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Abstract: Inflammation is the body’s response to infection, injury, or other stimuli. Acute
inflammation is a crucial component of the immune system’s defense, aimed at eliminating
infected or damaged cells and halting disease progression. A subtle interaction between pro-
and anti-inflammatory processes determines its progression to inflammation resolution or to
chronic inflammation. In this study, we propose a generic model of inflammation through a
system of reaction-diffusion equations involving various inflammatory and anti-inflammatory
cells and cytokines. We investigate the formation of patterns, determined by the emergence of
Turing structures, through linear stability analysis and numerical simulations. These theoretical
findings are further supported by observations of similar patterns in skin diseases.
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1. Introduction

1.1. Biological background

Inflammation is an important mechanism participating in the immune response to harmful
stimuli. Many cellular and molecular pathways are activated during the inflammatory process [1].
Inflammation has some disease-specific features, but the mechanism of the immune response
is generic [2]. It starts with the identification of primary stimuli by cell surface patterns
recognition receptors (PRRs). PRRs are proteins whose role is to sense a specific type
of dangerous stimuli such as DAMPs (Damage-associated molecular pattern molecules) or
PAMPs (Pathogen-associated molecular pattern molecules). The recognition process leads to
the activation of intra-cellular signalling pathways such as NF-κB, MAPK and JAK-STAT
pathways which causes gene transcription activation on the cellular level. Therefore, numerous
inflammatory agents such as inflammatory cytokines and chemokines are released [3]. Then,
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immune cells migrate from the bloodstream to the region of inflammation [4]. After the set-up
of the immune response, inflammatory agents are mobilized in order to restore homeostasis
and to resolve inflammation. An effective anti-inflammatory process is needed to promote the
reduction of inflammation [5]. If sensors of blood-circulating monocytes do not detect stimuli,
monocytes are not recruited to the site of inflammation. Conversely, in cases of uncontrolled
inflammation, acute inflammation fails to stop tissue damage, leading to chronic inflammatory
conditions. This imbalance contributes to the progression of various inflammatory diseases
such as cancer [6], atherosclerosis [7] or skin diseases [8].

Figure 1. Scheme depicting the biological phenomena of inflammation including Th1-Th2
lymphocytes, monocytes, M1-M2 macrophages, C1-C2 cytokines and C3-C4 cytokines.
Inflammatory cytokines C3 (IL-6, IL-12, TNF-α) induce the influx of lymphocytes and
monocytes. Th1 produce C1 cytokines (IL-1β , IFN-γ) and promote differentiation
of monocytes into M1 macrophages. Similarly, Th2 produce C2 cytokines (IL-4,
IL-13) and promote differentiation of monocytes into M2 macrophages. Classically
activated macrophages (M1) and alternatively activated macrophages (M2) produce
respectively pro-inflammatory C3 and anti-inflammatory cytokines C4 (IL-10, TGF-β ).
C4 anti-inflammatory cytokines inhibit the production of pro-inflammatory cytokines and
the differentiation of monocytes into M1 macrophages.

In the process of immune response, immune cells perform significant and crucial functions.
A major step in the immune response is the recruitment of immune cells to the area of
inflammation such as T cells, lymphocytes and monocytes. T cells are a type of leukocytes that
differentiate into several subtypes such as T-helper cells Th1 and Th2 that regulate the maturation
of monocytes into macrophages [9]. Th1 cells are considered pro-inflammatory because they
secrete INFγ [10] to activate M1 type macrophages as shown in Figure 1. Classically activated
macrophages (M1) produce pro-inflammatory cytokines, promote elimination of affected tissue
cells, inhibits cell proliferation and causes the recruitment of additional immune cells to the
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inflammation site. Conversely, alternatively activated macrophages (M2 type) are induced by
Il-4 and IL-13 produced by Th2 cells [11]. Unlike M1 macrophages, M2 macrophages promote
cell repair and cells proliferation [12]. Similarly to macrophages, inflammatory cytokines can
be categorized into two types: pro-inflammatory and anti-inflammatory. Pro-inflammatory
cytokines, such as TNF-α , IL-12, and IL-6, are produced to enhance inflammation. In
contrast, IL-10, IL-4 and TGF-β are anti-inflammatory cytokines produced to down-regulate
inflammation [13] by inhibiting the production of pro-inflammatory cytokines [14, 15].

Inflammation plays a major role in skin diseases since it is essential for defending against
infection and injury but can also lead to chronic skin conditions when uncontrolled. For example,
acne results from inflammation of hair follicles and sebaceous glands [16]. Another important
example of skin diseases is eczema (atopic dermatitis) which touches one out of four school-aged
children [17] and causes the skin to become dry and itchy due to an overactive immune system
in response to allergens or irritants. The emergence of such diseases starts by the disruption
of the epidermal barrier of the human skin [18] and can be due to several risk factors such as
genetics, obesity and alcohol consumption [19, 20]. The effect of such disruptions leads to genetic
mutations and impairment of the epidermal barrier functions [21] that affect the functioning,
polarization of cells and the secretion of cytokines [19]. As a result, skin inflammation can arise
depending on a dysfunctional immune response and an excessive production of pro-inflammatory
cytokines by macrophages and dendritic cells [22, 23]. Atopic dermatitis is highlighted by an
abnormal immune response including enhanced type 2 inflammation correlated by overexpression
of inflammatory cytokines (IL-4 and IL-13). Type 2 inflammatory cytokines inhibit the expression
of epidermal proteins (FLG) and promote the itch-scratch cycle by activating neurons [24].
Hence, a dysfunction in the inflammatory processes induces loss of epidermal integrity, chronic
inflammation of the skin, and increased sensitivity to infections. As a result, many symptoms
appear on the skin such as red papules and plaques. Several treatment approaches are considered
in order to suppress the inflammatory process particularly the production of pro-inflammatory
cytokines. For example, SOCS proteins regulates the signaling of pro-inflammatory cytokines
through the modulation of the JAK/STAT pathway [23].

1.2. Modelling of inflammation

Theoretical modelling of inflammation is tackled by different approaches particularly the
study of inflammation initiation due to respiratory infections [25]. Authors present a system
of nonlinear ordinary differential equations to study the interactions between macrophages,
pro-inflammatory, bacteria and anti-inflammatory cytokines. The study shows that an
inflammatory state can set-up depending on the model parameters. According to [25],
anti-inflammatory cytokines helps to reduce the intensity of inflammation. Mathematical
modelling is a valuable tool to understand the interplay between pro-inflammatory and
anti-inflammatory signaling [26]. The study presents a mathematical model to describe the
interplay between Tumor Necrosis Factor (TNF) and IL-10 inflammatory cytokines in monocytes.
Based on experimental data collection, authors show the role of IL-10 early feedback in switching
the inflammation. Several studies describes the propagation of inflammation in tissue as a
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reaction-diffusion wave [27–29], in particular, in atherosclerosis models. The interplay between
macrophages, pro-inflammatory cytokines and oxidized low-density lipoproteins (ox-LDL)
triggers the set-up of inflammation. For example, authors in [29] study the early stages
of atherosclerosis through a mathematical model based on partial differential equations of
reaction-diffusion type. They examine the effect of anti-inflammatory processes on the disease
progression, finding that they can lead to plaque regression. Several studies have focused on
the effect of some key-players in order to understand the development of some diseases such as
the role of endothelial permeability in atherosclerosis [30] and the role of immune response in
colorectal cancer [31]. For example, authors in [31] propose a model to study colorectal cancer
growth and its response to chemo-immunotherapy. It shows how the immune system, namely the
pro-inflammatory cytokine IL-2, interacts with chemotherapy.

Some studies have tackled the role of mathematical modeling in the understanding and
describing the dynamics of skin diseases [32–35]. For example, authors in [32] emphasize
the importance of integrating experimental data and mathematical modeling to improve skin
research. Moreover, they suggest that the incorporation of mathematical studies can lead to more
effective and personalized treatments in the future via drug optimization. Authors in [33] developed
mathematical models based on partial and ordinary differential equations to study the role of
chronic inflammation in the epidermis. They suggest potential therapeutic strategies to manage
chronic inflammation by targeting specific components of the immune response in the field of
skin biology. Authors in [34] propose a model to study the role of immune cell in inflammation
with a focus on psoriasis (a chronic skin disease). By simulating cytokines production patterns,
the model predicts that small alterations in inflammatory cytokines production can lead to the
appearance of pathologic inflammatory levels. This model highlights that the feedback loop
interaction between immune cells and cytokines can lead to spatial patterns. An indicator of
such pattern formation is a high concentration of cytokines.

1.3. Pattern formation

Spatiotemporal patterns formation is widely manifested in various systems far from the
thermodynamic equilibrium and exchanging matter and energy with the environment [36]. A.
Turing suggested that organ formation in living organisms occurs due to the instability of a
spatially homogeneous state in a system of interacting chemicals (morphogens) distributed over
the growing embryo [37]. The non-homogeneous distribution of the concentrations of these
chemicals influences the behavior of cells leading to their differentiation and organ formation.
There are some experimental confirmations of this mechanism, in particular, for the growth
of birds’ feathers [38], for the branching pattern of lungs [39], the formation of fingers [40],
and the left-right asymmetry of body organs [41]. Authors in [42] study the development of the
mammalian lung through branching morphogenesis. They showed the role of Turing instability and
that the branching patterns are driven by high local morphogen concentration. Predicting the form
of the patterns has fascinated numerous researchers. In fact, several mathematical techniques are
implemented for such sake, such as the weakly nonlinear analysis [43–46]. For example, authors
in [43] study pattern formation in a two-dimensional domain for a reaction-diffusion system
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with nonlinear diffusion terms and competitive Lotka-Volterra kinetics. They show, using a
weakly nonlinear analysis, that the amplitude of equations can be derived to characterize pattern
dynamics. Moreover, they describe that the cross-diffusion is a essential in the formation of
several spatial patterns, such as rolls and hexagons. Authors in [46] examine the shape and
stability of axisymmetric stationary patterns in a reaction-diffusion-chemotaxis model. They
simulate skin lesions arising in acute inflammation by focusing on the interaction between
immune cell chemotaxis and cytokines concentration. The weakly nonlinear analysis further
clarifies how pro- and anti-inflammatory factors determine lesion shape since simulations
obtained align with clinical observations of skin rashes. Turing instability has been also
identified in many non-biological systems [47–50].

The conditions of the emergence of dissipative structures in a two-component systems
can be formulated in terms of short-range activation and long-range inhibition, since one
of the variables, referred to as a self-activator, should up-regulate its own production at the
uniform stationary state, and another variable should be a self-inhibitor, acting in the opposite
way. Moreover, the diffusion coefficient of the self-inhibitor should be sufficiently higher
than that of the self-activator. It is worth noting, that although this is the general concept for
emergence of Turing patterns in the systems with greater number of variables as well [51, 52],
another possibilities for Turing patterns formation exist in multi-component systems, that can
bypass the requirement of short-range activator and long-range inhibitor [53]. However, this
requirement is strictly necessary for two-component systems.

Pattern formation in biomedical models can be determined by different mechanisms. As
such, the interaction of inflammation and chemotaxis can result in formation of fatty streaks
in atherosclerosis [54]. Authors in [55] propose that pattern formation can happen through
combining chemotaxis and dynamics of anti-inflammatory cytokines. They suggest that spatial
patterns form as immune cells move towards higher concentrations of chemo-attractants with a
slow-inhibition anti-inflammatory process. Turing instability was suggested as the mechanism
of pattern formation in Crohn’s disease [56]. Authors proposed a reaction-diffusion system
modelling the immune response that triggers inflammatory bowel diseases. They showed
that under some conditions, an activator-inhibitor dynamic can be reproduced leading to the
appearance of Turing-type instabilities. In this work we study pattern formation in a generic
model of inflammation with short-range activation (inflammation) and long-range inhibition
(anti-inflammation) mechanism and discuss it in the context of skin diseases.

2. Model of immune response and inflammation

Inflammation as a part of the immune response includes several steps common for different
diseases. They are based on the interaction of different immune cells (monocytes, macrophages,
lymphocytes) and cytokines as described in Figure 1, in a part of the skin considered as an
open bounded domain Ω ⊂ R2. We formulate in this section a generic model of inflammation
and reduce it to a simpler two-equation model in order to perform its stability analysis. All
parameters of the model are taken to be non-negative.
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2.1. Generic model of inflammation

We formulate the model of inflammation for the concentrations of pro- and anti-inflammatory
monocytes (N1, N2), macrophages (M1, M2), lymphocytes (T1, T2), cytokines produced by
lymphocytes (C1, C2) and cytokines produced by macrophages (C3, C4). We employ a similar
technique as [29] for the construction of the model. All parameters are taken to be non-negative.
Equations for pro-inflammatory monocytes N1 and anti-inflammatory monocytes N2 are
considered in the following form:

dN1

dt
= λPN1

C3

k1P + k2PC3
N0

1 −λC1N1

C1

kC1 +C1 + k4C4
N1 −dN1N1, (2.1)

dN2

dt
= λPN2

C3

k1P + k2PC3
N0

2 −λC2N2

C2

kC2 +C2
N2 −dN2N2. (2.2)

The constants λPN1 and λPN2 characterize the rate of monocytes influx to the inflammation
site, N0

1 and N0
2 are the densities of the corresponding monocytes in blood, dN1 and dN2 are the

death rates of N1 and N2 monocytes. Cell influx depends on the concentration of inflammatory
cytokines C3 with saturation [57]. Thus, the first terms in the right-hand sides of these
equations represent the influx of monocytes from the blood [4], the second terms describe the
differentiation of monocytes into macrophages [58–60], and the third terms correspond to the
death of monocytes.

Next, in the equations for pro-inflammatory macrophages M1 and anti-inflammatory
macrophages M2

dM1

dt
= λC1N1

C1

kC1 +C1 + k4C4
N1 −dM1M1, (2.3)

dM2

dt
= λC2N2

C2

kN2 +C2
N2 −dM2M2, (2.4)

the first terms in the right-hand sides characterize the differentiation of monocytes into
macrophages [58–60] and the last terms dM1 and dM2 are the death rates of M1 and M2

macrophages, respectively.
Equations for T-helper cells T1 and T2 are as follows:

dT1

dt
= λPT1

C3

k1P + k2PC3
T 0

1 −dT1T1, (2.5)

dT2

dt
= λPT2

C3

k1P + k2PC3
T 0

2 −dT2T2. (2.6)

They model the influx of T-cells from the blood (similar to monocytes) [61] and death of
T-cells. Here λPT1 and λPT2 are the rates of cell penetration, T 0

1 and T 0
2 are the densities of T1

and T2 cells in blood, dT1 and dT2 are the death rates of T1 and T2 cells.
Equations for cytokines C1 produced by T1 cells (IFN-γ , IL-1β ) and C2 (IL-4, IL-13)

produced by T2 cells
dC1

dt
= λC1T1 − kC1N1C1N1 −dC1C1, (2.7)
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dC2

dt
= λC2T2 − kC2N2C2N2 −dC2C2 (2.8)

describe production of cytokines C1 and C2 by T-lymphocytes with the rates λC1 and λC2 . They
promote the differentiation of N1 and N2 monocytes into M1 and M2 macrophages with rate
constants kC1N1 and kC2N2 and consumed (internalized) due to this interaction [59]. The third
terms correspond to the degradation of cytokines with the rate constants dC1 and dC2 .

Equation for pro-inflammatory cytokines (IL-6, IL-12 and TNF-α) produced by macrophages:

dC3

dt
= λC4M1

1
kC4 +C4

M1 −dC3C3. (2.9)

Macrophages M1 produce pro-inflammatory cytokinesC3 with the rate constant λC4M1 activating
endothelial cells [59]. The second term corresponds to the degradation of cytokines with
the rate dC3 . Anti-inflammatory cytocines C4 downregulate C3 production. Equation for
anti-inflammatory cytokines (IL-10 and TGF-β ) produced by macrophages:

dC4

dt
= λC4M2 −dC4C4. (2.10)

M2 macrophages produce anti-inflammatory cytokines C4 with rate λC4 [58, 59, 62]. They prevent
cell penetration in the tissue. The second term corresponds to the degradation of these cytokines.
Positivity, boundedness and existence of solutions
In this section, we study the existence, uniqueness, positivity and boundedness of the solution
for the system of equations (2.1)-(2.10).
Lemma 2.1. For any non-negative initial condition (N1(0),N2(0),M1(0),M2(0),T1(0),T2(0),
C1(0),C2(0),C3(0),C4(0)), the system (2.1)-(2.10) has a unique global solution which is bounded.

Proof. Existence and uniqueness of a local solution are straightforward from the
Cauchy–Lipschitz theorem for ordinary differential equations. For the positivity of solutions,
consider the vector field F = ( f1, ..., f10) for x = (x1, ...,x10) ∈ R10 given by

f1(x) = λPN1
x9

k1P+k2Px9
N0

1 −λC1N1
x7

kC1+x7+k4x10
x1 −dN1x1,

f2(x) = λPN2
x9

k1P+k2Px9
N0

2 −λC2N2
x8

kC2+x8
x2 −dN2x2,

f3(x) = λC1N1
x7

kC1+x7+k4x10
x1 −dM1x3,

f4(x) = λC2N2
x8

kN2+x8
x2 −dM2x4,

f5(x) = λPT1
x9

k1P+k2Px9
T 0

1 −dT1x5,

f6(x) = λPT2
x9

k1P+k2Px9
T 0

2 −dT2x6,

f7(x) = λC1x5 − kC1N1x7x1 −dC1x7,

f8(x) = λC2x6 − kC2N2x8x2 −dC2x8,

f9(x) = λC4M1
1

kC4+x10
x3 −dC3x9,

f10(x) = λC4x4 −dC4x10,

and observe that F satisfies the quasi-positivity property, that is, for all indices i ∈ {1, ...,10}
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we have
∀(x j) j ̸=i ∈ (R+)9, fi(x1, ...,xi−1,0,xi+1, ...,x10)≥ 0.

Thus, from Proposition 2.1 in Haraux [63], we conclude that the solution remains
non-negative because of this property.

The solution is bounded because from the fourteenth equation of system (2.1)-(2.10), we
can conclude that under the assumption that M2(0)> 0 and if C4 is large enough then dC4

dt < 0
and, therefore, C4(t) remains bounded. By reapplying the same argument, we subsequently
conclude the same result for the rest of the variables of the system. Since the solutions of
system (2.1)-(2.10) are bounded, they are defined for all t > 0.

2.2. Reduced inflammation model

In order to study pattern formation in the model of inflammation, we will formally reduce
system (2.1)-(2.10) to a system of two equations. This reduction is based on the approximations
of detailed equilibrium for some variables (fast and slow variables) and on the assumption
that some constants are small (kC1N1 ,kC2N2) and the corresponding terms can be neglected
(k2P). The effect of C1 and C2 cytokines in the differentiation of monocytes to macrophages
are neglected. In fact, the differentiation of monocytes into macrophages is described as a
slow and progressive event [64]. The development of inflammation directly influence the
differentiation of T-cells [65] leading to a rapid increase in their concentrations, hence we
neglect the saturation in the influx of T-helper cells. The simplified model provides a starting
point for further investigations of the complete model without these assumptions.

Equating zero the right-hand side of equation (2.3), we get

M1 =
λC1N1

dM1

C1N1

kC1 +C1 + k4C4
. (2.11)

Similar, from equation (2.4),

M2 =
λC2N2

dM2

C2N2

kN2 +C2
. (2.12)

From equations (2.7), (2.8) for kC1N1 = kC2N2 = 0,

C1 =
λC1

dC1

T1 , C2 =
λC1

dC1

T2 . (2.13)

Next, approximating P by C3, we get from equations (2.5) and (2.6) for k2P = 0:

T1 =
λPT1T 0

1
k1PdT1

C3 , T2 =
λPT2T 0

2
k1PdT2

C3 . (2.14)

As before, we find from equations (2.1), (2.2):

N1 =
λPN1N0

1
k1PdN1

C3 , N2 =
λPN2N0

2
k1PdN2

C3 . (2.15)

8



Asymmetry Article

Finally, substituting all these relations in equations (2.9), (2.10) we get:

dC3

dt
=

a1C2
3

1+a2C3 +a3C4
−σ1C3, (2.16)

dC4

dt
=

b1C2
3

1+b2C3
−σ2C4, (2.17)

where parameters ai, bi, σi can be expressed through the original parameters. This model will
be analyzed in the next section.

3. Pattern formation

3.1. Analysis of non-spatially-distributed system

Denoting for convenience A = C3, B = C4, we obtain the non-spatially-distributed system,
considered in this section: 

dA
dt

=
a1A2

1+a2A+a3B
−σ1A,

dB
dt

=
b1A2

1+b2A
−σ2B,

(3.1)

all the parameters of which are positive. The nullclines of the system (3.1) are

A = 0 , B =
1
a3

((
a1

σ1
−a2

)
A−1

)
,

B =
b1A2

σ2(1+b2A)
.

(3.2)

The first nullcline, referred to as A-nullcline, is a pair of lines, intersecting at (0,−1/a3).
The second nullcline, B-nullcline, is a hyperbola with the asymptotes A = −1/b2, always
situated in the left half-plane, and B = (b1/b2σ2)A−b1/b2

2σ2, always has a positive slope and
intersects the ordinate axis in the lower half-plane. B-nullcline goes through the point (0,0),
touching the abscissa axis at it, and it has a positive second derivative equal to 2b1/σ2.

The system (3.1) has a stationary state (0,0) for all values of parameters. As Figure 2
illustrates, depending on the values of parameters, the system can have one or two stationary
states in the first quadrant, where the solutions have physical meaning. Note that the phase
vectors are not defined at the lines A = −1/b2 and B = −(1+ a2A)/a3 where one of the
denominators of system (3.1) vanish, but they do not belong to the first quadrant.
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a) b)

c) d)

Figure 2. Phase portraits of the system (3.1) under the values of parameters a2 = a3 = b2 =
σ1 = σ2 = 1, b1 = 4 and a1, equal to a) 4, b) 4.2, c) 6, d) 5. Red lines are A-nullclines,
green solid lines are B-nullclines, green dashed lines are its asymtpotes. Gray solid lines are
abscissa axes, gray dashed lines along with the vertical asymptotes are the sets, where the
phase vectors are not defined.

In order to identify the parameter region, where the system has one or two stationary states
in the first quadrant, it is useful first of all to retrieve the conditions, under which the nullclines
touch each other in the first quadrant. They can be obtained by consideration of the following
system, which respresent the conditions, that the nullclines have the same first derivative at
their common point: 

1
a3

((
a1

σ1
−a2

)
A−1

)
=

b1A2

σ2(1+b2A)
,

1
a3

(
a1

σ1
−a2

)
=

b1A(2+b2A)
σ2(1+b2A)2 .

Its straightforward transformation gives the following conditions for the touching of the
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nullclines in the first quadrant (see example in Figure 2a):
a1

σ1
> a2 +b2,

a1

σ1
= 2

√
a3b1

σ2
+a2 −b2.

(3.3)

From the geometrical reasoning it is clear that there are two stationary states in the first
quadrant if the slope of the second line of A-nullcline is greater than the slope in the case of
touching the B-nullcline, but not greater than the slope of its asymptote (see Figure 2b):

a1

σ1
> a2 +b2,

a3b1

b2σ2
+a2 >

a1

σ1
> 2

√
a3b1

σ2
+a2 −b2.

(3.4)

The case of one stationary state in the first quadrant, apart from the case of touching
of nullclines, described by Equation (3.3), is realised in the situation, when the slope of the
second line of A-nullcline is greater than the slope of the asymptote of the B-nullcline (see
Figure 2c):

a1

σ1
>

a3b1

b2σ2
+a2, (3.5)

or in a borderline situation, when their slopes are equal, but the second line of A-nullcline lies
higher than the asymptote of the B-nullcline (see Figure 2d):

a1

σ1
=

a3b1

b2σ2
+a2,

a3b1

b2
2σ2

> 1.

(3.6)

Stability of the stationary state (0,0) can be studied using the Jacobian matrix at the
stationary state (0,0): (

−σ1 0
0 −σ2

)
, (3.7)

which indicates that this point is always a stable node. According to the second Poincaré
Index Theorem [66], the neighbouring simple stationary state along the B-nullcline can be
only a saddle. Therefore, in the cases of one stationary state in the first quadrant, described
by Equation (3.5) and (3.6), this state in always unstable. In the case of two stationary states
in the first quadrant, described by Equation (3.4), the state with smaller coordinates is also
unstable. The stability of the stationary state with greater coordinate is a less trivial question,
and it seems to be dependent on the specific values of parameters. Further we will consider
the case, corresponding to Figure 2, fixing the values a2 = a3 = b2 = σ1 = σ2 = 1, b1 = 4,
and varying the value of a1. In this case, there exist a stable stationary state in the region
4 < a1 < 5:
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AS(a1) =
a1 −2+

√
a2

1 −16

2(5−a1)
,

BS(a1) =
a2

1 −a1 −8+[a1 −1]
√

a2
1 −16

2(5−a1)
,

(3.8)

that can be checked by straightforward calculations. This state corresponds to persistent
inflammation under strong enough activation of corresponding cytokines.

3.2. Turing structures in a spatially-distributed system

In this section, we consider a spatially-distributed system
∂A
∂ t

=
a1A2

1+A+B
−A+∆A,

∂B
∂ t

=
4A2

1+A
−B+DB∆B,

(3.9)

focusing on the formation of stationary non-uniform structures in it, i.e., the Turing patterns.
Their emergence is determined by the system linearized at a corresponding stationary state [37].
For simplicity of calculations, we set here a2 = a3 = 1,b1 = 4,b2 = 1,σ1 = σ2 = 1, and
consider a1 as a parameter of the problem. In general case of a system

∂ Ã
∂ t

= a11Ã+a12B̃+D1∆Ã,

∂ B̃
∂ t

= a21Ã+a22B̃+D2∆B̃,

(3.10)

where Ã and B̃ denote the perturbations of the stationary state, the conditions for Turing
instability can be formulated in the following way:

a11a22 −a12a21 > 0,

a11 +a22 < 0,

D2a11 +D1a22 −2
√

D1D2(a11a22 −a12a21)> 0.

(3.11)

The first two inequalities ensure stability of a corresponding stationary state in the absence
of diffusion, while the third condition indicates that in its presence the modes with some
wavelengths become unstable, eventually producing a non-uniform stationary pattern. Of note,
the formation of Turing structures in the considered system (3.9) is impossible around the
uniform stationary state (0,0) due to the fact, that both variables there act as self-inhibitors,
down-regulating their own production at the uniform stationary state, which follows from
Eq. (3.7).

As it was mentioned in Section 3.1, in the region 4 < a1 < 5 there exists a stationary
state with coordinates AS > 0, BS > 0, which is stable in the absence of diffusion implying
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the fulfillment of the first two conditions for Turing instability around this state. The third
condition, applied to the system (3.9), turns into the inequality

a1 −1
a1

DB −2

√√√√−a2
1 +16+[8−a1]

√
a2

1 −16

8a1
DB −1 > 0.

Figure 3 depicts the part of the region in the parametric space where this condition is also
fulfilled, and the formation of the Turing patterns can take place. Note that the diffusion
coefficients should not differ very much, i.e., the value of DB = 2.64 already results in the
Turing instability for every considered value of a1. This is crucial from the biological point of
view, since diffusivities of different cytokines can hardly differ an order of magnitude or more
under identical conditions.

a
1

D
B

Figure 3. Gray area denotes the region of Turing instability of the system (3.9) which
continues with increase in DB.

3.3. Numerical simulations and results

Turing patterns formation for the considered system was studied numerically in the
two-dimensional square domain. The size of the domain L = 200 was chosen to be sufficiently
large in order for several of the unstable wavelengths to fit it under any of the used parameter
sets. As initial conditions we consider a sufficiently strong local perturbation of the form

A(x,y) = B(x,y) = 10
(
1+10((x−L/2)2 +(y−L/2)2)

)−1

which corresponds to the local initiation of the plaque formation process. The simulations
were performed with the C++ implemented code. Zero flux conditions were considered at the
boundaries. The equations were solved using the method of splitting into physical processes,
i.e., at each time step, the reaction and diffusion terms were calculated sequentially. The
space step was chosen to be sufficiently small to correctly reproduce the emerging structures;
the time step was chosen in order to minimize the computation time while maintaining the
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functionality of the implicit Crank-Nicholson method, used to solve the diffusion equations,
and the fourth order Runge-Kutta method, used to solve the reaction equations. It was verified
that the refinement of discretization does not qualitatively affect the result.

Table 1. Values of parameters used in numerical simulations for the considered system (3.9).
The values of DB and a1 are varying and denoted under each numerical figure.

Parameter Value Biological description

a2 1 Saturation in the production of A
a3 1 Inhibition rate in the production of A due to B
b1 4 Production of cytokines B due to the presence of cytokines A
b2 1 Inhibition rate in the production of B due to A
σ1 1 Death rates of cytokines A
σ2 1 Death rates of cytokines B

An important moment is that numerical simulations of the considered system (3.9)
demonstrated unrestrained growth of solutions under sufficiently high values of DB and a1.
This is related to the fact that the model describes only the initial stage of inflammation
progression. There are various other anti-inflammatory mechanisms initiated at more advanced
stages of inflammation [67, 68]. Moreover, there are some simplifying assumptions in the
model, such as cell influx is not limited and cytokines production is a linear function of cell
concentration without limitation mechanisms. In order to implicitly account for the fact of
restrained inflammation growth, the following restrictions were introduced and implemented
within the program code:

∂A
∂ t

=


a1A2

1+A+B
−A+∆A i f A < klimAS(a1),

0 i f A ≥ klimAS(a1);

∂B
∂ t

=


4A2

1+A
−B+DB∆B i f B < klimBS(a1),

0 i f B ≥ klimBS(a1);

(3.12)

the functions of AS(a1) and BS(a1) being defined in Equation (3.8). The value of the constant
klim is considered as a parameter.

Figure 4 shows the dynamics of Turing patterns formation under klim = 2 for different
values of parameters DB and a1, the most right snapshots displaying visually stabilized patterns.
Depending on the parameter values, the considered system can exhibit several qualitatively
different ways of self-completion of initial local excitation into Turing patterns. Some aspects
of the shown dynamics correspond to the ones, previously reported for other classical nonlinear
systems [69–71].
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Figure 4. Dynamics of Turing patterns formation in the system (3.12), klim = 2. Variable A
is shown. Parameters and time values (from left to right) are: (a) DB = 2, a1 = 4.8; t=200,
400, 800, 3500; (b) DB = 2, a1 = 4.9; t=200, 400, 1200, 3500; (c) DB = 3, a1 = 4.2; t=500,
900, 4700, 16000; (d) DB = 3.5, a1 = 4.1; t=100, 300, 7500, 35000; (e) DB = 3, a1 = 4.9;
t=200, 400, 600, 6500.

Close to the boundary of the Turing instability region under low values of DB, the spot-like
structures eventually appear. In this case, as shown in Figure 4a, initial excitation results in the
propagation of a circular wave, and the values of model variables in its interior region oscillate
around the stationary state AS,BS. The spots close to the initial excitation arise in result of the
rotational symmetry breaking of these oscillatory tails. The positions of the spots, situated
further from the initial excitation, are strongly affected by their proximity to the boundaries of
the computational domain. Under higher values of a1, as Figure 4b demonstrates, the rotational
symmetry breaking does not happen and the resulting patterns represent concentric circles,
deformed due to the boundary effects.

Deeper in the Turing instability region, the nature of the patterns changes drastically. Under
higher values of DB and sufficiently low values of a1, this process begins with the elongating
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of the initial spot in one direction, along which it has a slightly increased ratio of activator to
inhibitor. The evolution of the developed snakelike structures, that can tear, corrugate and
fuse together, may result in stripes, aligned in one direction, as illustrated by Figure 4c, or in
labyrinth patterns, as exemplified by Figure 4d, as well as in various transient patterns. Under
sufficiently high values of a1 the initial excitation transforms into thick spot, which develops
into Turing pattern via consecutive symmetry breaking, as Figure 4e shows.

Interestingly, the choice of the value of klim by itself affects the form of the emerging
patterns. For example, Figure 5a shows the evolution of the considered system under the
values of model parameters, corresponding to Figure 4c, but under greater value of klim = 3.
In this case, the spot-like structures begin to break apart after the initial elongation, eventually
resulting in a domain covered in spots, rather than parallel stripes. Under further increase of
klim for the same values of DB and a1, the initially formed spot-like structure becomes much
more stable and retains its shape during the numerical simulation (at least until t = 35000).
However, such localized structure can be perturbed by external noise. Sufficiently strong
noise can result in displacement of the structure, and even stronger noise can lead also to
its self-completion. Figure 5b illustrates the corresponding numerical simulation, where the
random number in the range [−0.5;0.5] is added to the values of both variables at every grid
point at every time step. Note that during the simulation these perturbations once add up to
disturbance sufficiently strong to initiate a new localized structure near the left boundary.

Figure 5. Dynamics of Turing patterns formation in the system (3.9) under DB = 3, a1 = 4.2.
Variable A is shown. Restriction parameter and time values (from left to right) are: (a) klim = 3;
t=60, 1500, 3000, 8000; (b) klim → ∞; t=60, 200, 400, 1300; the system evolves under
additional noise (see text).

4. Discussion and Conclusion

We suggest in this work a generic model of inflammation, which includes the main cell types
involved in this process, and pro- and anti-inflammatory cytokines. After some simplifications,
we reduce this model to a two-equation model since the analysis of the complete model would
be excessively difficult, and it would not give an analytical result.

Inflammatory diseases. Inflammation is a complex physiological process including many
cell types, cytokines and chemokines with multiple interactions between them and various
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positive and negative feedbacks. We can represent these multiple factors as two big groups,
pro-inflammatory and anti-inflammatory factors. Pro-inflammatory factors stimulate their own
production and the production of anti-inflammatory factors, while the latter downregulate the
production of both of them. This kind of interaction together with diffusion (or random motion
for cells) can result in a non-homogeneous spatial distribution of these factors leading to the
formation of lesions (or plaques). Inflammatory skin diseases manifest spectacular examples
of different plaques. Among them, linear, target, multiform and serpiginous plaques, which
are also observed in modelling results (Figures 6, 8).

We hypothesize that the interaction of pro- and anti-inflammatory factors determine the
lesion shape, size, and growth rate. Mathematical modelling shows that in the presence of only
pro-inflammatory factors, the lesion grows as a single circular plaque, which is not the case for
the majority of patients. The presence of different plaque forms (Figures 6–8) confirms the
hypothesis about the role of anti-inflammatory factors in their formation.

Figure 6. Target (middle) and numerical simulations. Left figure is taken from:
https://www.dermnetnz.org/topics/terminology. Let us also indicate serpiginous plaques in
Figure 4 (d).

Figure 7. Linear (left), and multiform (right) skin lesions and numerical simulations. Source
for the left figure: A linear lesion in a child with atopic dermatitis: Not a coincidence, 2019
[72]. Source for the right figure: Variants of Erythema Multiforme: A Case Report and
Literature Review, 2018 [73].

We provide a qualitative comparison between the numerical results obtained in Figures 5
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and 4 and skin lesions observed in eczema as a specific disease case. Figure 6 shows target
lesions and the corresponding patterns obtained in numerical simulations. Figure 7 shows
linear and multiform lesions and the corresponding patterns obtained in numerical simulations.
We note that the figures are taken from case reports of skin diseases [72, 73]. Figure 8 presents
drawings of some other lesions with different structures. Most of them have some similarities
with the simulated structures. Cases 1 and 7 correspond to stripe patterns c, case 3 to single
dot and case 5 to multiple dot patterns a and b. Case 6 resembles the transient cross pattern e
(right), and case 8 the labyrinth pattern d.

Figure 8. Left: different forms of skin lesions. Source: “Maladies de la peau”, vol. 8 of the 4th
edition of Meyers Konversations-Lexikon, (1885–90) ,https://fr.wikipedia.org/wiki/Eczema.
Right: different patterns in numerical simulations (the values of parameters are given in
the appendix). Final patterns are shown in the left column and the corresponding transient
patterns in the right column. Skin lesions shown at the left correspond to some of the
numerical patterns: 1 - c (left), 3 - a, 5 - b (left), 6 - e (right), 7 - c (right), 8 - d (left).

Short range activation - long range inhibition. Conditions of the emergence of
dissipative structures imply that the diffusion coefficient of inhibitor is greater than the
diffusion coefficient of activator. Activating and inhibiting pathways include cells (monocytes,
macrophages, foam cells, smooth muscle cells, T-helper cells) and cytokines. Molecular
weights of pro-inflammatory cytokines (IL-6 - 26 kDa, IL-12 - 70 kDa, TNF-α - 17.3 kDa) is
an average greater that of anti-inflammatory cytokines (IL-10 - 18 kDa, TGF-β (active form) -
12 kDa). Since the diffusion coefficient is in inverse proportion to the power 1/3 of molecular
weight, then anti-inflammatory cytokines diffuse faster. We can highlight that the motion of
pro-inflammatory and anti-inflammatory macrophages can be tackled in future works.

Wave propagation. Reduced inflammatory model developed in this work has from one to
three non-negative stationary points. Their number and stability depend on the parameters
of the model. Besides stable zero stationary point, the model can have one more stable and
unstable points. Therefore, it is a bistable case, and the transition from the disease-free stationary
point to a disease stationary point occurs if the initial perturbation is sufficiently large.

If we consider a spatially distributed system with a localized in space initial perturbation
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of the disease-free equilibrium, then transition to the disease equilibrium occurs in the form of
travelling waves. Existence and stability of such waves in the two-equation pro-inflammatory
system was studied in [27]. Transition waves for more complete pro- and anti-inflammatory
systems will be studied in the subsequent works. Let us only mention here that in the
pro-inflammatory model the disease equilibrium is stable. Wave propagation describes
growth of a single circular plaque. In the case of pro- and anti-inflammatory model, the
disease equilibrium can become unstable. In this case, the solution behind the wave is
non-homogeneous in space, and we obtain multiple plaques with different shapes.

Random perturbations of cell and cytokines concentrations specific for physiological
systems can be essential at the initial stage of the set-up of inflammation. After the initiations,
small randomly located lesions can merge and form a single lesions, as it is the case of the
process is dominated by pro-inflammatory factors, or they can evolve to multiple lesions with
complex structures under the influence of anti-inflammatory factors.

Limitations and perspectives. Studying inflammatory diseases, we encounter the usual
difficulties of the biomedical modelling: physiological processes are too complex, they contain
many unknown or partially known factors, the values of kinetic parameters are basically
unknown. In this case, we have to rely on qualitative models which are in agreement with
established physiological data. We have to simplify the model grouping them into two classes,
pro- and anti-inflammatory. This work can be considered as an initial qualitative model to
describe pattern formation in skin diseases. Further works can be implemented to compare
those results to experimental data and to provide quantitative interpretation of the results.

Some of the kinetic constants are estimated in the literature, some other are considered as
free parameters and varied in numerical simulations. Generic inflammatory model, obtained
by a formal reduction from a more complete model, contains a relatively small number of
parameters. Their values are chosen from the conditions of the emergence of spatial structures.
The application of these qualitative ideas and results to specific inflammatory diseases will
require further investigations.

Acknowledgments

The last author has been supported by the RUDN University Strategic Academic Leadership
Program.

Conflicts of Interests

The authors declare no conflict of interest.

Authors contribution

Conceptualization, Wissam El Hajj, Maxim Kuznetsov and Vitaly Volpert; Formal analysis,
Wissam El Hajj; Methodology, Maxim Kuznetsov and Vitaly Volpert; Software, Maxim
Kuznetsov; Validation, Vitaly Volpert; Writing – original draft, Wissam El Hajj, Maxim
Kuznetsov and Vitaly Volpert; Writing – review & editing, Wissam El Hajj and Vitaly Volpert;
Visualization, Maxim Kuznetsov; Supervision, Vitaly Volpert; Project administration, Vitaly

19



Asymmetry Article

Volpert. All authors have read and agreed to the published version of the manuscript.

References

[1] Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol. Cell
2014, 54(2):281–288.

[2] Chen L, Deng H, Cui H, Fang J, Zuo Z, et al. Inflammatory responses and
inflammation-associated diseases in organs. Oncotarget 2018, 9(6):7204–7218.

[3] Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of
inflammation. Nat. Rev. Immunol. 2023, 23(3):159–173.

[4] Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat. Rev.
Immunol. 2011, 11(11):762–774.

[5] Ma Z, Du B, Li J, Yang Y, Zhu F. An insight into anti-inflammatory activities and
inflammation related diseases of anthocyanins: A review of both in vivo and in vitro
investigations. Int. J. Mol. Sci. 2021, 22(20):11076.

[6] Singh N, Baby D, Rajguru J, Patil P, Thakkannavar S, et al. Inflammation and cancer.
Ann. Afr. Med. 2019, 18(3):121–126.

[7] Henein MY, Vancheri S, Longo G, Vancheri F. The role of inflammation in cardiovascular
disease. Int. J. Mol. Sci. 2022, 23(21):12906.

[8] Tampa M, Neagu M, Caruntu C, Constantin C, Georgescu SR. Skin inflammation—A
cornerstone in dermatological conditions. J. Pers. Med. 2022, 12(9):1370.

[9] BayikD,TrossD,HaileLA,VerthelyiD,KlinmanDM. Regulationof thematurationof human
monocytes into immunosuppressive macrophages. Blood Adv. 2017, 1(26):2510–2519.

[10] Bartlett B, Ludewick HP, Misra A, Lee S, Dwivedi G. Macrophages and T cells in
atherosclerosis: a translational perspective. Am. J. Physiol. Heart Circ. Physiol. 2019,
317(2):H375–H386.

[11] Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity
2017, 47(4):621–634.

[12] Mills CD. M1 and M2 macrophages: Oracles of health and disease. Crit. Rev. Immunol.
2012, 32(6):463–488.

[13] Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and
infectious diseases. Front. Immunol. 2014, 5:491.

[14] Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and
anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm.
2014, 2014:1–19.

[15] Schuerwegh AJ, Dombrecht EJ, Stevens WJ, Van Offel JF, Bridts CH, et al. Influence of

20



Asymmetry Article

pro-inflammatory (IL-1α , IL-6, TNF-α , IFN-γ) and anti-inflammatory (IL-4) cytokines
on chondrocyte function. Osteoarthr. Cartilage 2003, 11(9):681–687.

[16] Tanghetti EA. The role of inflammation in the pathology of acne. J. Clin. Aesthet.
Dermatol. 2013, 6(9):27–35.

[17] Brown SJ. Atopic eczema. Clin. Med. 2016, 16(1):66–69.

[18] Diotallevi F, Offidani A. Skin, autoimmunity and inflammation: A comprehensive
exploration through scientific research. Int. J. Mol. Sci. 2023, 24(21):15857.

[19] Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis
pathogenesis. Int. J. Mol. Sci. 2021, 22(8):4130.

[20] Sawada Y, Saito-Sasaki N, Mashima E, Nakamura M. Daily lifestyle and inflammatory
skin diseases. Int. J. Mol. Sci. 2021, 22(10):5204.

[21] Dainichi T, Hanakawa S, Kabashima K. Classification of inflammatory skin diseases:
A proposal based on the disorders of the three-layered defense systems, barrier, innate
immunity and acquired immunity. J. Dermatol. Sci. 2014, 76(2):81–89.

[22] Yoshimura A, Aki D, Ito M. SOCS, SPRED, and NR4a: Negative regulators of cytokine
signaling and transcription in immune tolerance. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
2021, 97(6):277–291.

[23] Cianciulli A, Calvello R, Porro C, Lofrumento DD, Panaro MA. Inflammatory skin
diseases: Focus on the role of suppressors of cytokine signaling (SOCS) proteins. Cells
2024, 13(6):505.

[24] Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, et al. Type 2 inflammation
contributes to skin barrier dysfunction in atopic dermatitis. JID Innov. 2022, 2(5):100131.

[25] Herald MC. General model of inflammation. Bull. Math. Biol. 2010, 72(4):765–779.

[26] Nikaein N, Tuerxun K, Cedersund G, Eklund D, Kruse R, et al. Mathematical models
disentangle the role of IL-10 feedbacks in human monocytes upon proinflammatory
activation. J. Biol. Chem. 2023, 299(10):105205.

[27] El Khatib N, Genieys S, Volpert V. Atherosclerosis initiation modeled as an inflammatory
process. Math. Modell. Nat. Phenom. 2007, 2(2):126–141.

[28] El Hajj W, El Khatib N, Volpert V. Inflammation propagation modeled as a
reaction-diffusion wave. Math. Biosci. 2023, 365:109074.

[29] Abi Younes G, El Khatib N. Mathematical modeling of inflammatory processes of
atherosclerosis. Math. Model. Nat. Phenom. 2022, 17:5.

[30] El Hajj W, El Khatib N. Effect of permeability on the initiation of Atherosclerosis
modeled as an inflammatory process. J. Theor. Biol. 2023, 564:111461.

[31] Bozkurt F, Yousef A, Bilgil H, Baleanu D. A mathematical model with piecewise constant

21



Asymmetry Article

arguments of colorectal cancer with chemo-immunotherapy. Chaos Soliton. Fract. 2023,
168:113207.

[32] Tanaka RJ, Ono M. Skin Disease Modeling from a Mathematical Perspective. J. Invest.
Dermatol. 2013, 133(6):1472–1478.

[33] Nakaoka S, Kuwahara S, Lee C, Jeon H, Lee J, et al. Chronic inflammation in the
epidermis: A mathematical model. Appl. Sci. (Basel) 2016, 6(9):252.

[34] Valeyev NV, Hundhausen C, Umezawa Y, Kotov NV, Williams G, et al. A systems model
for immune cell interactions unravels the mechanism of inflammation in human skin.
PLoS Comput. Biol. 2010, 6(12):e1001024.

[35] Fantaye AK, Goshu MD, Zeleke BB, Gessesse AA, Endalew MF, et al. Mathematical
model and stability analysis on the transmission dynamics of skin sores. Epidemiol. infect.
2022, 150:e207.

[36] Cross MC, Hohenberg PC. Pattern formation outside of equilibrium. Rev. Mod. Phys.
1993, 65(3):851.

[37] Turing AM. The chemical basis of morphogenesis. Bull. Math. Biol. 1990, 52(1):153–197.

[38] Harris MP, Williamson S, Fallon JF, Meinhardt H, Prum RO. Molecular evidence for an
activator–inhibitor mechanism in development of embryonic feather branching. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102(33):11734–11739.

[39] Xu H, Sun M, Zhao X. Turing mechanism underlying a branching model for lung
morphogenesis. PloS one 2017, 12(4):e0174946.

[40] Raspopovic J, Marcon L, Russo L, Sharpe J. Digit patterning is controlled by a
Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 2014,
345(6196):566–570.

[41] Graham JH, Freeman DC, Emlen JM. Antisymmetry, directional asymmetry, and dynamic
morphogenesis. In Developmental Instability: Its Origins and Evolutionary Implications.
Dordrecht: Springer, 1994, pp. 123–139.

[42] Xu H, Sun M, Zhao X. Turing mechanism underlying a branching model for lung
morphogenesis. PLoS One 2017, 12(4):e0174946.

[43] Gambino G, Lombardo M, Sammartino M. Pattern formation driven by cross-diffusion
in a 2D domain. Nonlinear Anal. Real World Appl. 2013, 14(3):1755–1779.

[44] Lacitignola D, Bozzini B, Peipmann R, Sgura I. Cross-diffusion effects on a
morphochemical model for electrodeposition. Appl. Math. Modell. 2018, 57:492–513.

[45] Diez A, Krause AL, Maini PK, Gaffney EA, Seirin-Lee S. Turing pattern formation
in reaction-cross-diffusion systems with a bilayer geometry. Bull. Math. Biol. 2024,
86(2):13.

22



Asymmetry Article

[46] Giunta V, Lombardo MC, Sammartino M. Pattern Formation and Transition to Chaos
in a Chemotaxis Model of Acute Inflammation. SIAM J. Appl. Dyn. Syst. 2021,
20(4):1844–1881.

[47] De Kepper P, Castets V, Dulos E, Boissonade J. Turing-type chemical patterns in the
chlorite-iodide-malonic acid reaction. Physica D 1991, 49(1–2):161–169.

[48] Astrov Y, Ammelt E, Teperick S, Purwins HG. Hexagon and stripe Turing structures in a
gas discharge system. Phys. Lett. A 1996, 211(3):184–190.

[49] Spinelli L, Tissoni G, Brambilla M, Prati F, Lugiato L. Spatial solitons in semiconductor
microcavities. Phys. Rev. A 1998, 58(3):2542.

[50] Short MB, Brantingham PJ, Bertozzi AL, Tita GE. Dissipation and displacement of
hotspots in reaction-diffusion models of crime. Proc. Natl. Acad. Sci. U.S.A. 2010,
107(9):3961–3965.

[51] Tóth Á, Horváth D. Diffusion-driven instabilities by immobilizing the autocatalyst in
ionic systems. Chaos 2015, 25(6):064304.

[52] Nesterenko AM, Kuznetsov MB, Korotkova DD, Zaraisky AG. Morphogene adsorption
as a Turing instability regulator: Theoretical analysis and possible applications in
multicellular embryonic systems. PloS one 2017, 12(2):e0171212.

[53] Kuznetsov M, Polezhaev A. Widening the criteria for emergence of Turing patterns.
Chaos 2020, 30(3):033106.

[54] Younes GA, Kuznetsov M, Khatib NE, Volpert V. Mathematical modeling of the
interaction of atherosclerotic inflammation and chemotaxis: formation of fatty streaks
(Submitted).

[55] Penner K, Ermentrout B, Swigon D. Pattern formation in a model of acute inflammation.
SIAM J. Appl. Dyn. Syst. 2012, 11(2):629–660.

[56] Nadin G, Ogier-Denis E, Toledo AI, Zaag H. A Turing mechanism in order to explain the
patchy nature of Crohn’s disease. J. Math. Biol. 2021, 83(2):12.

[57] Grudzinska MK, Kurzejamska E, Bojakowski K, Soin J, Lehmann MH, et al. Monocyte
Chemoattractant Protein 1–Mediated Migration of Mesenchymal Stem Cells Is a Source
of Intimal Hyperplasia. Arterioscler. Thromb. Vasc. Biol. 2013, 33(6):1271–1279.

[58] Gui T, Shimokado A, Sun Y, Akasaka T, Muragaki Y. Diverse roles of macrophages in
atherosclerosis: from inflammatory biology to biomarker discovery. Mediat. Inflamm.
2012, 2012(1):693083.

[59] Ramji DP, Davies TS. Cytokines in atherosclerosis: Key players in all stages of disease
and promising therapeutic targets. Cytokine Growth Factor Rev. 2015, 26(6):673–685.

[60] Almer G, Frascione D, Pali-Scholl I, Vonach C, Lukschal A, et al. Interleukin-10: an
anti-inflammatory marker to target atherosclerotic lesions via PEGylated liposomes. Mol.
Pharmaceutics 2013, 10(1):175–186.

23



Asymmetry Article

[61] Oo YH, Shetty S, Adams DH. The role of chemokines in the recruitment of lymphocytes
to the liver. Digest. Dis. 2010, 28(1):31–44.

[62] Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, et al. Protective role of
interleukin-10 in atherosclerosis. Circ. Res. 1999, 85(8):e17–e24.

[63] Haraux A. A simple characterization of positivity preserving semi-linear parabolic
systems. arXiv 2016, arXiv:1610.09909.

[64] Williams JW, Giannarelli C, Rahman A, Randolph GJ, Kovacic JC. Macrophage biology,
classification, and phenotype in cardiovascular disease: JACC macrophage in CVD series
(part 1). J. Am. Coll. Cardiol. 2018, 72(18):2166–2180.

[65] Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of inflammation in the
process of T lymphocyte differentiation: Proliferative, metabolic, and oxidative changes.
Front. Immunol. 2018, 9:339.

[66] Botelho F, Gaiko V. Global analysis of planar neural networks. Nonlinear Anal-theor.
2006, 64(5):1002–1011.

[67] Anderton H, Alqudah S. Cell death in skin function, inflammation, and disease. Biochem.
J. 2022, 479(15):1621–1651.

[68] Nguyen AV, Soulika AM. The Dynamics of the Skin’s Immune System. Int. J. Mol. Sci.
2019, 20(8):1811.

[69] Kuznetsov M, Kolobov A, Polezhaev A. Pattern formation in a reaction-diffusion system
of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation. Phys. Rev. E
2017, 95(5):052208.

[70] Kaminaga A, Vanag VK, Epstein IR. A reaction–diffusion memory device. Angew.
Chem. Int. Ed. 2006, 45(19):3087–3089.

[71] Muratov C, Osipov V. Scenarios of domain pattern formation in a reaction-diffusion
system. Phys. Rev. E 1996, 54(5):4860–4879.

[72] Van Gysel J, Grimalt R. A linear lesion in a child with atopic dermatitis: Not a coincidence.
Clin. Case Rep. 2019, 7(9):1667–1669.

[73] Paulino L, Hamblin DJ, Osondu N, Amini R. Variants of erythema multiforme: A case
report and literature review. Cureus 2018, 10(10):e3459.

24


	Introduction
	Biological background
	Modelling of inflammation
	Pattern formation

	Model of immune response and inflammation
	Generic model of inflammation
	Reduced inflammation model

	Pattern formation
	Analysis of non-spatially-distributed system
	Turing structures in a spatially-distributed system
	Numerical simulations and results

	Discussion and Conclusion

