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Abstract: Bitcoin inverse futures are dominant derivative contracts traded in the cryptocur-
rency market. We aim to understand the mean-variance tradeoff of such contracts through 
quantitative studies. To this purpose, we derive explicit representations for the expectation and 
variance of the returns on Bitcoin inverse futures and obtain their first-order approximations. 
The empirical findings s how t hat B itcoin i nverse f utures a re m ore (  r esp. l ess) r isky than 
standard futures when the market is in backwardation (resp. contango). We further find 
that Bitcoin inverse futures bear higher downside risk, as measured by semi-deviation, than 
standard futures.
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1. Introduction

Bitcoin (BTC) is the first decentralized cryptocurrency and has the largest market capitalization 
and trading volumes among thousands of cryptocurrencies. The strong research interest in 
Bitcoin is evidenced by a growing number of literature; see [1–4] for a short list. We refer 
readers to [5–7] for survey articles on Bitcoin and other cryptocurrencies, and the related 
works that are not reviewed here to save length. The key purpose of this paper is to investigate 
the mean-variance tradeoff of Bitcoin futures.

The Chicago Mercantile Exchange (CME) and the Chicago Board Options Exchange 
(CBOE) launched Bitcoin futures for trading on December 10, 2017 and December 18, 2017, 
respectively.1 Both CME and CBOE Bitcoin futures are standard contracts, which treat Bitcoin 
as the underlying and use fiat currency (U.S. dollar, USD with symbol $) as the denomination 
and settlement currency. Recent studies on Bitcoin standard futures traded on CME and 
CBOE focus on their role in price discovery, market efficiency, and hedging performance; see, 
e.g., [8–14]. In comparison, Bitcoin futures offered by many online exchanges (e.g., BitMEX 
and OKEx) are inverse contracts, which use fiat cryptocurrency (such as USDT, 1 USDT ≈ 1 
USD) as the underlying and BTC as the denomination and settlement unit. Please see Tables
A.1 and A.2 in [15] for contract details of Bitcoin standard and inverse futures.

Although both standard and inverse futures contracts co-exist in the Bitcoin markets,
their market capitalization and trading volumes differ significantly. As seen from Figure 1,
the daily trading volumes of CME standard Bitcoin futures are almost negligible, less than

Copyright©2024 by the authors. Published by ELSP. This work is licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted use, distribution, and reproduction in any medium provided the original work is
properly cited

1 Note that CBOE had ceased offering Bitcoin futures after June 19, 2019, leaving CME the only major venue for trading Bitcoin 
standard futures.
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8% of Binance during the observation period (from March 23 to April 23 in 2020).2 
Despite having the dominant market shares in the Bitcoin futures market, Bitcoin 
inverse futures are not well studied in the current literature, with some exceptions. [16] 
use the perpetual inverse contracts from BitMEX to investigate price discovery, 
informational efficiency, and hedging effectiveness. [15] study the minimum variance 
hedging problem of Bitcoin inverse futures to spot markets and the hedging effectiveness of 
the optimal strategy. [17] formulate an optimal investment problem for a utility maximizing 
agent who invests in Bitcoin spot and inverse futures. [18] analyze two unique features of 
inverse futures, automatic liquidation and leverage selection, and their role in hedging Bitcoin 
spot markets. We remark that the success of Bitcoin inverse futures likely motivates the 
design of Bitcoin inverse options, which have been gaining significant attention in recent 
years (see [19–21]).

Figure 1. Bitcoin futures daily trading volume.

Note. The upper panel plots the aggregated daily trading volumes of Bitcoin futures at major exchanges from March 23 to April 23 in 2020.
The CME is the only venue for trading standard futures contracts, while all others trade inverse futures contracts. In the lower panel, to gain
better view on the comparison, we draw the charts for the Binance and CME only. The y-axis in both graphs is in unit $bn (billion USD).
Data source are from https://www.skew.com/dashboard/bitcoin-futures.

2 This finding is more universal across different time periods for several major exchanges, e.g., BitMEX, OKEx, and Binance.
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As is well known, a primary use of futures is to hedge the spot market, and an optimal 
hedge is often defined as the one that minimizes the variance of the portfolio consisting of 
spot asset and its futures (see [22]). When a standard futures contract is used to construct 
the hedging portfolio, the analysis is straightforward because the payoff structure of standard 
futures is in a simple, linear form as seen in (2.1). However, if the hedger trades inverse 
futures, the analysis is far from being trivial because the payoff structure of inverse futures is 
intrinsically nonlinear as given by (2.2). In consequence, the first step towards understanding 
inverse futures is to analyze their expected returns and variance (volatility) resulting from the 
unique payoff structure in (2.2). To the best of our knowledge, the mean-variance (risk-return) 
tradeoff of Bitcoin inverse futures has not been studied before in the existing literature. Note 
that although several papers study the hedging with Bitcoin inverse futures (see, e.g., [15] 
and [18]), they treat the futures returns as an exogenous process (time series) and construct 
an optimal hedge that depends on the mean and variance of the returns, which they estimate 
directly from data. However, as already argued, such a topic deserves a detailed investigation 
given the enormous trading volumes of inverse futures (see Figure 1) and given its importance 
in the optimal hedging study and portfolio management. Therefore, in this paper, we aim 
to fully decipher the mean-variance tradeoff of Bitcoin inverse futures and compare their 
riskiness with the counterpart standard futures. The first objective of this paper is to conduct 
an analytical study on the expected return and variance of the Bitcoin inverse futures based 
on the “raw data” (i.e., Bitcoin spot and futures reference prices). The second objective is 
to compare Bitcoin standard and inverse futures, with a particular focus on their riskiness, 
measured by the volatility of their returns.

Our main contributions are in three aspects. First, we derive exact representations of 
the mean and variance of the returns of Bitcoin inverse futures, shown in (2.6) and (2.8), 
respectively. These results are new to the cryptocurrency literature and pin down the precise 
dependence of the performance of inverse futures on the spot price S and the futures reference 
price F . Since the exact representations in (2.6) and (2.8) involve summations of infinite 
sequences, we further obtain their first-order approximations in (2.13) and (2.14), which are 
easy to understand. To assess the accuracy of such approximations, we conduct an empirical 
study and find that they are as accurate as the sample mean and standard deviation. Second, 
we provide a in-depth comparison on Bitcoin standard and inverse futures. The key finding is 
that inverse futures are more risky than standard futures when the market is in backwardation 
(resp. contango). (Recall that if the Bitcoin spot price S is greater the futures reference price F , 
the market is in backwardation, and the opposite scenario is called contango.) Third, Bitcoin 
inverse futures bear higher downside risk, as measured by semi-deviation, than standard 
futures. This effect is induced by the inverse payoff structure since it is more sensitive to the 
decreasing of prices. We remark that these findings are immediately beneficial to those who 
have difficult deciding which futures contracts to trade, since our results decode the riskiness 
involved in the trading of Bitcoin standard and inverse futures.

The rest of the paper is organized as follows. In Section 2, we present our main theoretical 
results on representing the mean and variance of futures returns and their approximations. 
In Section 3, we conduct empirical studies to investigate the accuracy of the volatility 
approximations and (de)leverage effect. Our concluding remarks are given in Section 4.

2. Main results

Throughout the paper, we denote by E, Var, σ , and Cov, the expectation, variance, standard 
deviation (volatility), and covariance operators respectively, under the physical probability
measure P. Let S = (St )t≥0 and F = (Ft )t≥0 represent the Bitcoin spot and futures reference 
prices, where both S and F are denominated in fiat currency, which is taken to be USD. We 
use ∆S and ∆F to denote the changes of the spot price S and the futures price F , respectively. 
For instance, let ∆t be a time increment, ∆St = St+∆t − St and ∆Ft = Ft+∆t −Ft for all t ≥ 0.
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Our first task is to understand the unique payoff structure of Bitcoin inverse futures, which
is significantly different from that of Bitcoin standard futures. To that end, consider a Bitcoin
standard futures contract with notional value 1 BTC and a Bitcoin inverse futures contract
with notional value K USD (K > 0), both linked to the same futures reference price F . If an
investor longs one unit standard futures contract at time t and closes her position at t +∆t,
then her payoff is given by

Payoff (standard futures) = Ft+∆t −Ft . (2.1)

However, if the investor longs one unit inverse futures contract at time t and closes her position
at t +∆t, then her payoff is given by

Payoff (inverse futures) =
K
Ft

− K
Ft+∆t

. (2.2)

Note that if the futures price F increases (i.e., Ft+∆t > Ft), a long position in both standard and
inverse futures leads to positive profits. The above result shows that the payoff function of an
inverse futures contract is non-linear, which brings extra risk factors and asymmetry effect
into the mean and variance of the returns.

We define FB = (FB
t )t≥0 by FB

t = K
Ft

, and interpret FB
t as the nominal value of Bitcoin

inverse futures per contract, denominated in BTC, at time t. Hereinafter, we use superscript
·B on a random variable (process) to emphasize that such a random variable (process) is
denominated in BTC. Let us consider a unit long position in Bitcoin inverse futures, which is
initiated at time t and closed at time t +∆t. We define (nominal) returns on Bitcoin futures
as follows:

RF :=
Ft+∆t −Ft

Ft
=

∆Ft

Ft
, (2.3)

R :=

(
FB

t −FB
t+∆t

)
St+∆t

K
=

(
1
Ft

− 1
Ft+∆t

)
St+∆t , (2.4)

R̃ :=
St+∆t −St

Ft
=

∆St

Ft
. (2.5)

RF defined in (2.3) is the (nominal) return on standard futures; see [22] for similar definition. 
R defined in (2.4) is the return on Bitcoin inverse futures, converted into the denomination of 
USD using the spot price. We interpret R̃  in (2.5) as the mixed spot-futures return, which is 
useful in establishing the relationship between R and RF in the subsequent analysis.

Our main focus is to investigate the time t conditional expectation (notation Et ) and 
variance (notation Vart ) of Bitcoin inverse futures’ return R. Note that we treat the mean of 
return as a return (performance) measure and the variance (or volatility) as a risk measure of 
Bitcoin inverse futures. The non-linear payoff feature brings higher-order risk factors into R. 
Proposition 2.1 below delivers this message.

Proposition 2.1. We obtain the time t conditional expectation and variance of R by

Et(R) =
St

Ft

∞

∑
i=0

(−1)iEt(R1+i
F )+

∞

∑
i=0

(−1)iEt

[
R̃ ·R1+i

F

]
, (2.6)

Vart(R) =
S2

t

F2
t

∞

∑
i, j=0

(−1)i+ jCovt

(
R1+i

F ,R1+ j
F

)
+

St

Ft

∞

∑
i, j=0

(−1)i+ jCovt

(
R1+i

F , R̃ ·R1+ j
F

)
(2.7)

+
∞

∑
i, j=0

(−1)i+ jCovt

(
R̃ ·R1+i

F , R̃ ·R1+ j
F

)
. (2.8)

4



Blockchain Article

Proof. From the definition of R in (2.4), we derive

R =

(
1
Ft

− 1
Ft+∆t

)
St+∆t =

∆Ft

Ft

St+∆t

Ft+∆t
= RF

St +∆St

Ft +∆Ft
(2.9)

= RF
St/Ft +∆St/Ft

1+∆Ft/Ft
= RF

St/Ft + R̃
1+RF

(2.10)

= RF

(
St

Ft
+ R̃

)
∞

∑
i=0

(−1)iRi
F (2.11)

=
St

Ft

∞

∑
i=0

(−1)iR1+i
F +

∞

∑
i=0

(−1)iR̃R1+i
F , (2.12)

which naturally implies the results in (2.6) and (2.8) by taking condition expectation and 
conditional variance at time t. The proof is now complete.

The results in Proposition 2.1 are, despite explicit, complex to compute in practice and 
not easy for economic interpretation, since the sums of infinite series(s) are involved. Hence, 
to make them more applicable, we take the terms with index i, j = 0 in equations (2.6)-(2.8) 
and obtain the first-order approximations by

Et(R)≃
St

Ft
Et(RF)+Et

[
R̃ ·RF

]
:= Êt(R), (2.13)

Vart(R)≃
S2

t

F2
t
Vart(RF)+2

St

Ft
Covt(RF , R̃ ·RF)+Vart(R̃ ·RF) := V̂art(R). (2.14)

In the later empirical studies, we show that the above first-order approximation
√

V̂art(R) is
as accurate as the sample standard deviation of R.

The results of Proposition 2.1 and the approximations (2.13)-(2.14) shed light on the 
complexity of the risk and return of Bitcoin inverse futures. First, the expected return of 
R is impacted by the returns of RF and R̃, i.e., by both the Bitcoin spot price S and futures 
price F . Second, the variance of RF and the higher-order covariance between RF and R̃  both 
contribute to the risk (variance) of inverse futures’ returns, and these factors are intertwined. 
This observation explains why perfect hedging is nearly impossible in practice for Bitcoin 
inverse futures. In comparison, if we consider the returns on Bitcoin standard futures RF , it 
is clear that both E[RF ] and Var[RF ] only depend on the futures√price F . Third, there is a 
volatility amplification (reduction) effect on σt (R), where σt (R) =  Vart (R). Here, volatility 
amplification (resp. reduction) effect refers to the situation when the inverse futures’ intrinsic 
risk, as measured by σt (R), is inflated above (resp. deflated below) the√standard futures’ risk 
(the volatility of the quoted futures price), as measured by σt (RF ) = Vart (RF ). When the 
market is in contango, i.e., when futures price F > spot price S (resp. backwardation, i.e., 
F < S), the volatility σt (R) is deflated (resp. inflated) by the ratio S/F , when compared to the 
volatility σt (RF ).

3. Empirical studies

3.1. Data description

In the following empirical study, we consider quarterly Bitcoin inverse futures traded on 
OKEx,3 which is the most liquid contract on OKEx, accounting for nearly 85% of the trading 
volumes. We obtain the futures and spot price data spanning from 2018/10/07 to 2019/07/25 
through its provided application programming interface (API) on www.okex.com. All price

3 OKEx is the second largest exchange of Bitcoin futures by trading volumes, only trailing BitMEX. However, about 97% of the Bitcoin 
futures traded on BitMEX are perpetual contracts, which [16] call perpetual swaps.
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data are in daily frequency and sampled at the Coordinated Universal Time (UTC).
We plot the Bitcoin spot price S and futures price F in Figure 2. The figure shows that S

and F are highly positively correlated. We also report the summary statistics of the spot price
change ∆S and futures price change ∆F in Table 1. An immediate observation is that both
Bitcoin spot and futures are highly volatile, with the coefficient of variation for daily price
changes over 30.

Figure 2. Bitcoin spot and futures prices on OKEx.
Note. The graph plots the Bitcoin spot and futures prices, in the unit of 1$ USD on the y-axis, on exchange OKEx from 2018/10/07 to
2019/07/25 (shown in x-axis).

Table 1. Summary statistics of daily price changes.

Variables ∆S ∆F RF R̃ R
Min -1776.30 -1921.48 -0.14 -0.13 -0.15
P25% -60.05 -63.33 -0.01 -0.01 -0.01
Median 8.70 9.36 0.00 0.00 0.00
Mean 10.99 11.34 0.0023 0.0020 0.0021
P75% 90.70 91.24 0.02 0.02 0.02
Max 1267.90 1162.35 0.19 0.17 0.19
S.D. 307.07 330.40 4.28% 3.97% 4.30%
Skewness -0.57 -0.73 0.15 0.16 0.09
Kurtosis 11.42 11.16 6.31 6.15 6.34
Count 291 291 291 291 291

Notes. ∆S and ∆F are daily price changes of Bitcoin spot and futures. P25% and P75% refer to the 25% quantile and 75% quantile. The 
settlement reference price of Bitcoin futures on OKEx is the weighted average of the last Bitcoin prices in USD on major exchanges. S.D. 
stands for standard deviation.

The key futures returns are RF (standard futures), R (inverse futures), and R̃  (mixed 
spot-futures), which are defined in (2.3)-(2.5). Their summary statistics are given in Table 1.

During the full sample period, the worst return for standard and inverse futures in USD (i.e., RF 
and R) is about -15% and the best is about 19%, with daily volatility around 4.3% (annualized
volatility over 80%). Given that the median of RF and R is near zero, the probability of making 
profits from trading standard or inverse futures in a day is 50%, which is close to the daily 
profit probability of Bitcoin (53.69%) found in [23].
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e.g., σ(R) =
√

Vart(R) and σ̂(R) =

3.2. Accuracy of volatility approximations

In this subsection, we focus on the volatility (standard deviation) of Bitcoin inverse futures’ re-
turns R. Recall Vart (R) is given by (2.8), and its first-order approximation V̂art (R) by (2.14).
Let us denote by σ the volatility of a √random variable and σ̂ the first-order approximation of σ ,

V̂art(R). We investigate the accuracy of the first-order
approximation σ̂(R) to σ(R).

Figure 3. 60-day rolling daily mean and volatilities of returns on bitcoin futures.
Notes. Panels 1-2 report return E(R) and volatility σ(R), and their first-order approximations σ̂(R) and Ê(R), calculated using (2.14). 

Panels 3-4 report the comparisons between E(R),σ(R) and E(RF ),σ(RF ), where RF is defined by (2.3). In all panels, the x-axis is the time 
window, while the y-axis is the actual value.

We calculate σ(R) (σ(RF ) as well) using the sample standard deviation, and σ̂(R) using 
(2.14). All the volatilities are computed on a 60-day rolling window using data from the full 
sample. The results are plotted in Figure 3. To be specific, in Panels 1-2 of Figure 3, we
draw the comparison curves of σ(R) vs σ̂(R) and E(R) vs Ê(R). In Panels 3-4, we plot σ(R) 
against σ(RF ), and E[R] against E[RF ] together to compare the volatilities and expectations 
of returns on inverse and standard futures. Recall RF , defined by (2.3), is the return on the 
futures reference price F , and hence, can be seen as the return on Bitcoin standard futures. We
also report the average volatilities of σ(R) and σ(RF ) in Table 2. The key findings are due 
as follows:

• The first-order approximation σ̂(R) is as good as the commonly used sample standard
deviation σ(R). The accuracy is above 97% for σ(R) (see Table 2). It is well known that
the latter is an unbiased and consistent estimator to the true volatility.

• Volatilities σ(R) and σ(RF) are very close but not identical. That means, if we use
volatility (variance) as a risk measure, trading Bitcoin standard futures is as risky as
trading Bitcoin inverse futures. On the average level, Table 2 confirms that Bitcoin inverse
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futures are (slightly) more risky than standard futures. However, as shown by Panel 3 of
Figure 3, there are also times when inverse futures are less risky than standard futures.

Table 2. 60-day rolling daily volatility.

Variable Result

Average σ(R) 4.07%
Average σ̂(R) 4.16%

Accuracy 97.43%

Average σ(RF) 4.03%

Notes. To calculate the standard deviations σ(RB), and σ(RF ), we only need the Bitcoin futures prices. Accuracy is calculated as 
|(Average σ̂(·) −Average σ(·))/Average σ(·)|.

3.3. Volatility amplification effect and downside volatility

One interesting finding of Proposition 2.1 is the volatility amplification effect, and here we 
further investigate such effect in numerical analysis. We recall that volatility amplification 
effect refers to the case when the inverse futures’ risk σt (R) is inflated above the standard 
futures’ risk σt (RF ). For standard futures, there is no amplification effect, as two risks coincide. 
We define the following measure for volatility amplification effect:

Volatility Amplification Effect (VAE) :=
σ(R)−σ(RF)

σ(RF)
, (3.1)

If σ(R) < σ(RF ), we get negative VAE, which corresponds to the volatility reduction 
effect. Once we calculate VAE given by (3.1) on a daily basis over time, we can study the 
dynamic changes of volatility amplification effect during the sample period. Similar to the 
computations of σ(R) and σ(RF ) in Section 3.2, we also calculate VAE using a 60-day rolling 
window. The results are plotted in Figure 4. We observe that:

• When the market is in contango (ratio S/F < 1), the volatility σ(R) is reduced by the
ratio S/F and VAE is negative, implying that Bitcoin inverse futures are less risky than
standard futures.

• When the market is in backwardation (ratio S/F > 1), the volatility σ(R) is amplified by
the ratio S/F and VAE is positive, implying that Bitcoin inverse futures are more risky
than standard futures.

When the market is neutral (S/F ≃ 1), two volatilities are almost indistinguishable. These 
findings confirm our conjecture based on the approximation formula (2.14).

In addition, we compute the maximal and minimal amplification effect as

VAEmax = 11.09% and VAEmin =−9.07%. (3.2)

These numbers show that the positive amplification effect is more significant than the
negative reduction effect. Such an asymmetry is also found in the impact of price changes on
the payoff of Bitcoin inverse futures; see Example 2.2 in [15].
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Figure 4. 60-day rolling amplification effect and downside volatility.
Notes. The right y-axis is the actual value of the ratio S/F (blue) in panels 1 and 3. The red lines in panels 1 and 3 are the amplification 
and downside amplification effect defined by (3.1) and (3.3). Panel 2 plots the downside volatilities, in actual value, of σ−(R) (red) and σ
−(RF ) (blue). The x-axis is the time window; note that our data starts on 2018/10/7, so the first 60-day sample starts in Dec 2018.

To further investigate the volatility amplification effect induced by the non-linear payoff
structure, we calculate the downside volatility (semi-deviation), which captures the downside
risk of falling below the expected return. We plot the downside volatilities σ−(R) and σ−(RF ) 
in Panel 2 of Figure 4. It shows that Bitcoin inverse futures are more risky than standard
futures, especially during market downturns. Similar to VAE in (3.1), we also define the
downside volatility amplification effect (DVAE) as follows:

Downside Volatility Amplification Effect (DVAE) :=
σ−(R)−σ−(RF)

σ−(RF)
. (3.3)

We plot the graph of DAVE in Panel 3 of Figure 4, with left y-axis for DAVE and the right y-
axis for the ratio S/F . We observe positive DAVE throughout the entire period, which confirms
the previous finding from Panel 2 that inverse futures bear higher risk when compared to
standard futures. We then calculate the maximal and minimal downside amplification effect
and obtain

DVAEmax = 15.59% and DVAEmin = 4.76%. (3.4)

At the maximal level, Bitcoin inverse futures bear about 16% more downside risk than
standard futures.
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4. Conclusion 

Despite with many attractive contract features, Bitcoin inverse futures are significantly 

different and more complex than standard futures, with nonlinear payoff function as a 

prominent example. In this paper, we study the mean-variance tradeoff of Bitcoin inverse 

futures in detail. In the analysis, we obtain explicit representations for the expectation and 

variance of the returns on Bitcoin inverse futures, and we further derive the corresponding 

first-order approximations, which are shown to be accurate estimators empirically. Based on 

the first-order approximations, we conduct an extensive empirical study to compare the 

riskiness of inverse and standard futures. Our findings show that Bitcoin inverse futures are 

more (resp. less) risky than standard futures when the market is backwardation (resp. 

contango). We further find that Bitcoin inverse futures bear higher downside risk than 

standard futures.  

Unlike the standard futures traded on CME and CBOE, Bitcoin inverse futures are 

exclusively traded on exchanges that are not (or lightly) regulated by governments and 

authorities. In addition, our analysis and results are mainly objective and not impacted by 

regulations and policies. However, investors who trade Bitcoin inverse futures, depending on 

where they reside, may be subject to local regulations; for instance, residents in the US are 

not allowed to trade on many cryptocurrency exchanges, such as BitMEX and Binance (main 

site), and are required to report their crypto tradings in their annual tax filing. We point out 

several potential directions for future research. Recall that our analysis is model-free in the 

sense that we do not assume a priori a model for the spot or futures price. So, the first 

direction is to consider special models, such as a stochastic volatility model with correlated 

jumps in [19], and obtain finer results. Second, the exact representations in (2.6) and (2.8), 

along with their first-order approximations (2.13) and (2.14), could help construct time-series 

models for the Bitcoin spot price S to better fit with data (recall that Bitcoin inverse futures 

are the most traded product among all cryptocurrencies and their derivatives). Third, one 

could explore the applications of our representation results in hedging and portfolio 

management. As an example, the mean and variance approximations in (2.13) and (2.14) can 

be used to construct optimal hedging portfolios.  
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