
ELSP Blockchain

Article | Received 31 December 2023; Accepted 1 June 2024; Published 14 June 2024
https://doi.org/10.55092/blockchain20240004

BC-RFMS: blockchain-based rankable fuzzy multi-keyword
search scheme
Lixiang Zheng1, Hanlin Zhang1,*, Xinrui Ge1, Jie Lin2, Fanyu Kong3 and Leyun Yu4

1College of Computer Science and Technology, Qingdao University, Qingdao, China
2School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
3School of Software, Shandong University, Shandong University, Jinan, China
4JIC IOT CO., LTD, Nanchang, China

* Correspondence author; E-mail: hanlin@qdu.edu.cn.

Abstract: The cloud provides convenient storage services for the vast amount of data generated
by the Internet of Things (IoT), yet it also introduces security challenges such as data tampering
and privacy breaches to IoT. While IoT encrypts sensitive data before storing it on cloud servers,
it is unable to perform searches on encrypted data through these cloud servers. The advent of
searchable encryption technology has successfully solved the problem of searching encrypted
data, thereby protecting user data privacy to a certain extent. Most existing searchable
encryption schemes support precise keyword searches, with the cloud servers providing
encrypted search services. However, cloud servers may perform partial searches or fabricate
some results due to various incentives, such as saving computational or storage resources.
To address the aforementioned issues, we proposed BC-RFMS, a blockchain-based rankable
fuzzy multi-keyword search scheme. Leveraging the immutable properties of blockchain,
BC-RFMS ensured the accuracy of search results through smart contracts for fuzzy searching.
Furthermore, the scheme utilized locality-sensitive hashing and Bloom filters to construct
fuzzy keyword search indices, while employing term frequency-inverse document frequency
(TF-IDF) for relevance score computation and ranking. We also proposed a block-by-block
transfer algorithm to prevent surpassing the GasLimit when uploading data to the blockchain.
To enhance storage security and reduce Gas consumption, encrypted data was stored on the
InterPlanetary File System (IPFS) for distributed storage. Experimental analyses conducted
on a blockchain test network validated the feasibility of the BC-RFMS scheme.

Keywords: blockchain; searchable encryption; rankable fuzzy keyword; Interplanetary File
System (IPFS); IoT

1. Introduction

With the rapid advancement of the Internet of Things (IoT) and next-generation information
technology, along with the widespread application of related services, an increasing number
of individuals and enterprises are outsourcing data to the cloud to benefit from convenient and
efficient storage and computing resources [1–3]. This has become a common phenomenon
in the internet era. Although outsourcing data reduces costs and provides users with flexible
cloud computing and storage services, cloud servers are inherently untrustworthy. Users do not
have full control over their private data, resulting in inadequate protection of their privacy [4].
Therefore, maintaining the privacy of outsourced data faces a series of challenges, such as
data tampering and theft of personal information. To some extent, encrypting personal data
with existing encryption technologies (e.g., AES) before outsourcing it to cloud servers can

Copyright©2024 by the authors. Published by ELSP. This work is licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted use, distribution, and reproduction in any medium provided the original work is
properly cited

Zheng L, et al. Blockchain 2024(1):0004 1

https://elspublishing.com/papers/pj/1538893057218203648
https://elspublishing.com/papers/pj/1538893057218203648

Blockchain Article

effectively protect the privacy of user data. However, users are unable to retrieve the desired
data through the cloud server, which impacts the usability of user data. The most effective
solution to this problem is the advent of searchable encryption technology.

Searchable encryption technology is an emerging method for ciphertext retrieval, allowing
data to be encrypted and stored in the cloud without exposing plaintext, and then queries to be
performed on the ciphertext. First introduced by Song et al. [5] in 2000 through a symmetric
encryption-based scheme, it broke the deadlock of being unable to search through encrypted
data, sparking widespread interest and research among scholars into the security of data
outsourcing and privacy issues. Following this, a variety of searchable encryption schemes
have been proposed to meet different requirements and functionalities, including those for
single-keyword searches [6–10] and multi-keyword searches [11–16]. However, these schemes
only support precise searches and do not accommodate fuzzy keyword searches. Consequently,
the implementation of fuzzy keyword searching has garnered significant attention. To date,
numerous search schemes [17–21] have been developed to address spelling errors or searches
for approximate keywords.

The traditional fuzzy keyword searchable encryption schemes typically rely on centralized
cloud servers to process data and queries, which can lead to single points of failure as well
as security and privacy concerns. For instance, malicious acts by cloud servers, such as
data tampering, could result in inaccurate search results, thereby harming user interests.
To address these issues, many researchers have introduced blockchain into searchable
encryption schemes, using the blockchain system to replace untrustworthy third-party cloud
servers. Blockchain technology is characterized by its decentralization, public transparency,
immutability and traceability. Blockchain technology offers an immutable data feature.
Furthermore, blockchain-based searchable encryption schemes utilize smart contracts and
cryptographic algorithms to more effectively protect users’ query privacy and prevent keyword
leakage to third parties. Smart contracts ensure that only authorized queries are executed, and
that data during the execution process is not exposed externally. Therefore, blockchain-based
fuzzy searchable encryption, with its unique security features, offers a more secure, private and
reliable method for data searching. Compared to traditional schemes, it significantly improves
the protection of user privacy, enhances data security and increases system availability.

In cloud-based searchable encryption schemes, most designs introduce blockchain
primarily to ensure fairness, but do not implement search functionalities on the blockchain. If
searching is to be conducted on the blockchain, the cost of data storage and data transmission
becomes a critical issue. Due to the large volume of data, uploading it to the blockchain
incurs significant Gas costs. Consider a smart agriculture project that utilizes multiple IoT
sensors to collect data such as temperature and humidity, aiming to upload this data to
the Ethereum blockchain to ensure its immutability and provide a reliable data source for
agricultural research. However, if IoT devices generate hundreds of data records every minute,
uploading directly to the blockchain would result in an extremely high transaction frequency.
Each transaction incurs Gas fees, and any data upload could be rejected if it exceeds the
GasLimit. Additionally, traditional approaches store vast amounts of data in the cloud, but
system failures at the cloud server, such as hardware malfunctions, software bugs, or human
errors, can disrupt data services. In extreme cases, significant network attacks like hacking
could lead to data loss, causing irreparable damage to individuals and businesses. Therefore,
traditional fuzzy keyword search schemes are generally not directly applicable in blockchain
environments. How to implement fuzzy keyword search on blockchain and reduce cost
consumption is an important research topic we are currently focusing on. To address the
issues of Gas consumption and enable fuzzy search on the blockchain, we propose a secure
and practical blockchain-based rankable multi-keyword fuzzy searchable encryption scheme,
aimed at better compatibility improvements with the blockchain environment. The main
contributions of this paper are as follows.

2

Blockchain Article

• To effectively reduce the Gas cost associated with data transfer to the blockchain, we
have designed a block-by-block data transfer algorithm that avoids transaction cessation
due to exceeding the GasLimit by transferring excessively large datasets at once.
• Our approach utilizes Locality Sensitive Hashing and Bloom filters to create fuzzy

keyword indexes, effectively supporting multi-keyword fuzzy search on the blockchain.
For keyword transformation, we have developed an improved trigram keyword
transformation algorithm that efficiently prevents the occurrence of identical trigrams.
• To reduce storage costs and avoid single-point storage failures, encrypted files are stored

on the InterPlanetary File System (IPFS) to achieve distributed storage, while only secure
index data is stored on the blockchain.
• We conducted iterative experiments and evaluations with authentic datasets. Our

comprehensive analysis of performance metrics and experimental outcomes illustrates
the efficacy and practicality of our solution.

Organization: The remainder of this paper is structured as follows: Section 2 offers an
exhaustive review and analysis of related work in searchable encryption. Section 3 outlines
the background knowledge pertinent to our proposed solution. Section 4 details the system
implementation model and threat model of our solution. In Section 5, we elaborate on the
specific structure and algorithms of the solution and give a security analysis of the solution at
the end. Section 6 is a discussion of the adaptation of this scheme to IoT scenarios. Section
7 discusses the experimental methodology and performance evaluation. Lastly, Section 8
delivers a succinct and conclusive summary of the paper and describes future work.

2. Related work

Song et al. [5] were the first to study cryptographic techniques supporting search over
encrypted data, pioneering a new direction in cryptography known as “Searchable Encryption."
Since this seminal paper was published, this area has garnered sustained close attention
from both the academic and industrial communities, establishing it as a critical field of
inquiry. An increasing number of searchable encryption schemes based on diverse search
functionalities continue to emerge. These include boolean and conjunctive searches [11–16],
ranked searches [22–28], and fuzzy searches [17–21], among others, demonstrating the field’s
evolution and diversification.

In recent years, many researchers have dedicated efforts to design mechanisms that support
effective matching for exact keywords. However, most schemes tend to overlook mismatches
in search results caused by misspelled keywords during the search process, consequently
leading to users receiving incorrect file data. To tackle this, Li et al. [17] introduced a fuzzy
keyword search in cloud environments, utilizing edit distance for keyword similarity and
wildcard technology for generating keyword sets, thus providing users with closely matched
documents. However, this method, limited to single keyword searches, incurs considerable
storage overhead. Wang et al. [29] developed a private Trie-based search index, using edit
distance for constant-time similarity searches. Kuzu et al. [30] utilized Jaccard distance and
minhash for error-tolerant multi-keyword searches. Another approach by Wang et al. [18]
combined LSH functions and Bloom filters, employing Euclidean distance to efficiently
manage multi-keyword searches. They further introduced a scheme [19] supporting range
searches and document ranking using a double-layer Bloom filter and a score table. Fu
et al. [20] advanced a multi-keyword ranked fuzzy search building upon the approach in [29],
enhancing keyword transformation and correlating keyword weight with document relevance.
Ge et al. [31] designed a linked-list based index for exact and fuzzy searches, reducing storage
needs. Zhang et al. [32] used edit distance and a binary tree index for enhanced search
efficiency, though limited to single keyword queries. Zhong et al. [21] proposed a balanced
binary tree index for multi-keyword fuzzy searches, capable of returning top results efficiently.
The aforementioned schemes have implemented and improved to varying extents in terms of

3

Blockchain Article

search structure and matching algorithms for fuzzy keyword search. However, they all rely on
cloud servers to execute fuzzy keyword searches and other functions.

Blockchain, characterized by decentralization, transparency, and immutability, substitutes
the cloud server in traditional searchable encryption schemes, thus broadening the research
horizon for scholars. Li et al. [33] addressed threats from malicious cloud servers by storing
ciphertext data and security indexes on the blockchain, introducing two searchable encryption
schemes based on data size. This approach, however, increases blockchain storage costs to
varying extents due to the need to store all encrypted data on-chain. Hu et al. [34] innovated
ciphertext search by replacing cloud servers with blockchain smart contracts, ensuring search
result correctness and fairness. Expanding on this, Chen et al. [35] combined Boolean search
with blockchain to develop a multi-keyword searchable encryption scheme. Following a similar
path [33], Li et al. [36] proposed an optimized blockchain-based searchable encryption model
to improve usability. Zhang et al. [37] offered a scheme featuring bidirectional authentication
and a digitally signed search index, enhancing result integrity but raising user computational
burdens due to signature verification. While these schemes enable precise keyword searchable
encryption via blockchain, they neglect fuzzy keyword search capabilities. Yan et al. [38]
introduced a blockchain-based fuzzy keyword search method using edit distance to generate
fuzzy keyword sets, conducting searches via cloud servers with integrated blockchain and
RSA accumulators for result verification. Chakraborty et al. [39] created a scheme employing
locality-sensitive hashing and Bloom filters for blockchain-based fuzzy keyword search, yet it
lacks functionality for result sorting.

We performed a comparative analysis to assess the functionality of our BC-RFMS scheme
against existing schemes, as detailed in Table 1. This analysis reveals that while all reviewed
schemes support single keyword search, only the approach outlined in schemes [18, 35,
39–41] facilitate simultaneous multi-keyword search. Additionally, schemes [18, 39, 41]
uniquely offer support for fuzzy keyword search. Noteworthy is the method employed by
reference schemes [18, 38, 40, 41], where search operations are executed by the cloud server,
and schemes [18, 40, 41], which introduces result sorting capabilities. In terms of data
storage, schemes [18, 38–41] utilize cloud server storage, contrastingly, schemes [34, 35]
explicitly mention cloud server-based data storage, and scheme [34] provides a somewhat
vague explanation, albeit mentioning IPFS. Compared to these schemes, our BC-RFMS
scheme showcases the functionalities specified in the table.

Table 1. Comparison with other schemes.

Scheme
Function

Single-keyword Muti-keyword Fuzzy search Result ranking
Search on
Blockchain

Location of
data storage

Yan et al. [38] ✓ × × × × Cloud Server
Hu et al. [34] ✓ × × × ✓ Cloud Server/IPFS
Chen et al. [35] ✓ ✓ × × ✓ Cloud Server/IPFS
Xia et al. [40] ✓ ✓ × ✓ × Cloud Server
Fu et al. [41] ✓ ✓ ✓ ✓ × Cloud Server
Wang et al. [18] ✓ ✓ ✓ ✓ × Cloud Server
Chakraborty P. S. et al. [39] ✓ ✓ ✓ × ✓ Cloud Server
Our BC-RFMS ✓ ✓ ✓ ✓ ✓ IPFS

3. Preliminaries

3.1. Blockchain and smart contracts

Blockchain is a decentralized, distributed ledger technology that links transactions in blocks
in chronological order, forming an immutable chain. Each block contains the hash value
of the preceding block, ensuring data integrity and security. The fundamental concepts
of this technology include consensus algorithms, distributed networks, and decentralized
characteristics, which together ensure the reliability and transparency of the blockchain.

4

Blockchain Article

Blockchain’s core concept is the distributed ledger, a database shared, replicated and
synchronized among the members of a network. This distributed ledger records transactions
between network participants, reducing the time and expenses incurred from reconciling
different ledgers.

The advent of smart contracts signifies the arrival of the Blockchain 2.0 era, epitomized
by Ethereum. Ethereum (ETH), created by Vitalik Buterin, is a cryptocurrency that facilitates
the operation of smart contracts and decentralized applications (Dapps) on its network. Smart
contracts, underpinned by blockchain technology, are autonomous programs that enforce
contractual terms, delineating the stipulations and prerequisites of the agreement. Smart
contracts are coded to execute on the blockchain automatically when specific conditions are
met, eliminating the need for intermediaries or trusted third parties. These contracts often
leverage Turing-complete programming languages, such as Solidity, to facilitate flexible and
complex contractual logic. This innovation not only streamlines transaction processes but also
significantly enhances the transparency and efficiency of contractual engagements.

Blockchain and smart contracts, as innovative technologies for distributed ledgers and
automated contract execution, have attracted considerable interest across multiple sectors,
including finance, supply chain, healthcare, and more. These technologies promise to create
decentralized, secure and transparent transaction environments, revolutionizing the way
transactions and agreements are conducted.

3.2. Bloom filter

Bloom filters (BF) are efficient data structures primarily utilized for rapid searching within
large-scale datasets. A Bloom filter consists of an expansive binary vector coupled with a
collection of random mapping functions, aimed at verifying the presence of an element in a
set. The construction of a Bloom filter begins with the initialization of a bit array of length
m, setting all bits to 0. Subsequently, we define k hash functions. Upon inserting an element,
it is mapped through these k hash functions, setting the corresponding bit array positions to
1. When querying for an element, the query element undergoes the same k hash function
mappings to check the corresponding bit array positions. If all the mapped positions are 1, the
query element is considered potentially present; if any position is 0, the element is definitively
absent. Compared to other data structures, Bloom filters offer advantages such as low time
complexity and reduced storage space requirements. However, they also present challenges
including a certain rate of false positives and difficulties in deletion. Figure 1 illustrates an
example of a Bloom filter.

Figure 1. Bloom filter.

5

Blockchain Article

3.3. Locality-sensitive hashing

Locality-sensitive hashing (LSH) is recognized as an effective algorithm designed for efficient
nearest neighbor searches within extensive high-dimensional datasets. It employs a specialized
hash function that probabilistically assigns two highly similar data points to the same “bucket",
yielding identical hash values, whereas dissimilar data points have a significantly lower
probability of sharing the same “bucket". A hash function family, represented as H, is deemed
(d1,d2, p1, p2)-sensitive f it meets the following criteria for any h ∈ H:

(1) For any two data points O1 and O2, if the distance d(O1,O2)< d1, then the probability
Pr[h(O1) = h(O2)]≥ p1;
(2) If d(O1,O2)> d2, then Pr[h(O1) = h(O2)]≤ p2.

Here, O1 and O2 symbolize any two data points, with d(O1,O2) indicating the distance
between them. The constants d1 and d2 are predetermined, with d1 < d2, and p1 and p2 are
probability constants ranging from 0 to 1.

3.4. Trigram language model

The trigram language model is a variant of the N-Gram model. It operates by applying
a sliding window of size three bytes across the text content, resulting in a sequence
of byte trigrams. For example, the trigram sequence for “blockchain" would be
{blo, loc,ock,ckc,kch,cha,hai,ain, inb,nbl}. This method is utilized to process keyword sets,
catering to the needs of fuzzy keyword search queries. It’s important to note that the keywords
must consist of at least three characters. Concurrently, we refine the segmentation algorithm to
enhance search precision by accounting for the recurrence of identical subkeywords, a detail
elaborated in the scheme’s specific construction section.

4. System overview

In this section, we delineate the system model and threat model of our proposed scheme.

4.1. System model

The system model comprises four principal entities: Data owner (DO), Data user (DU),
Blockchain (BC) and the InterPlanetary File System (IPFS), as illustrated in Figure 2. The
core functions of each entity are outlined as follows:

(1) Data owner (DO): The Data owner is responsible for creating and managing their
data assets, such as collections of plaintext documents. They have the authority to control
user access and queries.
(2) Data user (DU): Data users are entities seeking access to and querying data housed

within the system. They submit requests for data access to the DO and retrieve the
authorized data upon approval.
(3) Blockchain (BC): The Blockchain serves to store the index data of the DO and

facilitates querying services for the DU. Data searches are executed through smart
contracts. As a decentralized and immutable ledger, the Blockchain meticulously logs
transactions and interactions between the DO and DU, guaranteeing the operations’
reliability and security.
(4) InterPlanetary File System (IPFS): The InterPlanetary File System is a

peer-to-peer distributed file system designed for decentralized storage and retrieval of files.
It ensures efficient and resilient data storage, enabling the system to distribute data across
various nodes. Encrypted data files secured by the DO are stored on IPFS, facilitating user
access to the data.

6

Blockchain Article

Figure 2. System model.

Specifically, the workflow of our system model is as follows:
Step 1. The data owner (DO) initially encrypts the plaintext document collection and

dispatches it to the InterPlanetary File System (IPFS).
Step 2. Upon receipt, IPFS archives the encrypted collection and assigns unique document

identifiers, which are subsequently relayed back to the DO.
Step 3. The DO then undertakes data preprocessing, leveraging the document identifiers

and the encrypted documents to produce encrypted index data files, which are then uploaded
to the Blockchain (BC).

Step 4. When a data user (DU) seeks data access, the DO, following authorization,
transmits the necessary control information to the DU via a secure channel. Armed with this
control information and their query keywords, the DU crafts search tokens and forwards them
to the BC.

Step 5. The BC, utilizing smart contracts, processes the search request. Upon completion
of the search, it furnishes the DU with the encrypted identifiers of the top-k encrypted
documents pertinent to the fuzzy search terms.

Step 6. The DU, using the decryption key, decrypts these identifiers and transmit the k
decrypted plaintext document identifiers to IPFS to retrieve the specified encrypted documents.

Step 7. IPFS locates and delivers the files based on the decrypted identifiers back to the
DU. Finally, the DU decrypts the received files with the decryption keys, accessing the top-k
plaintext documents that closely match their fuzzy search queries.

4.2. Threat model

Due to the characteristics of blockchain consensus mechanisms, the blockchain can execute
data search operations accurately. We assume the presence of potentially malicious adversaries
who can analyze transaction activities within the blockchain to obtain private information.
Consequently, our solution addresses two types of threat models: the Known Ciphertext Model
and the Known Background Model.

In the Known Ciphertext Model, the malicious adversary can only observe transactional
activity on the blockchain, which includes encrypted indices, query trapdoors and search
results. In the Known Background Model, the malicious adversary possesses statistical

7

Blockchain Article

information and query frequency capabilities, allowing for the analysis of search results
returned from the blockchain’s transactional activities.

5. The proposed BC-RFMS scheme

In this section, we describe the scheme descriptions and the design details. In our scheme, the
search operations on data are executed by smart contracts and data documents are stored on
IPFS, ensuring the reliability of search results.

5.1. Key generation

The data owner (DO) invokes a symmetric encryption algorithm using the security parameter
λ to generate the encryption key K. Furthermore, two (m+m′)× (m+m′) reversible matrices,
M1 and M2, and a (m+m′)-bit vector

−→
S are randomly generated.

−→
S belongs to the set

{0,1}m+m′ and is determined by the index length m. m′ denotes the number of phantom terms.
Consequently, the DO holds a key set, SK =

{
K,M1,M2,

−→
S
}

, encompassing all necessary
cryptographic elements.

5.2. Document preprocessing

(1) Document data encryption. The data owner (DO) encrypts each document di in
the plaintext document collection D = {d1,d2, · · · ,dn} utilizing the encryption key K,
producing an encrypted document collection C = {c1,c2, · · · ,cn}. Following encryption,
the DO transmits C to the InterPlanetary File System (IPFS), which then archives the
collection and issues a corresponding set of document identifiers L = {l1, l2, · · · , ln}.
Subsequently, the DO encrypts L, creating EL, the encrypted collection of document
identifiers. This process corresponds to Steps 1 and 2 in Figure 2.
(2) Keyword extraction. For a specified plaintext document collection D, the data owner

(DO) derives keywords wi from each document within D. Utilizing the Porter stemming
algorithm, the DO extracts stem keywords kwsti for every keyword, resulting in the
stemmed keyword set KWst . The DO then employs the TF-IDF method to compute the
Term Frequency (TF) value for each keyword, facilitating an enhanced analysis of the
keyword-document relevance. TF denotes the frequency of occurrence of a keyword
in a document, i.e., the number of a keyword in a given document divided by the total
number of all keywords in that document. Note that the TF-IDF rule is a relatively mature
weighted statistical technique widely used in the fields of information retrieval and text
mining [42].

Figure 3. Document preprocessing.

8

Blockchain Article

(3) Keyword transformation. To facilitate fuzzy searches for users, the DO implements
fuzzy processing on the keywords, employing an enhanced trigram keyword transformation
technique. This method transforms each keyword into a trigram set T S, mindful of
potential trigram repetitions, as detailed in Algorithm 1. For example, the trigram
set T S for “banana" would comprise {ban1,ana1,nan1,ana2,nab1,aba1}. The DO
then translates T S into a fixed-length binary vector

−→
V bin, with this data preprocessing

procedure illustrated in Figure 3.

Algorithm 1: Generate Binary Vectors based on Triples
Input: The stemming keyword set KWst ;
Output: The binary vector

−→
V bin based on triples;

1 for each stemming keyword kwsti in KWst do
2 Generate a vector

−→
V sti and initialize all of its positions with the value 0 in 3×24 bits

{0,1} vector ;
3 Compute the length of the keyword kwsti l = Length(kwsti);
4 Generate the count vector

−→
V co of length l and set the value of each of its bits to 1;

5 for j = 0 to l do
6 for k = 1 to j−1 do
7 Temp1 = kwsti[k mod l]+ kwsti[(k+1) mod l]+ kwsti[(k+2) mod l];
8 Temp2 = kwsti[j mod l]+ kwsti[(j+1) mod l]+ kwsti[(j+2) mod l];
9 if Temp1 == Temp2 then

10
−→
V co[j] += 1;

11 T S[j] = kwsti[j mod l]+ kwsti[(j+1) mod l]+ kwsti[(j+2) mod l]+
−→
V co[j];

12 for each T S[j] ∈ T S do
13 Set the value of the corresponding position of

−→
V sti to 1;

14 Return a ternary-based binary vector
−→
V bin =

−→
V sti .

5.3. Index creation

For each document di, the data owner first creates an m-bit Bloom filter BFi, initializing all bits
to 0. For each keyword w j in di, the binary vector

−→
V bin j serves as input to N locality-sensitive

hashing (LSH) functions, which assign the vector to specific positions in BFi and set their
values to T Fi, j/N. T Fi, j represents the term frequency of w j in di. In cases where different
keywords converge on the same Bloom filter position, the system averages the values at these
overlapping positions. Finally, BFi is augmented from m to m+m′ bits, with the addition of
m′ randomly generated numbers to enhance security.

To safeguard the privacy of the index, the DO encrypts each Bloom filter BFi into two
separate entities, BF ′i and BF ′′i . The encryption is executed as follows: according to a random
vector

−→
S , for each element where

−→
S [j] = 0, both BF ′i [j] and BF ′′i [j] are set equal to BFi[j].

Conversely, if
−→
S [j] = 1, BF ′i [j] is assigned a random number δ , and BF ′′i [j] is set to BFi[j] -

δ . Subsequently, the DO utilizes the transposed matrices of reversible matrices M1 and M2 to
encrypt BF ′i and BF ′′i , respectively, producing the encrypted index EIi =

{
MT

1 BF ′i ,M
T
2 BF ′′i

}
.

This process is detailed in Algorithm 2.
Upon generating the encrypted index set EI, the DO is tasked with uploading it to the

blockchain. To minimize transmission gas costs and prevent breaching the GasLimit which
could result in transaction failure, a block-by-block transmission strategy is implemented,
as detailed in Algorithm 3. This approach uses a Pseudorandom Function (PRF) to obscure

9

Blockchain Article

the transmitted data, defined by F : {0,1}λ ×{0,1}∗→ {0,1}λ . Firstly, the DO blinds and
encapsulates the elements of EI and EL into a list B using function F, then divides list B into t
blocks, each labeled as Bi. The DO then sends k1 and initiates t transactions to the blockchain,
each transmitting a block Bi. Then smart contracts on the blockchain are responsible for
receiving these block data, parsing them into a empty dictionary Ω and storing them as
key-value pairs. The smart contract uses k1 to parse all block data, ultimately reconstructing
the complete encrypted index set EI and the encrypted document identifier set EL. This
process is illustrated in Figure 4. The operations in this subsection correspond to Step 3 in
Figure 2.

Algorithm 2: Build Index
Input: The set of documents D and the set of keys SK;
Output: The encrypted index set EI;

1 for each document di in D do
2 Generate an m-bit bloom filter BFi and initialize each bit to 0;
3 for w j ∈ di do
4 Generate the corresponding binary vector

−→
V bin j ;

5 The vector Vbin j is hashed by N LSH functions to determine its corresponding
position in the bloom filter BFi, and the value at that position is set to T Fi, j/N,
namely BFi[LSH FUNCT IONk(

−→
V bin j)] = T Fi, j/N, k ∈ [1, n].

6 Fill the number of BFi bits to (m+m′) bits;
7 Initialize two (m+m′) bit vectors BF ′i and BF ′′i ;
8 for 1 to (m+m′) do
9 if

−→
S [j] = 0 then

10 BF ′i [j] = BF ′′i [j] = BFi[j];
11 else
12 BF ′i [j] = δ ;
13 BF ′′i [j] = BFi[j] - δ ;

14 Generate the encrypted index EIi =
{

MT
1 BF ′i ,M

T
2 BF ′′i

}
and add it to the encrypted

index set EI;
15 The encrypted index set EI is divided into t transactions and sent to the blockchain.

Figure 4. Block-block transmission.

10

Blockchain Article

Algorithm 3: Block-by-block Transmission
1 The data owner initializes an empty list B and sets c to 0;
2 for each encrypted index EIi in EI do
3 k1← F(K,ELi) ;
4 ẽ← EIi||ELi;
5 l← F(k1,c);
6 c ++;
7 add <l, ẽ> to the list B;
8 The data owner sends k1 and divides the list B into t blocks, i.e. Bi, 1 ≦ i ≦ t, and then

sends them to the blockchain in order by t transactions;
9 Smart contract parses the received data: initializes an empty dictionary Ω and store
{key : l,value : ẽ} into Ω; sets c to 0;

10 for each element in Ω do
11 l← F(k1,c);
12 ẽ← Get(Ω, l);
13 c ++;
14 parse each ẽ and get the corresponding encryption index EIi and encrypted document

identity ELi;
15 Return the encrypted index set EI and the encrypted document identity set EL.

5.4. Trapdoor generation

Data users submit search requests to the data owner, who authorize and send relevant control
information (e.g., the key set SK) to the DU. Subsequently, the DU preprocess the keywords
to be queried based on given requirements. The preprocessing process includes keyword
extraction and keyword transformation, similar to steps (2) and (3) of the document collection
preprocessing. In the transformation phase, each keyword is converted into a binary vector−→
QVbin, utilizing its trigram set.

The DU constructs an m-bit Bloom filter BFq, initializing all bits to 0. The binary vector
−→
QVbin, representing the query keywords, serves as input for N LSH functions. These functions
map the vector to specific positions within BFq, where values are assigned based on the Inverse
Document Frequency (IDF) of each keyword. IDF is the inverse of the ratio of the number of
documents containing a certain keyword to the total number of all documents in the collection.
Subsequently, the DU expands BFq to m+m′ bits, randomly setting m′′ bits to 1 within the
additional m′ space, with the rest maintained at 0.

To safeguard trapdoor privacy, the data user encrypts the query keyword Bloom filter
BFq into two separate entities, BF ′q and BF ′′q . The encryption methodology is as follows: if
−→
S [j] = 1, then both BF ′q[j] and BF ′′q [j] are set to BFi[j]. Conversely, if

−→
S [j] = 0, BF ′q[j] is

assigned a random number δ , and BF ′′q [j] is set to BFq[j] - δ . Subsequently, BF ′q and BF ′′q
are encrypted via the inverse matrices of reversible matrices M1 and M2, producing encrypted
search keyword vectors

−−→
EQV =

{
M−1

1 BF ′q,M
−1
2 BF ′′q

}
. The search trapdoor T D =

{
k,
−−→
EQV

}
is then transmitted to the blockchain, as delineated in Algorithm 4. The operations in this
subsection correspond to Step 4 in Figure 2.

11

Blockchain Article

Algorithm 4: Trapdoor generation
Input: The set of keywords QW for the query;
Output: The search trapdoor T D;

1 Generate an m-bit bloom filter BFq and initialize each bit to 0;
2 for qw j in QW do
3 Generate the corresponding binary vector

−→
QVbin;

4 The vector
−→
QVbin is hashed by N LSH functions to determine its corresponding

position in the bloom filter BFq, and the value at that position is set to IDFqw j/N,

namely BFq[LSH FUNCT IONk(
−→
QVbin)] = IDFqw j/N, k ∈ [1, n].

5 Fill the number of BFq bits to (m+m′) bits;
6 Initialize two (m+m′) bit vectors BF ′q and BF ′′q ;
7 for 1 to (m+m′) do
8 if S[j] = 1 then
9 BF ′q[j] = BF ′′q [j] = BFi[j];

10 else
11 BF ′q[j] = δ ;
12 BF ′′q [j] = BFq[j] - δ ;

13 Generate encrypted search keyword vectors
−−→
EQV =

{
M−1

1 BF ′q,M
−1
2 BF ′′q

}
;

14 Finally, the search trapdoor T D =
{

k,
−−→
EQV

}
is sent to the blockchain.

5.5. Data search

The smart contract on the blockchain executes this procedure. This procedure corresponds
to Step 5 in Figure 2. It performs an inner product operation between each encrypted
index EIi and the encrypted search keyword vectors

−−→
EQV to compute a relevance score

RScoi, where RScoi = EIi ·
−−→
EQV =

(
MT

1 BFi
′) · (M−1

1 BFq
′)+ (

MT
2 BFi

′′) · (M−1
2 BFq

′′) =
BFi
′BFq

′+BFi
′′BFq

′′ = BFi ·BFq . Based on this operation, the contract identifies and returns
the top-k documents with the highest relevance scores to the data user, as detailed in Algorithm
5. For a more intuitive understanding of the index creation, trapdoor generation and search
phases, refer to Figure 5.

Algorithm 5: Blockchain search
Input: The encrypted index set EI and trapdoor T D;
Output: The set RSet of search results containing k ciphertext identities;

1 The smart contract initializes an empty set RSet and a threshold th;
2 for EIi in EI do
3 Compute each relevance score RScoi = EIi ·

−−→
EQV;

4 if RScoi > th then
5 Put the element {Li,RScoi} in the set RSet;
6 if |RSet| > k then
7 Sort RSet;
8 Delete (|RSet|− k) entries from RSet;
9 th = min{RSet};

10 Return RSet.

12

Blockchain Article

Figure 5. Process of operation.

5.6. Document decryption

Upon receiving the k encrypted document identifiers, the data user decrypts them and forwards
these identifiers to the InterPlanetary File System (IPFS). IPFS retrieves the corresponding k
encrypted documents using these identifiers and sends them back to the data user. Subsequently,
the user requests decryption keys from the DO. After authenticating the user successfully, the
DO transmits the decryption keys to the data user. Finally, the data user utilizes the decryption
key to decrypt the k encrypted documents, thereby obtaining the top-k plaintext documents
most pertinent to the query keywords. This process corresponds to Steps 6 and 7 in Figure 2.

Security analysis. We conduct a security analysis of the proposed solution based on the
outlined threat models.
• Document confidentiality. In this approach, the data owner encrypts documents using

a symmetric encryption algorithm with the symmetric key K and sends the encrypted
document collection to IPFS. Data users request access authorization through a secure
channel from the data owner, who must send the key K to the data users before they can
decrypt the files. In other words, without the key K, a malicious adversary cannot decrypt
the document data, thus ensuring the confidentiality of the document data.
• Confidentiality of indexes and query trapdoors. Under the Known Ciphertext Model,

a malicious adversary may observe encrypted index information, encrypted document
identifiers and encrypted query trapdoors through block information. However, without
the keys, it is challenging to analyze any information. In this solution, EIi and

−−→
EQV are

obfuscated vectors, making it impossible for a malicious adversary to deduce the original
vectors BFi and BFq without the key set SK. Reversible matrices M1 and M2 are random
Gaussian matrices, and the use of dummy items in the matrices makes the transformation
matrices more challenging to compute, thereby increasing the difficulty for a malicious
adversary. Under the Known Background Model, since data users upload encrypted
query trapdoors and the blockchain returns encrypted document identifiers, it is hard for
a malicious adversary to perform statistical analysis on transaction information on the
blockchain without the keys. Hence, this solution effectively protects the confidentiality
of indexes and query trapdoors.
• Unlinkability of queries. Under the Known Ciphertext Model, this solution introduces

m′ random numbers so that the same search request will generate different query vectors.
They make it difficult for a malicious adversary to analyze the query trapdoors, thereby
ensuring the unlinkability of queries. In the Known Background Model, since the

13

Blockchain Article

introduction of random values results in different distributions of relevance scores, a
malicious adversary cannot deduce trapdoor information through statistical capabilities
from the blockchain’s transaction information.

6. Discussion

This study introduces BC-RFMS, a blockchain-based searchable encryption scheme, optimized
for use in the Internet of Things (IoT). The fusion of IoT with blockchain technology and
searchable encryption catalyzes a myriad of novel research avenues and practical applications,
including smart home systems, smart cities, supply chain management and healthcare. Taking
the healthcare scenario as an example, medical devices generate a vast amount of sensitive
personal health information such as medical history and diagnostic reports. Therefore, we
are able to use this personal health data as the dataset for our scheme. By leveraging the
InterPlanetary File System (IPFS) for distributed storage of encrypted personal information,
our approach indexes this data and stores the encrypted index information on the blockchain to
ensure data security. The blockchain-based searchable encryption model utilizes the immutable
nature of the blockchain to guarantee that data records and search results cannot be altered,
ensuring that only authorized users can search and access the data. Authorized medical
institutions can access patient data and retrieve the most relevant past health and medical
records through fuzzy keyword search. They then analyze encrypted health records to enhance
diagnostic efficiency and research quality. This methodology not only enhances diagnostic
and research capabilities but also promotes the secure sharing of medical information, thereby
optimizing the utility and quality of personal health data services. However, this scheme may
be inefficient in handling large-scale data in IoT environment, potentially causing system
delays and other issues. This highlights a scalability problem that will be a primary focus of
our future research. Therefore, in the subsequent experimental testing, we used a small-scale
dataset to evaluate the proposed scheme.

7. Experiments and performance evaluation

In this section, we present the feasibility and performance of our BC-RFMS scheme through
experimental validation and analysis. The experimental setup was conducted on a system
running Ubuntu 20.04 LTS, powered by an Intel(R) Core(TM) i7-11700T CPU at 1.4 GHz
with 16 GB of RAM. We implemented our smart contracts in Solidity and deployed them
on the Ethereum test network, Spolia. For our experiments, we utilized the real-world Enron
email dataset, which was pre-processed using Python. We configured the scheme with three
locality-sensitive hashing (LSH) functions (n = 3) and set the length of indexes and trapdoors
(m) to 500.

Our scheme underwent an experimental comparison with schemes [18] and [39], focusing
on stages that include index creation, trapdoor generation and blockchain-based search.

Index creation phase: In this phase, the main time expenditure stems from generating the
plaintext index and its subsequent encryption. Encrypting the index with the matrix requires
O(m2n) multiplications, where m is the index length and n represents the document count. As
depicted in Figure 6, the index creation process for the BC-RFMS scheme shows a gradual
rise in time consumption with an increasing number of keywords. This is due to differences
in the specific architecture of fuzzy keyword search. Although both the comparative scheme
and our scheme use Bloom filters to construct indexes and query trapdoors, in our scheme we
have improved the method for fuzzy keyword processing. Additionally, we have standardized
the parameters according to the comparative scheme. Similarly, the subsequent trapdoor
generation process follows the same principle.

Trapdoor generation phase: During this phase, the time complexity is O(m2), with m
denoting the trapdoor length. The generation of the trapdoor involves multiplying the search

14

Blockchain Article

token by matrix encryption. Figure 7 illustrates that the time required for trapdoor generation
is dependent on the number of query keywords, showing a gradual increase as the keyword
count rises. This pattern is consistent with observations from the index generation phase, with
time consumption maintaining stability around the 25 ms mark.

Search phase on the blockchain: In this phase, the time cost is attributed to the execution
of the inner product operation between the index and trapdoor on the smart contract, exhibiting
a time complexity of O(mn). Both scheme [39] and our scheme perform searches on the
blockchain; however, the scheme [39] has not tested the search efficiency on the blockchain.
Additionally, the blockchain test networks (Ropsten and Rinkeby) used in scheme [39] are
now deprecated. We conducted our tests on the currently available blockchain test network,
Sepolia. Consequently, in terms of search efficiency, the BC-RFMS scheme only presents
the relationship between the size of its document set and the time required for searching, as
illustrated in Figure 8.

Figure 6. Time of index generation.

Figure 7. Time of trapdoor generation.

From the Figure 8, it is apparent that the search time in the BC-RFMS scheme is directly
proportional to the number of documents. Additionally, we have conducted a comparison
of the gas costs incurred by deploying smart contracts for searches, as shown in Table 2.
Furthermore, we have evaluated the gas consumption for completing a transaction and the
variation in gas costs for searching the same quantity of keywords against the size of the
document set, as depicted respectively in Figures 9(a) and 9(b). Considering the blockchain

15

Blockchain Article

network’s vulnerability to various consensus mechanisms, the operational performance on the
blockchain can show variability, influencing gas consumption.

Figure 8. Time of search.

Table 2. Gas cost in test network.

Scheme
Operation

Deploying smart contracts

Chakraborty P. S. et al. [39] 13.6 × 105 gas
Our BC-RFMS 3.8 × 105 gas

(a) Per transaction (b) Per search

Figure 9. Gas cost.

8. Conclusion and future work

In this paper, we proposed BC-RFMS, a blockchain-based rankable fuzzy multi-keyword
search scheme. This scheme designed a smart contract for fuzzy search operations on
the blockchain, ensuring the accuracy of search results. Additionally, we introduced a
block-by-block transfer algorithm that segments index data for blockchain transmission,
addressing the issue of transaction cessation due to exceeding the GasLimit in a single data
transfer. Furthermore, our scheme stored encrypted files on the InterPlanetary File System
(IPFS), achieving distributed storage and preventing document data loss due to single-point

16

Blockchain Article

storage failure. Experimental results demonstrate that the BC-RFMS scheme compared to
existing solutions is secure, efficient and viable.

The scheme proposed in this paper effectively addresses the issue of Gas consumption
during document transmission. However, it falls short when confronted with increasing data
volumes. To achieve both scalability and efficiency improvement of the system, while ensuring
high performance in handling increasing data volumes and maintaining system viability under
various consensus mechanisms, will be the primary focus of our future research endeavors.
Furthermore, we will explore a broader range of application scenarios, such as specific Internet
of Things (IoT) contexts. With the IoT scenarios generating vast amounts of data, we will
utilize this data to train our scheme model, thereby enhancing the optimization of our scheme.

Acknowledgments

This research is supported by National Natural Science Foundation of China (62102212),
Shandong Provinceence Youth Innovation and Technology Program Innovation Team(2022KJ
296), Natural Science Foundation of Shandong (ZR202102190210), Nanchang Major Science
and Technology Project (2023137), Science and Technology Small and Medium Enterprises
(SMEs) Innovation Capacity Improvement Project of Shandong Province & Jinan City, China
(Grant No. 2022TSGC2048) and Haiyou Famous Experts - Industry Leading TalentInnovation
Team Project.

Conflicts of interests

The authors declared that they have no conflicts of interests.

Authors’ contribution

Lixiang Zheng proposed the preliminary ideas of the paper. Lixiang Zheng, Hanlin Zhang and
Xinrui Ge collaboratively discussed and designed the model definition, theoretical analysis and
algorithm design of the proposed scheme. Lixiang Zheng conducted the experimental testing.
Jie Lin, Fanyu Kong, and Leyun Yu participated in the related research work. Lixiang Zheng
wrote the initial draft of the paper. The other authors assisted and revised the initial draft,
leading to the final version of the paper. All authors contributed to the writing of the paper.

References

[1] Shen W, Yu J, Yang M, Hu J. Efficient Identity-Based Data Integrity Auditing with
Key-Exposure Resistance for Cloud Storage. IEEE Trans. Dependable Secure Comput.
2023, 20(6):4593–4606.

[2] Kolhar M, Abu-Alhaj MM, Abd El-atty SM. Cloud data auditing techniques with a focus
on privacy and security. IEEE Secur. Priv. 2017, 15(1):42–51.

[3] Zhang H, Gao P, Yu J, Lin J, Xiong NN. Machine learning on cloud with blockchain: a
secure, verifiable and fair approach to outsource the linear regression. IEEE Trans. Netw.
Sci. Eng. 2021, 9(6):3956–3967.

[4] Shen W, Gai C, Yu J, Su Y. Keyword-Based Remote Data Integrity Auditing Supporting
Full Data Dynamics. IEEE Trans. Serv. Comput. 2023, pp. 1–4.

[5] Song DX, Wagner D, Perrig A. Practical techniques for searches on encrypted data. In
Proceedings of the 2000 IEEE symposium on security and privacy., Berkeley, CA, United
States, May 14–17, 2000, pp. 44–55.

[6] Goh EJ. Secure indexes. Cryptology ePrint Archive 2003 .
[7] Chang YC, Mitzenmacher M. In Applied Cryptography and Network Security,

John Ioannidis MY Angelos Keromytis, ed., Berlin, Heidelberg: Springer, 2005, pp.
442–455.

17

Blockchain Article

[8] Curtmola R, Garay J, Kamara S, Ostrovsky R. Searchable symmetric encryption:
improved definitions and efficient constructions. In Proceedings of the 13th ACM
conference on Computer and communications security, New York, United States, October
30, 2006, pp. 79–88.

[9] Wang C, Cao N, Li J, Ren K, Lou W. Secure ranked keyword search over encrypted
cloud data. In Proceedings of the 2010 IEEE 30th international conference on distributed
computing systems, New York, United States, June 21–25, 2010, pp. 253–262.

[10] Yin H, Qin Z, Ou L, Li K. A query privacy-enhanced and secure search scheme over
encrypted data in cloud computing. J. Comput. Syst. Sci. 2017, 90:14–27.

[11] Golle P, Staddon J, Waters B. In Applied Cryptography and Network Security,
Markus Jakobsson JZ Moti Yung, ed., Berlin, Heidelberg: Springer, 2004, pp. 31–45.

[12] Hwang YH, Lee PJ. In Pairing-Based Cryptography - Pairing 2007, Tsuyoshi Takagi
EOTO Tatsuaki Okamoto, ed., Berlin, Heidelberg: Springer, 2007, pp. 2–22.

[13] Ballard L, Kamara S, Monrose F. In Information and Communications Security,
Sihan Qing JLGW Wenbo Mao, ed., Berlin, Heidelberg: Springer, 2005, pp. 414–426.

[14] Boneh D, Waters B. In Theory of Cryptography, Vadhan SP, ed., Berlin, Heidelberg:
Springer, 2007, pp. 535–554.

[15] Zhang B, Zhang F. An efficient public key encryption with conjunctive-subset keywords
search. J. Netw. Comput. Appl. 2011, 34(1):262–267.

[16] Yao B, Li F, Xiao X. Secure nearest neighbor revisited. In Proceedings of the 2013 IEEE
29th International Conference on Data Engineering, Brisbane, Australia, April 8–12,
2013, pp. 733–744.

[17] Li J, Wang Q, Wang C, Cao N, Ren K, et al. Fuzzy keyword search over encrypted data
in cloud computing. In 2010 Proceedings IEEE INFOCOM, San Diego, United States,
March 14–19, 2010, pp. 1–5.

[18] Wang B, Yu S, Lou W, Hou YT. Privacy-preserving multi-keyword fuzzy search over
encrypted data in the cloud. In IEEE INFOCOM 2014-IEEE conference on computer
communications, Toronto, Canada, April 27–May 2, 2014, pp. 2112–2120.

[19] Wang J, Yu X, Zhao M. Privacy-preserving ranked multi-keyword fuzzy search on cloud
encrypted data supporting range query. Arab. J. Sci. Eng. 2015, 40(8):2375–2388.

[20] Fu Z, Wu X, Guan C, Sun X, Ren K. Toward efficient multi-keyword fuzzy search over
encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forensics Secur.
2016, 11(12):2706–2716.

[21] Zhong H, Li Z, Cui J, Sun Y, Liu L. Efficient dynamic multi-keyword fuzzy search over
encrypted cloud data. J. Netw. Comput. Appl. 2020, 149:102469.

[22] Swaminathan A, Mao Y, Su GM, Gou H, Varna AL, et al. Confidentiality-preserving
rank-ordered search. In Proceedings of the 2007 ACM Workshop on Storage Security
and Survivability, New York, United States, October 29, 2007, pp. 7–12.

[23] Wang C, Cao N, Ren K, Lou W. Enabling secure and efficient ranked keyword search
over outsourced cloud data. IEEE Trans. Parallel Distrib. Syst. 2011, 23(8):1467–1479.

[24] Cao N, Wang C, Li M, Ren K, Lou W. Privacy-preserving multi-keyword ranked search
over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 2013, 25(1):222–233.

[25] Jiang X, Yu J, Yan J, Hao R. Enabling efficient and verifiable multi-keyword ranked
search over encrypted cloud data. Inf. Sci. 2017, 403:22–41.

[26] Ding X, Liu P, Jin H. Privacy-preserving multi-keyword top-k k similarity search over
encrypted data. IEEE Trans. Dependable Secure Comput. 2017, 16(2):344–357.

[27] Liu Q, Tian Y, Wu J, Peng T, Wang G. Enabling verifiable and dynamic ranked search
over outsourced data. IEEE Trans. Serv. Comput. 2019, 15(1):69–82.

[28] Yin H, Qin Z, Zhang J, Ou L, Li F, et al. Secure conjunctive multi-keyword ranked
search over encrypted cloud data for multiple data owners. Future Gener. Comput. Syst.
2019, 100:689–700.

18

Blockchain Article

[29] Wang C, Ren K, Yu S, Urs KMR. Achieving usable and privacy-assured similarity search
over outsourced cloud data. In 2012 Proceedings IEEE INFOCOM, Orlando, United
States, March 25–30, 2012, pp. 451–459.

[30] Kuzu M, Islam MS, Kantarcioglu M. Efficient similarity search over encrypted data.
In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering,
Arlington, United States, April 1–5, 2012, pp. 1156–1167.

[31] Ge X, Yu J, Hu C, Zhang H, Hao R. Enabling efficient verifiable fuzzy keyword search
over encrypted data in cloud computing. IEEE Access 2018, 6:45725–45739.

[32] Zhang H, Zhao S, Guo Z, Wen Q, Li W, et al. Scalable fuzzy keyword ranked search over
encrypted data on hybrid clouds. IEEE Trans. Cloud Comput. 2021, 11(1):308 – 323.

[33] Li H, Zhang F, He J, Tian H. A searchable symmetric encryption scheme using blockchain.
arXiv 2017, ArXiv:1711.01030.

[34] Hu S, Cai C, Wang Q, Wang C, Luo X, et al. Searching an encrypted cloud meets
blockchain: A decentralized, reliable and fair realization. In Proceedings of the IEEE
Conference on Computer Communications, Honolulu, United States, April 16–19, 2018,
pp. 792–800.

[35] Chen L, Lee WK, Chang CC, Choo KKR, Zhang N. Blockchain based searchable
encryption for electronic health record sharing. Future Gener. Comput. Syst. 2019,
95:420–429.

[36] Li H, Tian H, Zhang F, He J. Blockchain-based searchable symmetric encryption scheme.
Comput. Electr. Eng. 2019, 73:32–45.

[37] Zhang Y, Deng RH, Shu J, Yang K, Zheng D. TKSE: Trustworthy keyword search
over encrypted data with two-side verifiability via blockchain. IEEE Access 2018,
6:31077–31087.

[38] Yan X, Yuan X, Ye Q, Tang Y. Blockchain-based searchable encryption scheme with fair
payment. IEEE Access 2020, 8:109687–109706.

[39] Chakraborty PS, Chandrawanshi MS, Kumar P, Tripathy S. BSMFS: Blockchain assisted
Secure Multi-keyword Fuzzy Search over Encrypted Data. In Proceedings of the 2022
IEEE International Conference on Blockchain, Espoo, Finland, August 22–25, 2022, pp.
216–221.

[40] Xia Z, Wang X, Sun X, Wang Q. A secure and dynamic multi-keyword ranked
search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 2015,
27(2):340–352.

[41] Fu S, Zhang Q, Jia N, Xu M. A privacy-preserving fuzzy search scheme supporting logic
query over encrypted cloud data. Mobile Netw. Appl. 2021, 26:1574–1585.

[42] Qaiser S, Ali R. Text mining: use of TF-IDF to examine the relevance of words to
documents. Int. J. Comput. Appl. 2018, 181(1):25–29.

19

	Introduction
	Related work
	Preliminaries
	Blockchain and smart contracts
	Bloom filter
	Locality-sensitive hashing
	Trigram language model

	System overview
	System model
	Threat model

	The proposed BC-RFMS scheme
	Key generation
	Document preprocessing
	Index creation
	Trapdoor generation
	Data search
	Document decryption

	Discussion
	Experiments and performance evaluation
	Conclusion and future work

