
ELSP Asymmetry

Article | Received 1 August 2024; Accepted 9 October 2024; Published 18 October 2024

https://doi.org/10.55092/asymmetry20240005

Does random differential item functioning occur in one or two
groups? Implications for bias and variance in asymmetric and
symmetric Haebara and Stocking-Lord linking

Alexander Robitzsch1,2,*

1 IPN – Leibniz Institute for Science and Mathematics Education, Kiel, Germany
2 Centre for International Student Assessment (ZIB), Kiel, Germany

* Correspondence author; E-mail: robitzsch@leibniz-ipn.de.

Abstract: Linking methods are frequently applied to analyze the performance of two groups
on a set of items. This article shows analytically and by simulation that the occurrence
of differential item functioning (DIF) can induce bias and additional variance in parameter
estimates of the linking method. Interestingly, the bias of the parameter estimates of a linking
method depends on whether random DIF occurs in one or two groups ( i.e., the type of DIF
effects). The findings are shown utilizing asymmetric and symmetric Haebara and Stocking-
Lord linking. Moreover, the latter linking methods were compared with recently proposed
corresponding SIMEX-based variants of linking in a simulation study. It turned out that
SIMEX-based linking provided unbiased estimates of whether the correct assumption of the
type of DIF effects has been implemented.
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1. Introduction

Item response theory (IRT) models [1–3] are multivariate statistical models to analyze
multivariate binary random variables. These models have wide applications in education
psychology. For example, IRT models are operationally utilized in educational large-scale
assessment studies [4].

In this paper, unidimensional IRT models [5, 6] are only investigated. Let X = (X1, . . . ,XI)

be the vector of I dichotomous random variables Xi ∈ {0,1} (also referred to as items or item
responses). A unidimensional IRT model is a statistical model for the probability distribution
P(X = x) for x = (x1, . . . ,xI) ∈ {0,1}I with the parametrized probability distribution

P(X = x;δδδ ,γγγ) =
∫ I

∏
i=1

[
Pi(θ ;γγγ i)

xi (1−Pi(θ ;γγγ i))
1−xi

]
φ(θ ; µ,σ)dθ , (1)
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where φ denotes the density of the normal distribution with the mean µ and the standard
deviation σ . The distribution parameters of the latent variable θ (also referred to as a trait
or ability) are contained in the vector δδδ = (µ,σ). The vector γγγ = (γγγ1, . . . ,γγγ I) contains
all estimated item parameters of item response functions (IRF) Pi(θ ;γγγ i) = P(Xi = 1|θ)
(i = 1, . . . , I). The two-parameter logistic (2PL) model [7] has the IRF

Pi(θ ;γγγ i) = Ψ(ai(θ −bi)) (2)

using the item discrimination ai and item difficulty bi, and Ψ(x) = (1+ exp(−x))−1 denotes
the logistic distribution function. For independently and identically distributed observations
x1, . . . ,xN of N subjects from the distribution of the random variable X , unknown model
parameters of the IRT model (1) can be estimated by marginal maximum likelihood (MML)
estimation using an expectation-maximization algorithm [8–10].

IRT models are frequently used to compare the distribution of X in two groups, summarized
by the parameters of the distribution of the ability variable θ in the IRT model (1). In the following,
we confine ourselves to the 2PL model. In this paper, we consider linking methods [11] for group
comparisons. Linking methods are two-step procedures in which the 2PL model is separately
estimated in each of the two groups in the first step. In the second step, differences in estimated
item parameters are used to determine the group difference regarding distributional differences
of the θ variable by means of a linking method [11–13]. In our article, we focus on the impact
of differential item functioning (DIF; [14–18]) on the bias [19] and the variance [20–28] in
estimated group means and standard deviations.

This article investigates whether the bias and variance of the Haebara [29] and Stocking-
Lord [30] linking methods for linking in two groups depend on whether random DIF [31, 32]
occurs in one or two groups. If random DIF occurs in only one group, the presence of DIF is
asymmetric, while it is symmetric if DIF occurs in both groups. It will turn out that the findings
substantially differ for these two kinds of DIF effects. Moreover, Haebara and Stocking-Lord
have been originally proposed to align the IRFs of the first group onto the IRFs of the second
group, which entails an asymmetric treatment in handling errors. The original versions of these
linking methods can be labeled as asymmetric Haebara and Stocking-Lord linking, respectively.
In contrast, we also study symmetric formulations of Haebara and Stocking-Lord linking [33]
in this article for the two kinds of random DIF effects. Finally, bias-corrected variants of
Haebara and Stocking-Lord linking based on the simulation extrapolation (SIMEX; [34])
measurement error correction method [35] are evaluated in a simulation study. SIMEX requires
the specification of whether DIF occurs in one or two groups, and the simulation study presented
in this article investigates whether an incorrect choice of the kind of random DIF results in
biased estimates.

The rest of the article is organized as follows. Section 2 distinguishes fixed and random
DIF. In Section 3, linking methods are generally introduced, and Haebara and Stocking-Lord
linking are discussed as particular examples. Section 4 presents an analytical derivation of
the bias and the variance of parameter estimates of a general linking method. The findings of
Section 4 are illustrated for Haebara linking in Section 5. Section 6 presents findings from a
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simulation study. Finally, the article closes with conclusions in Section 7.

2. Fixed and random differential item functioning

In this section, we discuss the concept of DIF and how the determination of the group mean
and the group standard deviation is related to identification constraints on DIF effects.

Let us assume that group-specific item parameters aig and big (i = 1, . . . , I; g = 1,2) in
the 2PL model. In the first group, the mean and the standard deviation are fixed at 0 and 1,
respectively. The mean and the standard deviation in the second group are denoted as µ and σ ,
respectively. For example, the two groups could be two genders (i.e., female and male) or
two countries (e.g., China and Germany). Alternatively, researchers could also define a first
reference group that involves all subjects (e.g., students of all countries) and a second focal
group that involves only subjects from a subpopulation (e.g., students from China).

In the first step, the 2PL model is separately estimated in the two groups, resulting in
identified item parameters âig and b̂ig for g = 1,2. In the two scalings, the mean and the
standard deviation of the ability variable are fixed at 0 and 1 for identification reasons. Because
we are only interested in identification issues in this section, we can ignore sampling errors
and only consider population-level data. Hence, we have âi1 = ai1 and b̂i1 = bi1 for the item
parameters in the first group. Furthermore, the identified item parameters for the second group
are given as

âi2 = ai2σ and b̂i2 = σ
−1(bi2 −µ) . (3)

Uniform DIF is present if bi1 6= bi2 holds for at least one item i ∈ I = {1, . . . , I} and
ai1 = ai2 for all i ∈ I . Nonuniform DIF is present if ai1 6= ai2 holds for at least one item
i ∈ I . In this article, we only consider uniform DIF. The uniform DIF effects are defined by
ei = bi2 −bi1 and we use the notation e = (e1, . . . ,eI).

Two important kinds of DIF must be distinguished: fixed and random DIF [31, 36]. In the
case of fixed DIF, DIF effects ei are treated as fixed parameters, while they are considered as
random variables in the case of random DIF.

We first discuss the case of fixed DIF. To disentangle DIF effects from group differences,
additional identification constraints on DIF effects must be imposed to identify µ . In a
general treatment, there is a nonlinear function g such that g(e) = 0, which is referred to
as an identification constraint of DIF effects and µ . For example, the DIF effects could average
to zero, resulting in the constraint g(e) = ∑

I
i=1 ei = 0. This situation is often referred to as

balanced DIF [37, 38]. Alternatively, group differences could only rely on those items that do
not exceed a certain threshold κ , resulting in the identification constraint g(e) = ∑

I
i=1 ei1(|ei| ≤

κ) = 0, where 1 denotes the indicator function. Furthermore, researchers could select or detect
an anchor set of items A ⊂ I [39, 40] such that the identification constraint is given by
g(e) = ∑

I
i=1 ei1(i ∈ A ) = 0. In the latter case, group differences represented by µ are only

determined by the anchor items.
Now assume that the identified item parameters are given in (3). We set ai1 = ai and

bi2 = bi and define for the second group ai2 = ai and bi2 = bi + ei. We collect all identified
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item parameters b̂i2 (i = 1, . . . , I) in the vector b̂2 and obtain

b̂2 = σ
−1(b2 −µj) , (4)

where j denotes a vector of ones with length I. The group standard deviation σ can be identified
from data by computing σ = âi2/âi1 for some item i∈I . The group mean µ can be determined
as the root of

h(µ) = g(b2 −b1) = g
(

σ b̂2 +µj− b̂1

)
= 0 (5)

if σ is already identified. Interestingly, the true group mean µ can only be obtained when
using the correct identification constraint g for computing µ . As a consequence, researchers
must impose assumptions on the structure of DIF effects in order to identify group differences.
We reiterate that identified item parameters are given by

âi1 = ai , âi2 = aiσ , b̂i1 = bi and b̂i2 = σ
−1 (bi + ei −µ) . (6)

It is evident that DIF effects ei only occur in item parameters of the second group. Hence,
DIF effects seem only to be present in one group (i.e., in the second group). Now define
b̃i = bi +

1
2ei and ẽi = ei. Then, we get an equivalent parametrization of the identified item

parameters as

âi1 = ai , âi2 = aiσ , b̂i1 = b̃i −
1
2

ẽi and b̂i2 = σ
−1

(
b̃i +

1
2

ẽi −µ

)
. (7)

In this parametrization, uniform DIF effects ei appear in item intercepts of both groups.
Importantly, because of equivalent parametrizations, the two cases do not need a different
treatment in the case of fixed DIF.

In contrast, random (uniform) DIF assumes that ei (that equals ẽi) is a random
variable [31, 41, 42]. Note that randomness in DIF effects is not a consequence of sampling
error but a mathematical device for describing the heterogeneity of group differences in
items. Items can be considered fixed entities, but deviations in item parameters between two
groups operate in some stochastic way that is reflected in a random variable. The variability
ei (i.e., the random DIF effect) can be similarly interpreted like the regression residual εi in
a linear regression yi = β0 +β1xi +εi. The regression provides analytical inference in the
case of a fixed finite population of subjects i = 1, . . . ,N, and variability (i.e., uncertainty) in
regression coefficients only stems from imposing a distribution for the random residual
variable εi (see [43, 44]).

In the case of random DIF, the two parametrizations (6) and (7) are no longer equivalent
and require a different treatment. In the rest of the article, the two situations in which
random DIF occurs in one or two groups are investigated in in terms of their consequences
for linking procedures.

3. Linking methods

In this section, we discuss several linking methods (see [12, 19]). Let H(µ,σ , â1, b̂1, â2, b̂2)

be a linking function with input item parameters âg = (â1g, . . . , âIg) and b̂g = (b̂1g, . . . , b̂Ig) for
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g = 1,2. The group mean µ and standard deviation σ can be estimated by

(µ̂, σ̂) = argmin
(µ,σ)

H(µ,σ , â1, b̂1, â2, b̂2) . (8)

For a differentiable function H, estimating equations for µ and σ can be obtained by taking
partial derivatives of H with respect to µ and σ .

In practical applications, there will frequently be unique items that are only administered
in the first or the second group. For example, such a situation might occur when groups of
different average abilities are linked and the tests reflect different average item difficulties.
However, only the common items (i.e., anchor items) that are administered in both groups are
used in the linking methods, and only these items contribute to group differences (at least in
correctly specified IRT models).

3.1. Haebara linking

3.1.1 Asymmetric Haebara linking

Haebara linking has been originally proposed in [29] and uses the linking function

H(µ,σ , â1, b̂1, â2, b̂2) =
I

∑
i=1

T

∑
t=1

ωt

[
Ψ(âi1(σθt +µ − b̂i1))−Ψ(âi2(θt − b̂i2))

]2
, (9)

where θ1, . . . ,θT is a discrete set of θ points (e.g., T = 101 equidistant points on the interval
[−6,6]) and ωt are user-defined weights. For example, the weights could be chosen equal to
1 or proportional to the normal density function with mean 0 and standard deviation σω

(e.g., σω = 2). The linking function H defined in (9) is referred to as asymmetric Haebara
linking because the IRFs in the first group are aligned onto the IRFs in the second group.

3.1.2 Symmetric Haebara linking

Symmetric Haebara linking [33, 42, 45–47] simultaneously aligns the IRFs of the first group
onto the IRFs in the second group and the other way around by including a second term in the
linking function:

H(µ,σ , â1, b̂1, â2, b̂2) =
I

∑
i=1

T

∑
t=1

ωt

[
Ψ(âi1(σθt +µ − b̂i1))−Ψ(âi2(θt − b̂i2))

]2

+
I

∑
i=1

T

∑
t=1

ωt

[
Ψ(âi1(θt − b̂i1))−Ψ(âi2(σ

−1(θt −µ)− b̂i2))
]2

.

(10)

While the order of the definition of groups affects the result in asymmetric Haebara linking, it
does not have consequences in symmetric Haebara linking, which might be seen as advantageous.
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3.1.3 SIMEX-based Haebara linking

It has been demonstrated that Haebara linking provides biased estimates in the presence of
random uniform DIF [19]. To this end, a general estimation approach to linking methods based
on simulation extrapolation (SIMEX; [34, 48]) has been proposed for bias correction. The core
idea of applying SIMEX to linking is to regard DIF as measurement error [35]. The variance
of DIF effects has to be known for this method, but it can be computed based on empirical
data (see below). We now describe the application of SIMEX to a general linking function H.
Therefore, the description is independent of a particular choice of the function H.

Assume that a preliminary estimate of µ and σ is available as

(µ∗,σ∗) = argmin
(µ,σ)

H(µ,σ , â1, b̂1, â2, b̂2) . (11)

Uniform DIF effects ei can be estimated by the equation

êi = µ
∗+σ

∗b̂i2 − b̂i1 . (12)

Then, the DIF variance τ2 can be estimated as

τ̂
2 =

1
I

I

∑
i=1

(êi − e)2 − 1
I

I

∑
i=1

vêi , (13)

where vêi is the variance estimate of the DIF estimate êi and e = I−1
∑

I
i=1 êi. Afterwards,

adapted DIF effects e∗i (λ ) = êi+ui(λ ) with a larger variance (1+λ )τ̂2 with λ = 0.5, 1.0, 1.5,
and 2.0 are calculated, where ui(λ ) is a random draw from a normal distribution with zero
mean and a variance λ τ̂2.

The application of SIMEX to linking must distinguish the case in which DIF occurs in one
group or two groups. In the case of DIF in one group, adapted item difficulties are computed as

b∗i2(λ ) =
1

σ∗

(
b̂i1 + e∗i (λ )−µ

∗
)
= b̂i2 +

1
σ∗ui(λ ) . (14)

We collect all pseudo item parameters b∗i2(λ ) in vector the b∗2(λ ). The estimate of the mean µ

and the standard deviation σ do now depend on λ and are defined as

(µ̂(λ ), σ̂(λ )) = argmin
(µ,σ)

H(µ,σ , â1, b̂1, â2,b∗2(λ )) . (15)

These estimates are obtained based on item parameters that possess more DIF variance than
what is found in the original data. Next, compute a regression function of µ̂(λ ) and σ̂(λ ) as a
quadratic function of λ . For the mean µ , one obtains the regression function

µ̂(λ )' α0 +α1λ +α2λ
2 . (16)

Finally, the parameter estimate µ̂ and σ̂ is obtained by inserting the value λ = −1 in the
regression function that corresponds to an estimate with DIF variance of zero. In more detail,
the final parameter estimate based on (16) is obtained as µ̂ = µ̂(−1) = α0 −α1 +α2. The
estimate for σ̂ is obtained in the same way.

We now describe the application of SIMEX to linking if DIF occurs in in two groups. The
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same DIF effects e∗i as defined above are used. In contrast to the case that DIF is induced in
only one group, the item parameters for the first group are also adapted. The modified item
parameters are given by

b∗i1(λ ) = b̂i1 +
1
2

êi −
1
2

e∗i (λ ) = b̂i1 −
1
2

ui(λ ) and (17)

b∗i2(λ ) =
1

σ∗

(
b̂i1 +

1
2

êi +
1
2

e∗i (λ )−µ
∗
)
= b̂i2 +

1
2σ∗ui(λ ) . (18)

We collect all pseudo item parameters b∗ig(λ ) in the vectors b∗g(λ ) for g = 1,2. The estimates
for µ and σ , depending on λ , are defined as

(µ̂(λ ), σ̂(λ )) = argmin
(µ,σ)

H(µ,σ , â1,b∗1(λ ), â2,b∗2(λ )) . (19)

Again, SIMEX-based estimates of µ and σ are obtained by the extrapolation of the quadratic
regression functions at the value λ =−1.

In a practical implementation of SIMEX-based linking, the Monte Carlo simulation
uncertainty can be reduced by using quasi-random methods and systematic perturbation of
DIF effects instead of pure simulation-based techniques (see [35]).

3.2. Stocking-Lord linking

3.2.1 Asymmetric Stocking-Lord linking

Stocking-Lord linking has been originally proposed in [30] and uses the linking function

H(µ,σ , â1, b̂1, â2, b̂2) =
T

∑
t=1

ωt

[
I

∑
i=1

Ψ(âi1(σθt +µ − b̂i1))−
I

∑
i=1

Ψ(âi2(θt − b̂i2))

]2

. (20)

Note that this function is referred to as asymmetric Stocking-Lord linking because it aligns the
test characteristic function (TCF) in the first group onto the TCF in the second group.

3.2.2 Symmetric Stocking-Lord linking

Stocking-Lord linking has also been proposed for a symmetric link function [33, 47] using the
linking function

H(µ,σ , â1, b̂1, â2, b̂2) =
T

∑
t=1

ωt

[
I

∑
i=1

Ψ(âi1(σθt +µ − b̂i1))−
I

∑
i=1

Ψ(âi2(θt − b̂i2))

]2

+
T

∑
t=1

ωt

[
I

∑
i=1

Ψ(âi1(θt − b̂i1))−
I

∑
i=1

Ψ(âi2(σ
−1(θt −µ)− b̂i2))

]2

.

(21)

The resulting symmetric Stocking-Lord linking has the advantage that it does not depend on
the order of the definition of groups.
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3.2.3 SIMEX-based Stocking-Lord linking

SIMEX-based linking as described in Section 3.1.3 can be applied to asymmetric and
symmetric Stocking-Lord linking. It has been shown that applying SIMEX to Stocking-Lord
linking substantially reduced the bias in the estimate of the group mean and the group standard
deviation [35].

4. Bias and variance in linking methods under random DIF

In this section, the bias and the variance of the estimate of the mean and the standard deviation
are derived for a general linking method H if random uniform DIF occurs in one or two groups.
The bias has already been derived for the case of one group in Ref. [19].

Let δ̂δδ = (µ̂, σ̂) denotes the vector of parameter estimates that solves the nonlinear equation

Hδδδ (δ̂δδ ,a1,b1,a2,b2) = 0 , (22)

where Hδδδ denotes the vector of partial derivatives of H with respect to δδδ . We would like to
emphasize that the notation in (22) includes (original) item parameters ag and bg, not identified
item parameters âg and b̂g (g = 1,2). Now assume uniform DIF effects ei that fulfill E(ei) = 0
and E(e2

i ) = τ2. Then, we get a1 = a2 ≡ a, and it follows from (22)

Hδδδ (δ̂δδ ,a,b1,a,b2) = 0 . (23)

4.1. Random DIF in one group

We now derive the bias and variance in the case that random uniform DIF e = (e1, . . . ,eI)

occurs in one group. In this case, we have b1 = b and b2 = b+ e with a vector of common
item difficulties b (see Section 2). We apply a second-order Taylor expansion of Hδδδ around
δδδ and b2

0 = Hδδδ (δ̂δδ ,a,b1,a,b2)

= Hδδδ (δδδ ,a,b,a,b)+Hδδδδδδ (δδδ ,a,b,a,b)
(

δ̂δδ −δδδ

)
+

I

∑
i=1

Hδδδbi2
(δδδ ,a,b,a,b)ei +

1
2

I

∑
i=1

Hδδδbi2bi2
(δδδ ,a,b,a,b)e2

i .

(24)

Due to Hδδδ (δδδ ,a,b,a,b) = 0, we arrive at

δ̂δδ −δδδ =−H−1
δδδδδδ

[
I

∑
i=1

Hδδδbi2
ei +

1
2

I

∑
i=1

Hδδδbi2bi2
e2

i

]
. (25)

Note that we suppress arguments in the derivatives in (25). For example, we write Hδδδδδδ =

Hδδδδδδ (δδδ ,a,b,a,b). Then, we can compute the bias from (25) by relying on E(ei) = 0 as

Bias(δ̂δδ ) =−1
2

H−1
δδδδδδ

[
I

∑
i=1

Hδδδbi2bi2

]
τ

2 . (26)

Furthermore, the variance can be computed from (25) by only considering linear terms ei and
ignoring quadratic terms e2

i :
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Var(δ̂δδ ) = H−1
δδδδδδ

[
I

∑
i=1

Hδδδbi2
H>

δδδbi2

]
H−>

δδδδδδ
τ

2 . (27)

4.2. Random DIF in two groups

We now derive the bias and the variance of the estimate δ̂δδ in the case that random uniform
DIF occurs in two groups. In this case, we have b1 = b−e/2 and b2 = b+e/2 (see Section 2).
Then, a second-order Taylor expansion with respect to δδδ , b1 and b2 is applied, which provides

0 = Hδδδ (δ̂δδ ,a,b1,a,b2)

= Hδδδ (δδδ ,a,b,a,b)+Hδδδδδδ

(
δ̂δδ −δδδ

)
+

1
2

I

∑
i=1

(
Hδδδbi2

−Hδδδbi1

)
ei +

1
8

I

∑
i=1

(
Hδδδbi2bi2

+Hδδδbi1bi1
−2Hδδδbi1bi2

)
e2

i .

(28)

The bias and the variance can be derived as

Bias(δ̂δδ ) =−1
8

H−1
δδδδδδ

[
I

∑
i=1

(
Hδδδbi2bi2

+Hδδδbi1bi1
−2Hδδδbi1bi2

)]
τ

2 and (29)

Var(δ̂δδ ) = 1
4

H−1
δδδδδδ

[
I

∑
i=1

UiU>
i

]
H−>

δδδδδδ
τ

2 , where Ui = Hδδδbi2
−Hδδδbi1

. (30)

5. Analytical derivation of the bias for Haebara linking

In this section, we illustrate the bias formulas from Section 4 for asymmetric and symmetric
Haebara linking.

5.1. Asymmetric Haebara linking

The linking function for asymmetric Haebara linking (see Section 3.1.1) is given by

H(µ,σ , â1, b̂1, â2, b̂2) =
I

∑
i=1

T

∑
t=1

ωtΛ
2
1it , where (31)

Λ1it = Ψ(âi1(σθt +µ − b̂i1))−Ψ(âi2(θt − b̂i2)) . (32)

One can simplify (32) in the presence of uniform DIF effects using (3) and ai1 = ai2 = ai based
on identified item parameters

Λ1it = Ψ(ai(σθt +µ −bi1))−Ψ(ai(σθt +µ −bi2)) . (33)

The following derivations use the general parameter κ , denoting κ = µ or κ = σ . For κ = µ ,
we define ft = 1, and we define ft = θt for κ = σ . The estimating equations for κ = µ and
κ = σ are given as

Hκ = 2
I

∑
i=1

T

∑
t=1

ωtai ftΛ1itΨ
′(ai(σθt +µ −bi1)) . (34)
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The first-order and second-order derivatives of Hκ with respect to bi2 and bi1 are calculated as

Hκbi2 = 2
T

∑
t=1

ωta2
i ftΨ′(ai(σθt +µ −bi2))Ψ

′(ai(σθt +µ −bi1)) , (35)

Hκbi2bi2 =−2
T

∑
t=1

ωta3
i ftΨ′′(ai(σθt +µ −bi2))Ψ

′(ai(σθt +µ −bi1)) , (36)

Hκbi1 = −2
T

∑
t=1

ωta2
i ft

[
Ψ

′(ai(σθt +µ −bi1))
]2

−2
T

∑
t=1

ωta2
i ftΛ1itΨ

′′(ai(σθt +µ −bi1)) ,

(37)

Hκbi1bi1 = 4
T

∑
t=1

ωta3
i ftΨ′(ai(σθt +µ −bi1))Ψ

′′(ai(σθt +µ −bi1))

+2
T

∑
t=1

ωta3
i ftΨ′(ai(σθt +µ −bi1))Ψ

′′(ai(σθt +µ −bi1))

+2
T

∑
t=1

ωta3
i ftΛ1itΨ

′′′(ai(σθt +µ −bi1)) and

(38)

Hκbi1bi2 =−2
T

∑
t=1

ωta3
i ftΨ′(ai(σθt +µ −bi2))Ψ

′′(ai(σθt +µ −bi1)) . (39)

We now evaluate the derivatives at bi1 = bi and bi2 = bi. Using the abbreviation
ηit = ai(σθt +µ −bi), we obtain

Hκbi2bi2 =−2
T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit) , (40)

Hκbi1bi1 = 6
T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit) and (41)

Hκbi1bi2 =−2
T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit) (42)

Finally, we obtain the bias-determining term corresponding to the case that DIF occurs in
two groups (see (29)) as

Hκbi2bi2 +Hκbi1bi1 −2Hκbi1bi2 = 8
T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit) . (43)

We now illustrate the bias-determining terms for µ and σ as a function of a common item
difficulty bi. We choose µ = 0.3 and σ = 1.2 as in the Simulation Study presented in the next
Section 6. Note that the Hessian matrix Hδδδδδδ is positive definite for a linking function H that
attains the parameter estimate δ̂δδ as the minimizer.

Figure 1 presents the bias-determining terms Hκb2b2 for κ = µ,σ for asymmetric Haebara
linking if DIF occurs in one group. The derivative with respect to µ can be positive or negative
values, depending on the difference µ −b is negative or positive. The bias-determining term
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for σ is positive for a broad range of b values for which µ −b does not deviate too much from
0. Hence, a negative bias for σ̂ can be expected because of the negative sign of the bias in (26).
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Figure 1. Bias-determining term Hκb2b2 for κ = µ (left panel) and κ = σ (right panel)
(see (26)) for asymmetric Haebara linking in a test with one item with item discriminations
a = 1 or a = 2 as a function of common item difficulty b with group mean µ = 0.3 and group
standard deviation σ = 1.2.

Figure 2 illustrates the bias-determining term Hκb2b2 +Hκb1b1 −2Hκb1b2 for asymmetric
Haebara linking of random DIF occurs in two groups. It is evident that the bias term for
σ now has a negative sign, which subsequently will result in a positive expected bias of σ̂

according to (29).
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Figure 2. Bias-determining term Hκb2b2 +Hκb1b1 −2Hκb1b2 for κ = µ (left panel) and κ = σ

(right panel) (see (29)) for asymmetric Haebara linking in a test with one item with item
discriminations a = 1 or a = 2 as a function of common item difficulty b with group mean
µ = 0.3 and group standard deviation σ = 1.2.

5.2. Symmetric Haebara linking

The linking function for symmetric Haebara linking (see Section 3.1.2) is given by

H(µ,σ , â1, b̂1, â2, b̂2) =
I

∑
i=1

T

∑
t=1

ωtΛ
2
1it +

I

∑
i=1

T

∑
t=1

ωtΛ
2
2it , where (44)

11
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Λ1it = Ψ(âi1(σθt +µ − b̂i1))−Ψ(âi2(θt − b̂i2)) and (45)

Λ2it = Ψ(âi1(θt − b̂i1))−Ψ(âi2(σ
−1(θt −µ)− b̂i2)) . (46)

We can simplify (45) and (46) with ai1 = ai2 = ai and using identified item parameters (see (3))
and arrive at

Λ1it = Ψ(ai(σθt +µ −bi1))−Ψ(ai(σθt +µ −bi2)) and (47)

Λ2it = Ψ(ai(θt −bi1))−Ψ(ai(θt −bi2)) . (48)

We set gt = σ−1 for κ = µ and gt = σ−2(θt −µ) for κ = σ and obtain the estimating equations

Hκ = 2
I

∑
i=1

T

∑
t=1

ωtai ftΛ1itΨ
′(ai(σθt +µ −bi1))+2

I

∑
i=1

T

∑
t=1

ωtaigtΛ2itΨ
′(ai(θt −bi2)) (49)

The first-order and second-order derivatives are given by

Hκbi2 = 2
T

∑
t=1

ωta2
i ftΨ′(ai(σθt +µ −bi2))Ψ

′(ai(σθt +µ −bi1))

+2
I

∑
i=1

T

∑
t=1

ωta2
i gt

[
Ψ

′(ai(θt −bi2))
]2

−2
I

∑
i=1

T

∑
t=1

ωta2
i gtΛ2itΨ

′′(ai(θt −bi2)) ,

(50)

Hκbi2bi2 =−2
T

∑
t=1

ωta3
i ftΨ′′(ai(σθt +µ −bi2))Ψ

′(ai(σθt +µ −bi1))

−6
I

∑
i=1

T

∑
t=1

ωta3
i gtΨ

′(ai(θt −bi2))Ψ
′′(ai(θt −bi2))

+2
I

∑
i=1

T

∑
t=1

ωta3
i gtΛ2itΨ

′′′(ai(θt −bi2)) ,

(51)

Hκbi1 =−2
I

∑
i=1

T

∑
t=1

ωta2
i ft

[
Ψ

′(ai(σθt +µ −bi1))
]2

−2
I

∑
i=1

T

∑
t=1

ωta2
i ftΛ1itΨ

′′(ai(σθt +µ −bi1))

−2
I

∑
i=1

T

∑
t=1

ωta2
i gtΨ

′(ai(θt −bi1))Ψ
′(ai(θt −bi2)) ,

(52)

12
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Hκbi1bi1 = 6
I

∑
i=1

T

∑
t=1

ωta3
i ftΨ′(ai(σθt +µ −bi1))Ψ

′′(ai(σθt +µ −bi1))

+2
I

∑
i=1

T

∑
t=1

ωta3
i ftΛ1itΨ

′′′(ai(σθt +µ −bi1))

+2
I

∑
i=1

T

∑
t=1

ωta3
i gtΨ

′′(ai(θt −bi1))Ψ
′(ai(θt −bi2)) and

(53)

Hκbi1bi2 =−2
I

∑
i=1

T

∑
t=1

ωta3
i ftΨ′(ai(σθt +µ −bi2))Ψ

′′(ai(σθt +µ −bi1))

+2
I

∑
i=1

T

∑
t=1

ωta3
i gtΨ

′(ai(θt −bi1))Ψ
′′(ai(θt −bi2)) .

(54)

We can now evaluate the derivatives at bi1 = bi2 = bi and obtain by using the abbreviations
ηit = ai(σθt +µ −bi) and γit = ai(θt −bi)

Hκbi2bi2 =−2
T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit)−6
I

∑
i=1

T

∑
t=1

ωta3
i gtΨ

′(γit)Ψ
′′(γit) , (55)

Hκbi1bi1 = 6
I

∑
i=1

T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit)+2
I

∑
i=1

T

∑
t=1

ωta3
i gtΨ

′(γit)Ψ
′′(γit) and (56)

Hκbi1bi2 =−2
I

∑
i=1

T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit)+2
I

∑
i=1

T

∑
t=1

ωta3
i gtΨ

′(γit)Ψ
′′(γit) . (57)

Finally, the bias-determining term in the case that DIF occurs in two groups is given as

Hκbi1bi2 +Hκbi1bi1 −2Hκbi1bi2

= 8
I

∑
i=1

T

∑
t=1

ωta3
i ftΨ′(ηit)Ψ

′′(ηit)−8
I

∑
i=1

T

∑
t=1

ωta3
i gtΨ

′(γit)Ψ
′′(γit) .

(58)

Figure 3 illustrates the bias-determining terms Hκb2b2 for symmetric Haebara linking
if DIF occurs in one group. The term is positive for σ , which implies a negative expected
bias for σ̂ .
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Figure 3. Bias-determining term Hκb2b2 for κ = µ (left panel) and κ = σ (right panel)
(see (26)) for symmetric Haebara linking in a test with one item with item discriminations
a = 1 or a = 2 as a function of common item difficulty b with group mean µ = 0.3 and group
standard deviation σ = 1.2.

Figure 4 illustrates the bias-determining term Hκb2b2 +Hκb1b1 −2Hκb1b2 for symmetric
Haebara linking if DIF occurs in two groups. It can be seen that the term has only small
negative values for σ . Hence, only small biases for σ̂ can be expected for symmetric Haebara
linking if DIF occurs in two groups.

We would like to emphasize that the bias-determining term Hκbi1bi2 +Hκbi1bi1 −2Hκbi1bi2

in (58) equals zero if µ = 0 and σ = 1 (i.e., there are no differences in the distributions of the
two groups). In this case, we have ft = gt and ηit = γit , which implies the finding.
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Figure 4. Bias-determining term Hκb2b2 +Hκb1b1 − 2Hκb1b2 for κ = µ (left panel) and
κ = σ (right panel) (see (29)) for symmetric Haebara linking in a test with one item with
item discriminations a = 1 or a = 2 as a function of common item difficulty b with group
mean µ = 0.3 and group standard deviation σ = 1.2.
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6. Simulation study

6.1. Method

This simulation study used the 2PL model to simulate item responses in two groups. The mean
and standard deviation of the normally distributed ability variable θ in the first group were set
to 0 to 1, and the mean and SD for the normally distributed ability variable θ in the second
group were set to µ = 0.3 and σ = 1.2, respectively.

The number of items I in the simulation was varied as 10, 20, and 40. The group-specific
item parameters aig and big for i = 1, . . . , I and g = 1,2 relied on common item parameters ai

and bi that were held fixed in the simulation and a random uniform and normally distributed
DIF effect. Uniform DIF effects were simulated in each replication of the simulation study.
The same item parameters as in Ref. [19] were used. In the case of I = 10 items, the common
item discriminations ai were chosen as 0.83, 1.02, 0.88, 0.80, 1.04, 0.95, 1.00, 1.13, 1.32,
and 1.11. The mean of the ai parameters was M = 1.008 and the standard deviation was
SD = 0.156, referring to a situation of a test with items that had medium item discrimination.
The common item difficulties bi were chosen as −1.74, −1.22, −0.22, 0.54, −0.04, −0.39,
−0.73, 0.30, 0.83, and −1.39. The bi parameters had a mean M = −0.406 and a standard
deviation SD = 0.857, resulting in a test with items that were slightly easier compared to the
average ability in the population (i.e., resulting in marginal item response probabilities slightly
larger than 0.50). The item parameters of the 10 items were duplicated for item numbers as
multiples of 10 (i.e., in the cases I = 20 and I = 40).

Two types of DIF effects were simulated. DIF could occur in one group (i.e., in the second
group, denoted by 1G) or in the two groups (denoted by 2G). In both cases, the group-specific
item discriminations aig were chosen to be equal (i.e., ai1 = ai2 = ai). In the case that DIF
occurs in one group (i.e., the case 1G), we defined bi1 = bi and bi2 = bi + ei. In the case that
DIF occurs in two groups (i.e., the case 2G), we defined bi1 = bi − ei/2 and bi2 = bi + ei/2.
The uniform DIF effects ei were simulated from a normal distribution with zero mean and a
DIF standard deviation τ = 0.50.

Item responses from the 2PL model were simulated for finite sample sizes N = 500, 1000,
and 2000. Moreover, we investigated an infinite sample size in which only computed identified
item parameters âig and b̂ig (i = 1, . . . , I; g = 1,2) without simulating item responses.

Different linking methods were compared in this simulation study. First, we investigated
mean-geometric-mean (MGM) linking [11, 25, 42]. Moreover, we applied asymmetric
and symmetric Haebara linking (AHA and SHA, respectively) as well as asymmetric and
symmetric Stocking-Lord linking (ASL and SSL, respectively). Moreover, we applied
SIMEX-based linking for the four latter linking methods AHA, SHA, ASL, and SSL. SIMEX-
based linking was applied under the assumption that DIF was induced in SIMEX estimation
either in only one group (i.e., method SI1G) or in both groups (i.e., method SI2G), as described
in Section 3.1.3. Therefore, 4×2 = 8 SIMEX-based linking methods were utilized in this
study. SIMEX estimation was carried out for λ values of 0.5, 1.0, 1.5, and 2.0. Moreover, a
quasi Monte Carlo method was used instead of a fully simulation-based approach of SIMEX
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as described in Ref. [35]. For I = 10 and I = 20 items, original item parameters were
combined with 50 replications from an (approximately) exact normal distribution resulting in
10×50 = 500 or 20×50 = 1000 data points as input for SIMEX. In contrast, 30 replications
were used in the simulation conditions involving I = 40 items, resulting in 40×30 = 1200
data points as input for SIMEX. Overall, we compared 1+ 4+ 8 = 13 different linking
methods in this simulation study.

In each of the 4 (sample size N) × 2 (DIF types 1G and 2G) × 3 (number of
items I) = 24 cells of the simulation, 1,500 replications were conducted. We computed
the empirical bias and the root mean square error (RMSE) for the estimated mean µ̂ and
the estimated standard deviation σ̂ . For finite sample sizes, a relative (percentage) RMSE
was computed as the ratio of the RMSE values of a particular linking method and the
best-performing linking method in a condition.

The R software [49] was used for the entire analysis in this simulation study. The 2PL
model was fitted using the sirt::xxirt() function in the R package sirt [50]. The author of this
article wrote dedicated R functions for the different linking methods. These functions and
replication material for this Simulation Study can be found at https://osf.io/6btr9/ (accessed
on 1 August 2024).

6.2. Results

Table 1 presents the bias of the estimated group mean µ and the estimated standard deviation σ

in the case of an infinite sample size. The MGM linking method was unbiased in all conditions.
Overall, the bias was more pronounced for the standard deviation σ than for the mean µ .

If DIF occurred in only one group (i.e., case 1G), biased estimates were obtained for
ASL, SSL, AHA and SHA linking methods. Surprisingly, SHA was more biased than AHA.
However, these findings were also predicted from the analytical derivations in Section 5. If the
SIMEX-based linking methods SI1G were applied for these four linking methods, unbiased
estimates were obtained. However, if the SIMEX-based method SI2G was applied, the bias
was not decreased and even increased in some situations. This finding can be explained by the
fact that SIMEX would incorrectly assume that DIF effects would occur in two groups, but it
occurred in only one group in the data-generating model.

If DIF occurred in two groups, ASL, SSL, and SHAE were approximately unbiased.
However, AHA resulted in biased estimates. These findings confirmed our predictions from
Section 5 that AHA would result in a bias, while the bias would be small for SHA. For all four
linking methods, SIMEX-based linking SI2G with correctly chosen DIF induced in two groups
was unbiased, while bias increased if DIF was incorrectly assumed to occur in only one group
in SIMEX-based linking SI1G.
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Table 1. Simulation Study: Bias of estimated group mean µ and estimated group standard
deviation σ for a DIF SD τ = 0.5, uniform DIF in one (1G) or two (2G) groups, and an
infinite sample size as a function of the number of items I.

DIF Par I MGM ASL ASL-
SI1G

ASL-
SI2G

SSL SSL-
SI1G

SSL-
SI2G

AHA AHA-
SI1G

AHA-
SI2G

SHA SHA-
SI1G

SHA-
SI2G

1G

µ

10 0.00 −0.02 0.01 −0.01 −0.02 0.01 −0.01 −0.01 0.01 −0.02 −0.03 0.01 −0.02
20 0.00 −0.02 0.00 −0.02 −0.02 0.00 −0.02 −0.02 0.01 −0.03 −0.03 0.00 −0.03
40 0.00 −0.02 −0.01 −0.02 −0.02 −0.01 −0.02 −0.02 0.00 −0.03 −0.04 0.00 −0.04

σ

10 0.00 −0.04 0.01 −0.03 −0.04 0.01 −0.03 −0.03 0.01 −0.05 −0.06 0.01 −0.05
20 0.00 −0.04 0.00 −0.04 −0.04 0.00 −0.04 −0.03 0.01 −0.06 −0.07 0.00 −0.06
40 0.00 −0.04 0.00 −0.04 −0.04 0.00 −0.04 −0.04 0.00 −0.07 −0.07 0.00 −0.07

2G

µ

10 0.00 0.00 0.03 0.01 0.00 0.03 0.01 0.02 0.05 0.01 0.01 0.05 0.01
20 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.02 0.05 0.01 0.00 0.04 0.01
40 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.02 0.04 0.00 0.00 0.04 0.00

σ

10 0.00 0.00 0.05 0.01 0.00 0.05 0.01 0.04 0.08 0.01 0.00 0.08 0.01
20 0.00 0.00 0.05 0.01 0.00 0.05 0.01 0.04 0.09 0.01 0.00 0.08 0.01
40 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.04 0.08 0.00 0.00 0.08 0.00

Note. DIF = differential item functioning; Par = parameter; MGM = mean-geometric mean linking; ASL = asymmetric Stocking-Lord linking;
SSL = symmetric Stocking-Lord linking; AHA = asymmetric Haebara linking; SHA = symmetric Haebara linking; SI1G = SIMEX-based
linking with assumed DIF in one group; SI2G = SIMEX-based linking with assumed DIF in two groups; Biases with absolute values of at
least 0.02 are printed in bold font.

Table 2 presents the RMSE for the estimated mean and standard deviation in an infinite
sample size. Generally, the RMSE decreased with an increasing number of items. In line with
other studies, MGM had zero variance for the standard deviation σ in infinite samples [25].
Notably, MGM had the least RMSE across all conditions. Generally, SL had smaller RMSE
values than HA linking. Interestingly, SSL had a similar RMSE to ASL, while the RMSE of
SHA was smaller than AHA. It should also be emphasized that the application of the adequate
SIMEX-based linking method (i.e., SI1G in the DIF 1G case and SI2G in the DIF 2G case)
did not substantially increase the RMSE.

Table 2. Simulation Study: Root mean square error (RMSE) of estimated group mean µ

and estimated group standard deviation σ for a DIF SD τ = 0.5, uniform DIF in one (1G) or
two (2G) groups, and an infinite sample size as a function of the number of items I.

DIF Par I MGM ASL ASL-
SI1G

ASL-
SI2G

SSL SSL-
SI1G

SSL-
SI2G

AHA AHA-
SI1G

AHA-
SI2G

SHA SHA-
SI1G

SHA-
SI2G

1G

µ

10 0.159 0.159 0.164 0.159 0.159 0.164 0.159 0.166 0.173 0.163 0.164 0.173 0.164
20 0.113 0.113 0.116 0.113 0.113 0.116 0.113 0.118 0.122 0.118 0.119 0.122 0.118
40 0.079 0.081 0.081 0.081 0.081 0.081 0.081 0.084 0.085 0.086 0.088 0.085 0.087

σ

10 0 0.062 0.055 0.061 0.063 0.056 0.061 0.089 0.093 0.096 0.100 0.093 0.096
20 0 0.054 0.039 0.052 0.054 0.040 0.052 0.068 0.065 0.082 0.088 0.065 0.083
40 0 0.048 0.026 0.049 0.048 0.027 0.049 0.054 0.043 0.080 0.080 0.044 0.080

2G

µ

10 0.159 0.164 0.170 0.164 0.164 0.170 0.165 0.178 0.187 0.174 0.174 0.186 0.174
20 0.113 0.115 0.121 0.116 0.116 0.121 0.116 0.125 0.135 0.122 0.121 0.134 0.122
40 0.079 0.082 0.085 0.081 0.082 0.085 0.082 0.089 0.098 0.086 0.086 0.096 0.086

σ

10 0 0.052 0.075 0.053 0.053 0.076 0.054 0.099 0.129 0.090 0.088 0.130 0.090
20 0 0.036 0.062 0.036 0.036 0.063 0.037 0.074 0.109 0.063 0.061 0.107 0.063
40 0 0.027 0.054 0.027 0.027 0.054 0.027 0.062 0.093 0.045 0.045 0.093 0.045

Note. DIF = differential item functioning; Par = parameter; MGM = mean-geometric mean linking; ASL = asymmetric Stocking-Lord linking;
SSL = symmetric Stocking-Lord linking; AHA = asymmetric Haebara linking; SHA = symmetric Haebara linking; SI1G = SIMEX-based
linking with assumed DIF in one group; SI2G = SIMEX-based linking with assumed DIF in two groups.

Table 3 displays the bias of the estimates for µ and σ in finite sample sizes. Overall, the
bias in finite sample sizes was very similar to the case of an infinite sample size. Moreover,
the size of the bias was relatively independent of sample size N and the number of items I.
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Table 3. Simulation Study: Bias of estimated group mean µ and estimated group standard
deviation σ for a DIF SD τ = 0.5, and uniform DIF in one (1G) or two (2G) groups as a
function of sample size N and of the number of items I.

DIF Par I N MGM ASL ASL-
SI1G

ASL-
SI2G

SSL SSL-
SI1G

SSL-
SI2G

AHA AHA-
SI1G

AHA-
SI2G

SHA SHA-
SI1G

SHA-
SI2G

1G

µ

10
500 0.01 −0.01 0.01 −0.01 −0.01 0.01 −0.01 0.00 0.02 −0.02 −0.02 0.01 −0.02
1000 0.00 −0.02 0.00 −0.02 −0.02 0.00 −0.02 −0.01 0.01 −0.02 −0.03 0.01 −0.03
2000 0.00 −0.02 0.01 −0.02 −0.02 0.01 −0.02 −0.01 0.01 −0.02 −0.03 0.01 −0.02

20
500 0.01 −0.01 0.01 −0.01 −0.01 0.01 −0.01 0.00 0.02 −0.02 −0.03 0.01 −0.02
1000 0.00 −0.02 0.00 −0.02 −0.02 0.01 −0.02 −0.01 0.01 −0.03 −0.03 0.01 −0.03
2000 0.00 −0.02 0.00 −0.02 −0.02 0.00 −0.02 −0.02 0.01 −0.03 −0.03 0.00 −0.03

40
500 0.00 −0.02 −0.01 −0.02 −0.02 −0.01 −0.02 −0.02 0.00 −0.03 −0.04 −0.01 −0.04
1000 0.00 −0.02 −0.01 −0.02 −0.02 −0.01 −0.02 −0.02 0.00 −0.03 −0.04 0.00 −0.04
2000 0.00 −0.02 −0.01 −0.02 −0.02 −0.01 −0.02 −0.02 0.00 −0.03 −0.04 0.00 −0.04

σ

10
500 0.01 −0.03 0.01 −0.03 −0.03 0.01 −0.03 −0.02 0.02 −0.04 −0.05 0.02 −0.05
1000 0.00 −0.03 0.01 −0.03 −0.03 0.01 −0.03 −0.02 0.02 −0.05 −0.05 0.02 −0.05
2000 0.00 −0.04 0.01 −0.03 −0.04 0.01 −0.03 −0.02 0.02 −0.05 −0.06 0.01 −0.05

20
500 0.01 −0.03 0.01 −0.03 −0.03 0.01 −0.03 −0.02 0.02 −0.05 −0.06 0.01 −0.05
1000 0.00 −0.04 0.01 −0.04 −0.04 0.01 −0.04 −0.03 0.01 −0.05 −0.06 0.01 −0.06
2000 0.00 −0.04 0.00 −0.04 −0.04 0.00 −0.04 −0.03 0.01 −0.06 −0.07 0.01 −0.06

40
500 0.00 −0.04 0.00 −0.04 −0.04 0.00 −0.04 −0.03 0.01 −0.06 −0.07 0.00 −0.07
1000 0.00 −0.04 0.00 −0.04 −0.04 0.00 −0.04 −0.03 0.01 −0.07 −0.07 0.00 −0.07
2000 0.00 −0.04 0.00 −0.04 −0.04 0.00 −0.04 −0.03 0.00 −0.07 −0.07 0.00 −0.07

2G

µ

10
500 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.06 0.02 0.01 0.05 0.01
1000 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.02 0.05 0.01 0.00 0.04 0.01
2000 0.00 0.00 0.03 0.01 0.00 0.03 0.01 0.03 0.05 0.01 0.01 0.05 0.01

20
500 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.06 0.01 0.01 0.05 0.01
1000 0.00 0.00 0.03 0.01 0.00 0.03 0.01 0.03 0.05 0.01 0.00 0.05 0.01
2000 0.00 0.00 0.03 0.01 0.00 0.03 0.01 0.03 0.05 0.01 0.00 0.05 0.01

40
500 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.03 0.05 0.01 0.00 0.04 0.01
1000 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.03 0.05 0.01 0.00 0.04 0.00
2000 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.02 0.04 0.00 0.00 0.04 0.00

σ

10
500 0.01 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.10 0.02 0.01 0.09 0.02
1000 0.01 0.01 0.05 0.01 0.01 0.05 0.01 0.04 0.09 0.02 0.01 0.09 0.02
2000 0.00 0.00 0.05 0.01 0.00 0.05 0.01 0.04 0.09 0.01 0.01 0.09 0.02

20
500 0.01 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.10 0.02 0.01 0.09 0.01
1000 0.00 0.00 0.05 0.01 0.00 0.05 0.01 0.04 0.09 0.01 0.00 0.09 0.01
2000 0.00 0.00 0.05 0.01 0.00 0.05 0.01 0.04 0.09 0.01 0.00 0.09 0.01

40
500 0.01 0.01 0.05 0.00 0.01 0.05 0.00 0.05 0.09 0.01 0.01 0.09 0.01
1000 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.09 0.01 0.00 0.08 0.01
2000 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.04 0.08 0.00 0.00 0.08 0.00

Note. DIF = differential item functioning; Par = parameter; MGM = mean-geometric mean linking; ASL = asymmetric Stocking-Lord linking;
SSL = symmetric Stocking-Lord linking; AHA = asymmetric Haebara linking; SHA = symmetric Haebara linking; SI1G = SIMEX-based
linking with assumed DIF in one group; SI2G = SIMEX-based linking with assumed DIF in two groups; Biases with absolute values of at
least 0.02 are printed in bold font.

Table 4 presents the relative RMSE for the estimated group mean and standard deviation
in finite sample sizes. The different linking methods did not substantially differ for the RMSE
regarding the group mean µ . However, the notable difference between the linking methods
were obtained for the group standard deviation σ . There were significant efficiency gains when
using MGM compared to SL and HA linking methods, particularly for large sample sizes.
As for infinite sample sizes, SL outperformed HA linking methods. Again, SIMEX-based
linking procedures that assumed the correct DIF model did not substantially increase the RMSE
compared to the original linking procedure.
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Table 4. Simulation Study: Relative root mean square error (RMSE) of estimated group
mean µ and estimated group standard deviation σ for a DIF SD τ = 0.5, and uniform DIF in
one (1G) or two (2G) groups as a function of sample size N and of the number of items I.

DIF Par I N MGM ASL ASL-
SI1G

ASL-
SI2G

SSL SSL-
SI1G

SSL-
SI2G

AHA AHA-
SI1G

AHA-
SI2G

SHA SHA-
SI1G

SHA-
SI2G

1G

µ

10
500 105 100 104 100 100 104 100 106 111 104 104 109 104
1000 102 100 103 100 100 103 100 106 110 105 104 109 104
2000 101 100 103 100 100 103 100 106 111 105 105 110 105

20
500 105 100 104 100 100 104 100 106 111 104 104 109 104
1000 102 100 103 100 100 103 100 105 109 104 105 108 104
2000 101 100 102 100 100 102 100 105 108 104 105 107 105

40
500 102 100 101 100 100 101 100 102 104 102 104 103 104
1000 100 101 101 101 101 101 101 103 105 104 106 105 106
2000 100 100 101 100 100 101 100 103 105 105 107 104 106

σ

10
500 100 112 114 112 112 114 112 135 144 137 139 142 137
1000 100 132 131 130 132 131 130 166 178 172 175 175 171
2000 100 159 149 156 159 150 157 206 216 221 226 214 220

20
500 100 114 112 113 114 113 113 128 136 137 143 134 139
1000 100 140 126 136 140 127 137 163 166 183 193 164 184
2000 100 168 142 163 169 143 164 202 199 232 247 198 235

40
500 100 117 106 118 117 106 118 122 121 147 149 120 149
1000 100 137 115 139 137 116 139 148 141 189 191 140 191
2000 100 172 129 174 173 130 175 187 170 255 257 170 257

2G

µ

10
500 102 100 104 100 100 104 100 108 114 106 104 112 105
1000 101 100 103 100 100 103 100 108 113 106 106 112 106
2000 100 100 104 101 101 104 101 109 114 107 106 114 107

20
500 102 100 105 100 100 105 100 109 116 105 104 113 105
1000 100 100 105 101 100 105 101 109 117 106 105 116 106
2000 100 100 106 101 100 106 101 109 118 106 105 116 106

40
500 101 100 105 100 100 104 100 109 118 104 104 115 104
1000 100 100 105 100 100 105 100 109 118 104 104 116 104
2000 100 101 105 100 101 105 101 109 120 105 105 117 105

σ

10
500 100 113 131 113 113 132 114 152 181 141 137 178 139
1000 100 125 153 126 126 154 127 182 225 169 165 222 168
2000 100 147 189 149 148 191 150 236 299 217 211 296 215

20
500 100 109 133 109 109 134 110 147 188 132 128 182 130
1000 100 122 162 123 123 163 124 183 245 161 157 239 161
2000 100 140 200 141 141 202 143 230 320 199 193 313 198

40
500 100 107 136 107 107 137 107 147 192 122 120 186 121
1000 100 114 160 114 115 161 114 174 239 138 138 235 138
2000 100 126 195 126 127 196 127 213 308 164 165 304 166

Note. DIF = differential item functioning; Par = parameter; MGM = mean-geometric mean linking; ASL = asymmetric Stocking-Lord linking;
SSL = symmetric Stocking-Lord linking; AHA = asymmetric Haebara linking; SHA = symmetric Haebara linking; SI1G = SIMEX-based
linking with assumed DIF in one group; SI2G = SIMEX-based linking with assumed DIF in two groups; Relative RMSE values larger
than 125 are printed in bold font.

7. Conclusion

In this article, we investigated the bias and the variance of linking methods if random uniform
DIF occurs in one or two groups. The analytically obtained bias formulas were specialized for
asymmetric and symmetric Haebara linking. A simulation study was carried out to study the
performance of Haebara and Stocking-Lord linking as well as bias-correction methods that
relied on the SIMEX approach. Importantly, the biases qualitatively for the different linking
methods differ depending on whether DIF occurs in one or two groups. In the case that DIF
occurs in only one group, asymmetric and symmetric Haebara and Stocking-Lord linking
resulted in biased estimates. In contrast, asymmetric and symmetric Stocking-Lord linking
resulted in nearly unbiased estimates if DIF occurs in two groups. In this situation, asymmetric
Haebara linking again resulted in biased estimates, while symmetric Haebara linking was
approximately unbiased as predicted from the analytical derivations.
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The SIMEX-based linking methods were effective in reducing (or removing) the bias.
However, it is important that the type of occurrence of DIF effects (i.e., in one or two groups)
must be correctly implemented in SIMEX estimation. If the incorrect type of DIF effects is
applied, the SIMEX-based linking method could even introduce bias.

If researchers can ensure in practical applications that random DIF symmetrically occurs in
both groups, using asymmetric or symmetric Stocking-Lord linking is advised. If researchers
are unsure about whether random DIF occurs in one or two groups and the sample size per
group is not overly small, we recommend using mean-geometric mean linking instead of
Haebara or Stocking-Lord linking because it results in unbiased estimates and induces only
minor efficiency losses if there is no random DIF in the item response data.

Our findings also have implications for how simulation studies about linking are conducted.
The way random DIF is simulated will impact the performance of the linking methods under study.

As with any simulation study, our study also possesses some limitations. First, it assumes
that the item response model was correctly specified as the 2PL model. Second, we only
simulated normally distributed DIF effects. Third, we only considered uniform DIF effects,
and nonuniform DIF was assumed to be absent. However, previous research highlighted that
uniform DIF is more likely to be found in practical applications than nonuniform DIF [51].
Moreover, the general derivations of Section 4 can be extended to accommodate random
nonuniform DIF. Fourth, random DIF was assumed to be independent across items, but DIF
effects could be correlated within testlets (i.e., groups of items; see [52, 53]). Fifth, our findings
could be generalized to polytomous linking methods [54, 55]. These limitations could be
addressed in future research.

An anonymous reviewer suggested using a concurrent calibration (CC) method as a linking
method that employs a joint IRT model that involves the two groups. Previous research
demonstrated that CC assuming invariant or partially invariant; see [56]) items provides biased
parameter estimates in the presence of random DIF [42]. For this reason, we did not include
the CC method as a competitor in our simulation study.
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