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Highlights:  

⚫ Asymmetry of conjugated kinetic coefficients in a cell model of a charged membrane is shown. 

⚫ Asymmetry is confirmed by the transport characteristics of some cation exchange membranes. 

⚫ The revealed asymmetry violates Onsager’s well-known principle of reciprocity. 

⚫ The mismatch of the conjugated coefficients should be considered in water and ions transfer. 

Abstract: Theoretical study was performed earlier for the cell model of a charged porous membrane 

based on Onsager’s approach and the result was calculation of all electrokinetic coefficients. 

Experimental dependences of electroosmotic permeability, conductivity, and diffusion permeability of 

some perfluorinated membranes on electrolyte concentration were simultaneously and quantitatively 

described using exact analytical formulae based on the same set of physicochemical and geometrical 

parameters. It is shown here that for the developed cell model of the ion–exchange membrane, the 

Onsager principle of reciprocity is violated—the coupled cross kinetic coefficients are not equal. The 

violation is associated with the fact that the reciprocity principle takes place only for systems for which 

generalized fluxes are zero at thermodynamic forces other than zero within the framework of linear 

thermodynamics of irreversible processes.  
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1. Introduction 

The cell method proposed by J. Happel and H. Brenner in the middle of the last century is widely and 

effectively used to study concentrated dispersed systems, including membranes [1]. The cell model of 

an ion exchange membrane assumes the replacement of a real system of randomly arranged ionite grains 

with a periodic lattice, in particular, identical porous charged balls enclosed in concentric spherical shells 

filled with electrolyte and forming a porous layer. The impact of neighboring particles in the cell method 

is considered by setting special boundary conditions on the surface of the liquid shell. It is assumed that 

the gradients of the external forces acting on the porous layer coincide with the local gradients on the 

https://creativecommons.org/licenses/by/4.0/
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unit cell. The advantage of the described approach is that all the quantities included in the equations of 

electrolyte transfer through a porous layer: thermodynamic fluxes and forces, can be directly measured 

in experiments. 

Earlier in 2018, a new cell model of an ion exchange membrane was proposed by A. N. Filippov, 

the problem of finding the kinetic coefficients Lij was posed and solved in general, and accurate algebraic 

formulas for the hydrodynamic permeability L11, the electroosmotic permeability L12 and the specific 

electrical conductivity L22 of the cation exchange membrane were derived for the first time. In the 

subsequent works in 2019–2022, based on the cell model developed, the diffusion permeability L33 and 

the electrodiffusion coefficient L23 were found. At the same time, the cell model was successfully 

verified by A.N. Filippov and S.A. Shkirskaya on the base of experimental data obtained for a cast 

perfluorinated MF-4SK membrane and its modifications using halloysite nanotubes functionalized with 

platinum and iron nanoparticles in aqueous HCl solutions, as well as an MF-4SK extrusion membrane 

in aqueous solutions of 1:1 electrolyte (HCl, NaCl, KCl, LiCl, CsCl). Later (2023), the same model was 

successfully applied to the description of the diffusion permeability and electrical conductivity of 

heterogeneous cation exchange MK-40 and anion exchange MA-41 membranes, as well as to the 

calculation of the hydrodynamic permeability of macroporous membranes made of sodium borosilicate 

glass (2024). To determine the physicochemical and geometric parameters of the model, a special 

algorithm and program were created in the Mathematica® computing environment to simultaneously 

optimize the specific electrical conductivity and electroosmotic or diffusion permeability according to 

their experimental dependencies. In reference [2], the capillary osmotic L13 and reverse osmotic L31 

coefficients were calculated, and their mismatch was shown, which violates the Onsager reciprocity 

principle (symmetry of cross coefficients) [3]. Therefore, the motivation of this work is to check whether 

the remaining two pairs L12 and L21, L23 and L32 of the cross kinetic coefficients have asymmetry. 

2. Methods 

When calculating the kinetic coefficients Lij of the Onsager matrix, as independent thermodynamic 

forces that are set during the experiment of transferring an electrolyte solution through a thin infinitely 

extended charged porous layer, we select gradients of pressure ( )20 10
dp dx p p h − , electrical 

( )20 10
φ φ φd dx h −  and chemical ( ) ( )20 10 0

μd dx RT C C C h − , ( ) ( )0 0
μ μ lnC RT C C= +  potentials 

perpendicular to the surface of this layer. Here, C0 is the equivalent concentration of an electrolyte 

solution in equilibrium with the membrane, μ0 is the standard chemical potential, h is the membrane 

thickness, x is the coordinate perpendicular to the membrane surface and measured from its receiving 

surface, R is the universal gas constant, T is the absolute temperature, and the indices “1” and “2” indicate 

the left and right sides of the membrane, located in a measuring cell filled with a binary electrolyte 

solution (Figure 1).  
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Figure 1. Membrane cell for the study of nonequilibrium processes: 1 and 2— receiving and 

giving chambers, 3—membrane as an assembly of porous charged particles. 

As dependent thermodynamic parameters determined in the experiment, we take the flux densities: 

U—solvent (for example, water), I—mobile charges (electric current density), J—solute (density of the 

diffusion flux of the electrolyte).  

Then the phenomenological transport equations in the case of isothermal processes can be written 

as the following system of linear equations: 

11 12 13

21 22 23

31 32 33

φ μ
,

φ μ
,

φ μ
.

dp d d
U L L L

dx dx dx

dp d d
I L L L

dx dx dx

dp d d
J L L L

dx dx dx

  
= − + + 

 
  

= − + +  
 

  
= − + +  

 

 (1) 

The capillary osmotic L13 and reverse osmotic L31 coefficients were calculated in reference [2], and their 

inequality was found, that violates the Onsager reciprocity hypothesis—symmetry of cross coefficients [3]. 

The violation is since the principle of reciprocity in the framework of linear thermodynamics of 

irreversible processes works only for dispersed systems for which generalized fluxes are zero with 

thermodynamic forces other than zero [4]. In this paper, in addition to L13 and L31, we compare pairs of 

cross coefficients L12 and L21, as well as L23 and L32, to confirm their asymmetry. At the same time, as 

will be shown below, the smallest difference is observed for the pair L12 and L21, and the largest, 

apparently, for the pair L13 and L31. The results of comparisons of coupled cross coefficients of the 

Onsager matrix are discussed in the next section. 

3. Results and discussion 

We will model a charged membrane by a periodic lattice of porous charged spherical particles of the 

same radius a  enclosed in liquid spherical shells of a radius b  chosen so that the ratio of particle volume 

to cell volume is equal to the volume fraction of particles in a dispersed system: 

( )
3

01a b m= − , 
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where 
0m —macroscopic porosity, depending on the method of packing porous particles in a charged 

layer (membrane). 

The mathematical formulation of the boundary value problem for the system of Stokes-Nernst-

Planck-Poisson equations for a unit cell (Figure 2) is given, for example, in reference [2] and is not 

repeated here for the sake of brevity. We only note that the solution of the boundary value problem is 

obtained in a linear field approximation, that is, small deviations of the desired values (velocity, 

concentration and density of ion fluxes, electrical potential) from their equilibrium values are considered. 

The limits of applicability of the linear field approximation depend on the specificity boundary value 

problem and the comparison of theoretical predictions with experimental results. In general, it can be 

argued that this method provides a consistently good approximation in the case of equilibrium electrolyte 

concentrations of less than 0.2–0.3 mol/dm3 and sometimes up to 1 mol/dm3. The designations of 

variables and parameters used in this work completely coincide with those in the article [2]. The motion 

of an incompressible fluid (electrolyte) in the external region ( )a r b   is described by the vector 

differential equation of Stokes at low Reynolds numbers (“creeping flow”), supplemented by a spatial 

electric force. The motion of the fluid in the inner region ( )0 r a   obeys the Brinkman vector 

differential equation, complicated by the same spatial electric force. Traditionally, the “Brinkman fluid” 

is assumed to be incompressible. The electrical potential satisfies the Poisson equation inside and outside 

porous particles, and the Nernst–Planck representation is used for the density of ion fluxes. At the same 

time, there are no sources and drains of charges in the system, and the problem itself is considered in a 

stationary formulation. The influence of neighboring particles is considered by the special boundary 

conditions on the surface of the liquid shell. There are 4 known variants of these conditions in the literature: 

the Happel (absence of viscous forces on the cell surface), Kuwabara (flow potentiality—absence of 

vorticity on the cell surface), Kvashnin (symmetry of cells) and Mehta–Morse/Cunningham (uniformity 

of flow) models. It was shown earlier in our article in Adv. Colloid Interface Sci. (2011) that for 

hydrodynamic permeability the models of Happel, Kvashnin, and Kuwabara, in contrast to the more 

“rigid” Cunningham model, give qualitatively identical, but slightly different quantitative results. These 

conditions are equal in the physical sense, however, in reference [5] it was argued that the Kuwabara 

model is more suitable for the study of electrokinetic phenomena. Therefore, we will focus here on the 

Kuwabara model. At the interface of the porous particle-electrolyte layer, conditions are set for the 

continuity of velocities, stresses, the radial component of ion fluxes, the electrical potential and its 

derivative along the radius (the dielectric permittivities of the electrolyte-saturated porous ionite grain 

and the electrolyte solution itself are assumed to be equal). Using a special procedure of the cell method 

proposed by J. Hapell and H. Brenner, local velocity fields and ion flux densities are recalculated into 

linear filtration rate U, electric current density I, and salt flux density J through a porous layer. 

 

Figure 2. Single cell of the membrane: i—charged porous spherical particle; o—spherical layer 

of electrolyte solution; U—filtration rate; x—flow direction. 
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So, in order to correctly measure the above pairs of electrokinetic coefficients in an experiment or 

calculate them in a model, it is necessary to strictly observe a number of conditions. For example, the 

capillary osmotic L13 and reverse osmotic L31 coefficients of the ion exchange membrane can be found 

using the formulas following from (1): 

13
φ

0, 0

μ

dp d

dx dx

d
L U

dx = =

= −  
(2) 

31
μ φ

0, 0
d d

dx dx

dp
L J

dx = =

= −  
(3) 

Relations (2)–(3) mean that the correct measurement of the coefficient L13 is possible only in the absence 

of pressure and electrical potential differences and a given constant chemical potential difference 

20 10
μ μ constμhd dx−  =  on the membrane, and the coefficient L31—in the absence of chemical and 

electrical potential differences and a given constant pressure difference 
20 10

constp p hdp dx−  = . 

Similar formulas are written for the remaining two pairs of cross coefficients. In general, formulas for 

cross coefficients have a very cumbersome form and can be found in reference [2] or based on our 

previous works. In the special case of an ideally selective cationite membrane for baromembrane 

processes, when the equilibrium distribution coefficient γ for the cation-anion pair is infinitely large, the 

formulas for kinetic coefficients 
13L  and 

31L are significantly simplified [2]: 

0D
13 o

m
0 0 0

0 0

ρ3

2μ ρ ρ
ρ 3 1

ρ ρ

Ck
L

D
m m C

D
+

+

=
    

+ + − +    
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(4) 
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 (5) 

where the auxiliary function is introduced, 

( )
( )

2
3

0 0 203
0 0 02

0 0 0

6 1 1 th1 1 1
1 ; 1 2

5 5 6 3 th

m m s
f m s m

s s s

− −  
− = − + − + + 

− 
 (6) 

and ρ > 0 —exchange capacity of cationite grain (mol/dm3), kD—specific hydrodynamic permeability 

of this grain (m2), 
o

0 Dρ μ D k RT+= —the characteristic scale of the exchange capacity (mol/dm3), mD   

and D  (m2/s)—diffusion coefficients of ions in a grain of cationite and in a surrounding liquid shell, 

0 Ds a k= —a dimensionless parameter responsible for the relative thickness of the flow penetration 

area into the near-surface layer of the ionite grain (the larger s0, the thinner this area). 

Figure 3 shows a comparison of the behavior of a pair of normalized coefficients 13L  and 31L , 

depending on the concentration of the NaCl electrolyte at the values of physicochemical parameters that 

are characteristic of the perfluorinated cast membrane MF-4SK in a NaCl solution studied in one of our 

previous work (2018): m m 23.7D D+ −= =  μm2/s, ρ=1.08  mol/dm3, 0ρ 2.18=  mol/dm3, 0 0.2m = . 
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Curves 1 and 3 are built for 31L  and 13L  according to exact formulas, and curves 2 and 4 are drawn 

according to formulas for an ideally selective membrane with equal viscosities of pure liquid oμ  and 

liquid in a porous Brinkman medium iμ  with an infinitesimal ionite grain size, a=0. It can be seen that 

at C0=0.15 mol/dm3, an extremum is observed on the exact curve 1. This means a decrease in the osmotic 

permeability of the system at electrolyte concentrations exceeding that indicated, which may be due to 

a significant (one and a half times) excess of the mobility of the chlorine anion over that of the sodium 

cation. At the same time, if there were an ideally selective membrane with the same properties, then there 

would be no drop of 13L  at all and this coefficient would reach a noticeable positive value (curve 2). This 

can be explained by the fact that there is no flow of co-ions through the ideally selective membrane. 

 

Figure 3. Calculated dependences of the normalized capillary osmotic ( )o

13 D 13μL k L= —1,2 

and reverse osmotic ( )o

31 D 31μL k L= —3,4 coefficients for the cast perfluorinated MF-4SK 

membrane on the concentration 
0C  of an aqueous NaCl solution at γ = 0.527—1,3; γ = + —2,4 

(ideally selective cation exchange membrane).  

It can be seen from Figure 3 that the cross coefficients differ little only at small concentrations of 

electrolyte (up to 0.1 M). At high concentrations, there is a significant quantitative and qualitative 

discrepancy between L13 and L31: the reverse osmotic coefficient (curve 3) increases with increasing 

electrolyte concentration, and the capillary osmotic coefficient (curve 1) decreases. At the same time, 

there is not such a significant difference between these coefficients calculated for ideally selective 

membranes (curves 2 and 4). 

As for the electrodiffusion coefficients L23 (determines the diffusive current) and L32 (determines 

the transfer of salt under the action of an electric potential drop), they have the following forms for the 

case of an ideally selective membrane for baromembrane processes: 

( )

( ) m
0

00
23 0

0 0m
0 0

0 0

9 ρ
1

2 ρ
1

3 ρ ρ
3 1

ρ ρ ρ

D
m

DFD C D
L m

RT m D CD
m m

D

+

++ −

+ +

+

  
 − + 

   = − +  −       + + − +     
     

, (7) 
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(8) 

where F—the Faraday constant. Despite the external structural similarity of formulas (7) and (8), they 

differ significantly. This allows us to talk about the asymmetry of the electrodiffusion coefficients in the 

cell model of a charged porous layer. Figure 4 shows a comparison of the behavior of a pair of 

normalized coefficients 23L  (curves 1) and 32L  (curves 2) depending on the concentration of the NaCl 

electrolyte in the case of a cast perfluorinated MF-4SK membrane (a), mentioned earlier (Figure 3) and 

an extrusion perfluorinated MF-4SK membrane (b), investigated in our previous work (2022): 

m m915, 80D D+ −= =  μm2/s, ρ=1.11  mol/dm3, 
0ρ 5.23=  mol/dm3, 

0 0.077m = , γ 0.95= .  

  

(a) (b) 

Figure 4. Exact calculated dependences of normalized electrodiffusion coefficients 

( )23 23L L RT FD+= —curves 1 and ( )32 32L L RT FD+= —curves 2 for cast perfluorinated MF-

4SK membrane depending on concentration 0C  of an aqueous solution of NaCl (a) and the MF-

4SK extrusion membrane (b).  

The curves in Figure 4 are drawn for coefficients 23L  and 32L  using exact formulas. For an extrusion 

membrane, these coefficients practically do not differ up to a NaCl concentration of 0.2 M. In the case 

of a cast membrane, there is a slight difference up to a concentration of 0.05 M. That is, at low 

concentrations of the electrolyte, small differences in the cross electrodiffusion kinetic coefficients can 

also be detected. 

However, not all pairs of coupled cross coefficients at high concentrations of electrolyte differ as 

radically as L13 and L31. In the case of coefficients L12 (electroosmotic permeability) and L21 (kinetic 

coefficient responsible for the streaming current), the difference is practically negligible. Indeed, in the 
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case of an ideally selective cation exchange membrane and a symmetrical 1:1 electrolyte, we have 

the formulas: 

( )
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Comparing (9) and (10), we conclude that 12 21L L . However, we note that the difference between these 

coefficients is very insignificant and is determined by the multiplier ( )( )( )0 0
1 3

m
m m D D

+ +
+ − , which 

is slightly more than one, since the following restrictions are met in real conditions: ( )0 0
0 3 1 2m m −   

and 1.
m

D D
+ +

  

Figure 5 shows the behavior of dimensionless coefficients L12 and L21 as a function of NaCl 

concentration, calculated using exact formulas for a cast perfluorinated MF-4SK membrane (a) and 

for an extrusion perfluorinated MF-4SK membrane (b). As can be seen, in the case of both membranes, 

the cross kinetic coefficients L12 and L21 practically coincide up to high values of the electrolyte 

concentration. Note that in the known literature, the pairs of coefficients L13 and L31 or L23 and L32 

have not been compared when defining some model of a porous medium carrying a fixed charge. As 

for the pair of cross coefficients L12 and L21, there are works that prove their symmetry [6]. At the same 

time the Onsager reciprocity relation is not satisfied under concentration polarization conditions [7]. Note 

that in Peusner’s thermodynamics, the reciprocity theorem is not assumed to be true [8–10]. Moreover, 

the cross coefficients themselves may depend non-linearly on thermodynamic forces [11], which 

implies their asymmetry. 

  
(a) (b) 

Figure 5. Exact calculated dependences of the dimensionless electroosmotic coefficient 

( )12 12L L RT FD+= —curves 1 and the coefficient determining the streaming current 

( )21 21L L RT FD+= —curves 2 for MF-4SK cast perfluorinated membrane depending on 

concentration 0C  of aqueous NaCl solution (a) and the MF-4SK extrusion membrane (b).  

 



Asymmetry  Article 

 9 

4. Conclusion 

Thus, the developed cell model within the framework of linear thermodynamics of irreversible 

processes [2] can be applied to any membranes carrying a volume charge (in particular, to ion exchange, 

reverse osmotic, nano-, ultra- and microfiltration membranes). At the same time, the possibility of 

calculating, for example, the electroosmotic flux of water or water transference numbers using the 

obtained finite algebraic formulas with parameters that have a clear physical meaning is important not 

only in electromembrane processes (i.e. in fuel cells, sensors, electrolyzers, etc.), but also in calculations 

of electroosmotic pumps in microfluidics, in determining the water content in food products during their 

long-term storage, and in analyzing the reduction of liquid transfer through concrete, since excessive 

humidity leads to corrosion of metal reinforcement and premature destruction of concrete.  

We have shown here that in the case of the cell membrane model, the Onsager reciprocity principle 

is violated—the matrix of kinetic coefficients is not symmetric. Onsager himself, in his famous work of 

1931 [3], did not provide a phenomenological proof of the validity of his hypothesis and referred to the 

fact that experimental data could be a measure of the validity of the principle of reciprocity. At the same 

time, Mamedov published such proof in 2003 [4]. In this regard, it is necessary to be careful about 

determining the transport characteristics of membranes, which depend on the cross kinetic coefficients 

due to the asymmetry of the latter. In present paper, it is shown that the coupled cross coefficients can 

differ not only quantitatively, but also qualitatively. Mamedov showed [4] that the Onsager reciprocity 

principle strictly holds only for systems with zero generalized fluxes under action of nonzero generalized 

forces, i.e., in fact in an equilibrium state, which significantly reduces its applicability and contributes 

to errors in the calculation of cross kinetic coefficients. On the other hand, it can be assumed that the 

principle of reciprocity will be approximately fulfilled at low values of the densities of these fluxes in 

the case of a slight deviation of the dispersed system from equilibrium. It remains only to determine 

what the "low" values of the flux densities of solvent, solute, and electric current are. In the case of 

solvent flow, such deviation can be observed at Reynolds numbers much lower than unity. Such flows 

are typical for actual practical problems of fluid transfer through porous collectors, electrolyte solutions 

through charged membranes, extended channels with porous walls, etc.  

In this work, using the example of two types of perfluorinated membranes, it is shown that the 

coupled cross coefficients in the cell model of a charged membrane practically coincide at low 

concentrations of electrolyte (up to 0.1 mol/dm3). The asymmetry of these coefficients at high 

concentrations of the electrolyte may also be a consequence of the linearization of the boundary value 

problem of the transfer of substances through a porous charged layer. 
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