 2k−2 ˆ̀,
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where k denotes the number of parameters, i.e., k = 2, and ˆ̀ = `
α̂,β̂

, and the BIC is

calculated as

BIC = k ln(n)−2 ˆ̀.

TheAIC assesses the quality of the distribution by balancing the goodness of fit and complexity

of this distribution. It therefore favours distributions with lower AIC values. The BIC, on the

other hand, also assesses distribution fit and complexity, but imposes a stronger penalty on

complex distributions. Lower BIC values indicate better distributions. We again refer to [16].

Before presenting our applications, we should mention that any data can be normalized

between −1 and 1. For example, if y1, . . . ,yn denote n arbitrary data, for any i = 1, . . . ,n, we
can consider

xi = 2
yi −min(y1, . . . ,yn)

max(y1, . . . ,yn)−min(y1, . . . ,yn)
−1, (6)

in such a way that xi ∈ [−1,1]. Then x1, . . . ,xn are data contained in [−1,1] derived from

y1, . . . ,yn.

3.2. Data fitting scenarios

We now illustrate the interest of combining the AC distribution with the ML estimation to fit

some simulated data sets in different credible but hypothetical scenarios. Famous real data

sets of air quality measurements in New York and seismic events near Fiji are used in the last

two scenarios.

Note that due to the lack of asymmetric distributions with support [−1,1], the AC

distribution being one of the rare of its trigonometric type, we do not make any comparison

with other distributions, but we give the tools to do so in the future; the AIC and BIC are given

in all data fitting scenarios.

Scenario 1: We aim to analyze the performance of 13 different stocks. To do this, we use a

specific metric that measures the stock’s performance relative to the market. The measures

are standardized to vary between −1, indicating underperformance, and 1, indicating

strong outperformance. The range of [−1,1] is to facilitate comparison between different

stocks.The data are: 0.82, 0.45, 0.67, 0.91, −0.23, 0.74, −0.55, 0.63, −0.82, 0.29, 0.97,
−0.14, 0.50.
Figure 8 presents the violin plot of these data. We recall that a violin plot is a statistical

graph that combines aspects of a box plot and a kernel density plot to visualize the

distribution, underlying PDF and summary statistics of a data set. It shows the median,

quartiles and potential outliers, while also showing the full distribution of the data, often

through a mirrored density plot.

From this figure, we can see that the data are clearly not symmetric and there are no

outliers. The AC distribution is a potential candidate to fit them.
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Figure 8. Violin plot of the data in Scenario 1.

After performing the ML estimation to the AC distribution, we obtain α̂ =−0.4433735
and β̂ = 0.5433225, from which we derive the estimated PDF f̂ (x). Figure 9 shows

the normalized histogram of the data (with respect to the feature of a PDF) and this

estimated PDF.

Figure 9. Histogram of the data and estimated PDF of the AC distribution in Scenario 1.

This histogram is not symmetric, but the estimated PDF fits it well. In particular, the

rising bars are well captured. This demonstrates the ability of the AC distribution to fit a

wide range of data in [−1,1] beyond the symmetric feature, unlike the cosine distribution.

We also find that AIC = 18.97403 and BIC = 20.10393, which may be useful for further

model comparisons for the fit of other distributions based on these data.

Scenario 2: We are looking at normalized data from a study of temperature changes over a

43-year period. Each value therefore corresponds to the normalized change in temperature,

ranging from −1 for a significant decrease to 1 for a significant increase, for a given year

relative to the baseline temperature average.

The data are: 0.23, −0.45, 0.67, −0.81, 0.92, −0.13, 0.55, −0.72, 0.89, −0.34, 0.78,
−0.56, 0.41, −0.98, 0.62, −0.25, 0.87, −0.67, 0.73, −0.84, 0.29, −0.91, 0.48, −0.69,
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0.81, −0.52, 0.36, −0.77, 0.93, −0.18, 0.64, −0.63, 0.79, −0.47, 0.58, −0.88, 0.97,
−0.09, 0.71,−0.71, 0.85, −0.39, 0.53.
Figure 10 presents the violin plot of these data.

Figure 10. Violin plot of the data in Scenario 2.

From this figure, we can see that the data are of bimodal nature, and clearly not symmetric.

There are no outliers. The AC distribution is thus an option to fit them.

Applying the ML estimation to the AC distribution, we obtain α̂ = −0.6529136 and

β̂ = 0.1311314, from which we derive the estimated PDF f̂ (x). Figure 11 shows the

normalized histogram of the data and this estimated PDF.

Figure 11. Histogram of the data and estimated PDF of the AC distribution in Scenario 2.

We see that the estimated PDF fits the normalized histogram well. In particular, it captures

the bimodal nature of the data. We also find that AIC = 54.38732 and BIC = 57.90972,
which can be useful for further comparisons.

Scenario 3: We consider measurements of a physical quantity taken over 57 time points.

Each value is normalized to the range [−1,1], where a value around 0 is one of the data

points indicating a relatively low magnitude of the measured quantity. In this setting,

the variations in the data set reflect the natural fluctuations and dynamics of the physical
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system being observed.

The data are: 0.87, −0.92, 0.63, −0.15, 0.05, 0.33, −0.76, 0.41, −0.28, 0.11, −0.03,
−0.55, 0.72, −0.81, 0.95, 0.05, −0.47, 0.26, −0.69, 0.58, −0.34, 0.19, −0.22, 0.07,
−0.91, 0.81, −0.58, 0.69, −0.26, 0.47, −0.05, 0.34, −0.19, 0.22, −0.07, 0.91, −0.81,
0.58, −0.69, 0.26, −0.47, 0.05, −0.34, 0.19, −0.22, 0.07, −0.91, 0.81, −0.58, 0.69,
−0.26, 0.47, −0.05, 0.34, −0.19, 0.22, −0.07.
Figure 12 displays the violin plot of these data.

This figure shows relative symmetry in the data and there are no outliers. The AC

distribution may be close to symmetric, it is a potential candidate to fit it.

Figure 12. Violin plot of the data in Scenario 3.

Using the ML estimation for the AC distribution, we obtain α̂ = 0.33504720 and β̂ =

0.03106532. From these estimates, we derive the estimated PDF f̂ (x). Note that the
small value of β̂ makes the AC distribution close to the cosine distribution. Figure 13

shows the normalized histogram of the data and this estimated PDF.

Figure 13. Histogram of the data and estimated PDF of the AC distribution in Scenario 3.

The normalized histogram is well fitted by the estimated PDF. The main symmetry

is well captured, and a slight asymmetry to the left is also visible. We also find that
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AIC = 79.51153 and BIC = 83.59763, which can be useful for further comparisons.

Scenario 4: We have a series of measurements taken over time from a sensor array monitoring

environmental conditions in a laboratory. There are 49 values ranging from −1 to 1,

with some centered around 0 due to the stability of the environment, but with a slight

asymmetry due to occasional fluctuations caused by external factors.

The data are: 0.1, −0.5, 0.8, −0.2, −0.3, 0.6, −0.9, 0.4, −0.7, 0.3, 0.2, −0.4, 0.5, −0.1,
−0.6, 0.7,−0.8, 0.9,−0.05,−0.15, 0.25,−0.35, 0.45,−0.55, 0.65,−0.75, 0.85,−0.95,
0.01, −0.02, 0.03, −0.04, 0.05, −0.06, 0.07, −0.08, 0.09, −0.11, 0.12, −0.13, 0.14,
−0.16, 0.17, −0.18, 0.19, −0.21, 0.22, −0.23, 0.24.
Figure 14 displays the violin plot of these data.

Figure 14. Violin plot of the data in Scenario 4.

This figure shows a slight asymmetry in the data. There are no outliers. TheAC distribution

can therefore be considered as a statistical model for fitting them.

The ML estimation applied to the AC distribution gives α̂ = 0.64131018 and

β̂ =−0.04917237, and the estimated PDF f̂ (x) follows. Note that the small value of β̂

makes the AC distribution close to the cosine distribution, but with a slightly asymmetric

feature. Figure 15 shows the normalized histogram of the data and this estimated PDF.

Figure 15. Histogram of the data and estimated PDF of the AC distribution in Scenario 4.
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We see that the estimated PDF fits the main form of the normalized histogram, but it

slightly misses the mode around x = 0. We also find that AIC = 59.07445 and BIC =

62.85809, which can be useful for further comparisons.

Scenario 5: The data set under consideration contains 56 values. They represent certain

monthly temperature anomalies. Each value reflects how much warmer or colder a

particular month was compared to the long-term average. Furthermore, each value is

rounded to two decimal places and falls within the range [−1,1]. The data are: 0.15,
−0.72, −0.84, −0.98, 0.21, −0.45, −0.63, −0.57, −0.91, 0.03, −0.26, 0.47, −0.39,
−0.81, −0.62, −0.73, 0.68, −0.95, −0.14, −0.34, −0.58, 0.29, −0.67, 0.11, −0.92,
−0.76, −0.83, −0.53, −0.89, −0.42, 0.56, −0.69, 0.34, −0.24, −0.18, −0.93, −0.79,
−0.87, −0.97, 0.08, −0.51, −0.71, −0.66, −0.85, 0.39, −0.96, −0.31, −0.38, −0.59,
−0.64, −0.49, 0.16, −0.13, −0.75, 0.45, −0.82.
Figure 16 displays the violin plot of these data.

Figure 16. Violin plot of the data in Scenario 5.

This figure shows a strong asymmetry in the data, with a pronounced decreasing pattern

and no outliers. The AC distribution is therefore a valuable option for fitting these data.

Note that there are more negative values (which indicate colder anomalies) than positive

values (which indicate warmer anomalies).

Figure 17. Histogram of the data and estimated PDF of the AC distribution in Scenario 5.
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By performing the ML estimation for the AC distribution, we get α̂ = 0.08873247 and

β̂ =−1.49784924. From these estimates, we derive the estimated PDF f̂ (x). Figure 17
shows the normalized histogram of the data and this estimated PDF.

The decreasing pattern of the normalized histogram is well fitted by the estimated PDF.

We also find that AIC = 50.19003 and BIC = 54.24073. These values may be useful for

further distribution comparisons.

Scenario “real life” 6: We now consider at a real data set that includes air quality

measurements in New York from May to September 1973. It can be found in [17]. We

focus on the variable called wind, whose values are the average wind speed in miles per

hour at 0700 and 1000 hours at LaGuardia Airport. The data are contained in the data

set entiled airquality of the package datasets included in [18]. The data are airquality [,

3]: 7.4, 8.0, 12.6, 11.5, 14.3, 14.9, 8.6, 13.8, 20.1, 8.6, 6.9, 9.7, 9.2, 10.9, 13.2,

11.5, 12.0, 18.4, 11.5, 9.7, 9.7, 16.6, 9.7, 12.0, 16.6, 14.9, 8.0, 12.0, 14.9, 5.7,

7.4, 8.6, 9.7, 16.1, 9.2, 8.6, 14.3, 9.7, 6.9, 13.8, 11.5, 10.9, 9.2, 8.0, 13.8, 11.5,

14.9, 20.7, 9.2, 11.5, 10.3, 6.3, 1.7, 4.6, 6.3, 8.0, 8.0, 10.3, 11.5, 14.9, 8.0, 4.1,

9.2, 9.2, 10.9, 4.6, 10.9, 5.1, 6.3, 5.7, 7.4, 8.6, 14.3, 14.9, 14.9, 14.3, 6.9, 10.3,

6.3, 5.1, 11.5, 6.9, 9.7, 11.5, 8.6, 8.0, 8.6, 12.0, 7.4, 7.4, 7.4, 9.2, 6.9, 13.8,

7.4, 6.9, 7.4, 4.6, 4.0, 10.3, 8.0, 8.6, 11.5, 11.5, 11.5, 9.7, 11.5, 10.3, 6.3, 7.4,

10.9, 10.3, 15.5, 14.3, 12.6, 9.7, 3.4, 8.0, 5.7, 9.7, 2.3, 6.3, 6.3, 6.9, 5.1, 2.8,

4.6, 7.4, 15.5, 10.9, 10.3, 10.9, 9.7, 14.9, 15.5, 6.3, 10.9, 11.5, 6.9, 13.8, 10.3,

10.3, 8.0, 12.6, 9.2, 10.3, 10.3, 16.6, 6.9, 13.2, 14.3, 8.0, 11.5. We can normalized

these data between −1 and 1 using the transformation given in Equation (6) for a better

understanding. The normalized data (rounded to two decimals to ease the presentation)

are: −0.40, −0.34, 0.15, 0.03, 0.33, 0.39, −0.27, 0.27, 0.94, −0.27, −0.45, −0.16,
−0.21, −0.03, 0.21, 0.03, 0.08, 0.76, 0.03, −0.16, −0.16, 0.57, −0.16, 0.08, 0.57,
0.39, −0.34, 0.08, 0.39, −0.58, −0.40, −0.27, −0.16, 0.52, −0.21, −0.27, 0.33,
−0.16,−0.45, 0.27, 0.03,−0.03,−0.21,−0.34, 0.27, 0.03, 0.39, 1.00,−0.21, 0.03,
−0.09, −0.52, −1.00, −0.69, −0.52, −0.34, −0.34, −0.09, 0.03, 0.39, −0.34, −0.75,
−0.21, −0.21, −0.03, −0.69, −0.03, −0.64, −0.52, −0.58, −0.40, −0.27, 0.33, 0.39,
0.39, 0.33, −0.45, −0.09, −0.52, −0.64, 0.03, −0.45, −0.16, 0.03, −0.27, −0.34,
−0.27, 0.08, −0.40, −0.40, −0.40, −0.21, −0.45, 0.27, −0.40, −0.45, −0.40, −0.69,
−0.76, −0.09, −0.34, −0.27, 0.03, 0.03, 0.03, −0.16, 0.03, −0.09, −0.52, −0.40,
−0.03, −0.09, 0.45, 0.33, 0.15, −0.16, −0.82, −0.34, −0.58, −0.16, −0.94, −0.52,
−0.52, −0.45, −0.64, −0.88, −0.69, −0.40, 0.45, −0.03, −0.09, −0.03, −0.16, 0.39,
0.45, −0.52, −0.03, 0.03, −0.45, 0.27, −0.09, −0.09, −0.34, 0.15, −0.21, −0.09,
−0.09, 0.57, −0.45, 0.21, 0.33, −0.34, 0.03. Mention that the 8 decimal versions of

these data are used in the analysis.

Figure 18 displays the violin plot of these data.

This figure shows a slight asymmetry in the data. There are no outliers. The AC

distribution can therefore be considered as a statistical model for fitting them.
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Figure 18. Violin plot of the data in Scenario 6.

By performing the ML estimation for the AC distribution, we obtain α̂ = 0.8976948 and

β̂ =−0.8719438. From these estimates, we derive the estimated PDF f̂ (x). Figure 19
shows the normalized histogram of the data and this estimated PDF.

Figure 19. Histogram of the data and estimated PDF of the AC distribution in Scenario

“real life” 6.

The bell-shape form of the normalized histogram is well fitted by the estimated PDF. We

also find that AIC = 129.5582 and BIC = 135.6191. As for the previous scenarios, these
values may be useful for further distribution comparisons.

Scenario “real life” 7: The data set entiled quakes of the package datasets included in [18]

contains the locations of 1000 seismic events (with “MB > 4”). The events have occurred

in a cube near Fiji since 1964. The source in the package datasets indicates: “This is one of

the Harvard PRIM-H project data sets. They in turn obtained it from Dr. JohnWoodhouse,

Dept. of Geophysics, Harvard University”.We consider the following variables:

(i) Latitude of event, corresponding to quakes [, 1],

(ii) Depth (km), corresponding to quakes [, 3],

(iii) Richter magnitude, corresponding to quakes [, 4],
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(iv) Number of stations reporting, corresponding to quakes [, 5].

An interesting feature of these variables is that they are of different nature and give rise to

different data repartitions (distributions) of the corresponding observations. We therefore

show that the AC distribution, with appropriate statistical treatment, is able to adapt to

these situations. For each of the variables, the data are normalized between −1 and 1
using the transformation given in Equation (6). The analyses using the AC distribution

are given below.

(i) Latitude of event: For the normalized data associated with the event latitude variable,

we display the associated violin plot in Figure 20.

Figure 20. Violin plot of the data in Scenario “real life” 7, variable Latitude of event.

This figure shows a pronounced asymmetry in the data, with no outliers. The AC

distribution can therefore be considered as a statistical model to fit the data.

Figure 21. Histogram of the data and estimated PDF of the AC distribution in Scenario

“real life” 7, variable Latitude of event.

Applying the ML estimation for the AC distribution, we obtain α̂ = 0.8910731 and

β̂ = 1.9753401. From these estimates, we derive the estimated PDF f̂ (x). Figure 21
shows the normalized histogram of the data and this estimated PDF.
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The left-skewed form of the normalized histogram is well fitted by the estimated PDF. We

also find that AIC = 729.5456 and BIC = 739.3611, which can be used to compare

distributions in the future.

(ii) Depth: For the normalized data associated with the depth variable, we show the

associated violin plot in Figure 22.

Figure 22. Violin plot of the data in Scenario “real life” 7, variable Depth.

There is a bimodal nature to the data, with no outliers. We can consider using the

AC distribution to fit these data.

Performing the ML estimation for the AC distribution, we obtain α̂ =−0.6887218
and β̂ = −0.3256738. From these estimates, we derive the estimated PDF f̂ (x).
Figure 23 shows the normalized histogram of the data and this estimated PDF.

Figure 23. Histogram of the data and estimated PDF of the AC distribution in Scenario

“real life” 7, variable Depth.

The bimodal normalized histogram and gap are well fitted by the estimated PDF. We

also find that AIC = 1078.040 and BIC = 1087.855, which can be used to compare

distributions in the future.

(iii) Richter magnitude: For the normalized data associated with the Richter magnitude
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variable, we display the associated violin plot in Figure 24.

Figure 24. Violin plot of the data in Scenario “real life” 7, variable Richter magnitude.

From this figure, the asymmetry of the data appears. There are no outliers. The AC

distribution is therefore designed to fit these data.

Applying the ML estimation for the AC distribution, we obtain α̂ = 0.8459064 and

β̂ =−3.4211091. From these estimates, we derive the estimated PDF f̂ (x). Figure 25
shows the normalized histogram of the data and this estimated PDF.

Figure 25. Histogram of the data and estimated PDF of the AC distribution in Scenario

“real life” 7, variable Richter magnitude.

The right-skewed form of the normalized histogram is well fitted by the

estimated PDF. However, the mode is not fully captured. We also calculate

AIC = 432.5153 and BIC = 442.3309, which can be used to compare distributions

in the future.

(iv) Number of stations reporting: For the normalized data associated with the

number of stations reporting variable, we present the associated violin plot in

Figure 26.
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Figure 26. Violin plot of the data in Scenario “real life” 7, variable Number of stations reporting.

From this figure, the decreasing pattern of the data is obseved. There are no outliers.

The AC distribution is therefore suitable to fit these data.

Using the ML estimation for the AC distribution, we obtain α̂ = −0.08068575 and

β̂ =−2.40712454. From these estimates, we derive the estimated PDF f̂ (x). Figure 27
shows the normalized histogram of the data and this estimated PDF.

Figure 27. Histogram of the data and estimated PDF of the AC distribution in Scenario

“real life” 7, variable Number of stations reporting.

The decreasing form of the normalized histogram is well fitted by the estimated

PDF. We also find that AIC = 76.39319 and BIC = 86.20870, which can be used to
compare distributions in the future.

4. Conclusion

In this article, we introduced a modified version of the cosine distribution that is designed to

capture asymmetry in data in [−1,1]. It is called the asymmetric cosine (AC) distribution. From

a theoretical point of view, we have determined its key functions, highlighting the remarkable

flexibility of their shapes, studied the quantiles and carried out a complete moment study. A
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statistical part is given on simulated data considered in different credible scenarios, and real

data scenarios on air quality and seismic events. It is shown that the AC distribution can be

considered as a serious option to fit a wide panel of data with values in [−1,1], regardless of
their asymmetry pattern. Multimodality is also covered by the AC distribution.

To the best of our knowledge, this was the first attempt to make the cosine distribution

more adaptable to practical scenarios involving asymmetry in the data. Much more can be

done on the applied aspects, in particular the application of the AC distribution to fit more

real data, its comparison with other comparable asymmetric distributions with support [−1,1]
(which is still very rare in the current literature), its consideration in regression-type models,

and also its use in modern statistical methods in machine learning, among others.

A possible parallel work can be to use the AC distribution to construct other distributions.

For example, based on a random variable X having the AC distribution, we define a new

distribution with support [0,1] by considering that of Y = (1+X)/2. It is represented by the
following modified PDF:

f?(x) = 2 f (2x−1) =


2Kα,β [1−α cos(2πx)]eβ (2x−1) if x ∈ [0,1],

0 otherwise.

We believe that it is of real interest because we have transferred the flexibility of the PDF of

the AC distribution to the interval [0,1], opening up some modelling options for the analysis

of data contained in this interval, such as proportions, frequencies and percentages. For this

reason, such distributions have attracted some interest in recent years. See, for example, [19]

and [20]. There are perspectives that we have left for future work.
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