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Abstract: Airdrops represent a pivotal strategic instrument for Web3 projects, serving to
distribute free tokens and motivate early adoption. However, the popularity of these tokens
has fueled the emergence of airdrop hunters—individuals who exploit multiple transactions
to acquire disproportionate amounts of tokens unfairly. This phenomenon threatens the in-
tegrity and fairness of the Web3 community. Current detection methods struggle with high
false-positive rates, harming legitimate users, and require significant computational resources
for training. Furthermore, these methods face challenges in adapting to the evolving tactics
of airdrop hunters, leading to diminished detection accuracy and efficiency. We introduce
ARTEMIX, a community-boosting-based framework that integrates custom-engineered fea-
tures and community detection techniques to identify airdrop hunters in NFT transactions.
Using data from the Blur NFT market, ARTEMIX demonstrates superior accuracy and effi-
ciency, outperforming existing graph-based inference models, achieving an F1 score of 0.898.
This approach provides a scalable and effective solution to anomaly detection in the Web3
ecosystem, promoting a more secure and equitable environment for token distributions.
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1. Introduction

In recent years, airdrops have emerged as one of the most prominent topics in the Web3
ecosystem. In the context of blockchain technology and cryptocurrencies, an airdrop refers
to the free distribution of tokens or coins to a large number of wallet addresses [1]. Airdrops
are typically used as a marketing strategy to increase awareness and adoption of a specific
blockchain project or token[1, 2]. Normally, airdrops can incentivize user engagement through
actions such as following the project on social media, sharing updates, or contributing to the
project’s development[1]. A critical aspect of airdrops is their role in decentralization; more
centralized projects tend to rely on a few large token holders, a scenario viewed unfavorably
by the Web3 community[3]. Hence, airdrops can foster a robust user community, essential for
the long-term success of blockchain projects[4].

To qualify for an airdrop, users often need to hold a specific amount of another cryp-
tocurrency or complete particular tasks, such as engaging in on-chain activities, participating
in ecosystem projects, or purchasing related NFTs[1]. However, if a project’s tokenomics
are not well-designed, strategies such as airdrop can have detrimental effects[5]. While they
may create short-term excitement and increase token prices, the subsequent rise in circulating
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tokens can lead to long-term price declines[6]. Additionally, projects may be targeted by
fraudsters who create hundreds of bots (fake accounts on social networks) and participate in
dozens of airdrops daily to increase their chances of winning tokens[7]. These individuals,
known as "airdrop hunters," collect wallet addresses and interact with contracts to obtain lucra-
tive token giveaways. By exploiting blockchain anonymity to register multiple accounts and
interact with DApps for maximum profit, these individuals undermine long-term development
by rapidly selling tokens and driving down asset prices, thus harming enthusiasts who wish
to hold tokens long-term and actively engage in community activities[4, 8]. These actors
undermine decentralization by concentrating tokens in a few hands, disrupt financial inclusion
by excluding genuine users, and harm system efficiency by introducing fraudulent transaction
patterns. Therefore, airdrop teams must seek an efficient and effective method to identify
airdrop hunters hidden among a large number of addresses.

Despite the emergence of airdrops and their corresponding hunters as a new business
model and community, there is still limited research on the topic. The study by Fan et al. [8]
demonstrates identifiable and observable patterns in the activities of airdrop hunter addresses.
A typical example is “wash trading,” where airdrop hunters often repeatedly transfer assets
between two or more addresses[9]. This mimics normal on-chain behavior, creating deceptive
interaction data. As the scale increases, such behavior develops more complex strategies,
eventually forming large clusters of airdrop hunters composed of hundreds of addresses[4].
Zhou et al. propose the ARTEMIS, a systematic airdrop hunter detection based on graph
learning. The study by Victor[10] and Liu [7] introduces heuristic algorithms based on
searching typical trading patterns to identify wash trading and suspicious sybil addresses.
These works provide valuable insights and inspiration for identifying airdrop hunters and
reveal many regular patterns in token transfers by airdrop hunters.

However, their performance in practical detection tasks may not be satisfactory for the
following reasons:1)In real airdrop events, the data volume may be tens or even hundreds
of times larger than in simulated experiments. Similar graph learning algorithms require
significant computational resources and training time. Such costs increase significantly with
data growth, and graph-based search algorithms’ detection time grows exponentially when
dealing with complex and extensive real interaction data. This is particularly unfriendly for
airdrop issuers in web3, who typically need to adjust strategies based on real-time community
feedback; 2)Existing detection methods perform poorly in avoiding false positives of normal
community users. From the perspective of incentivizing users through airdrops, we should
focus more on not harming beneficial community participants[11];3)The interpretability of
neural networks remains a notable challenge. Airdrop issuers require clear, understandable
reasons why certain users are flagged, to make informed decisions and adjust their strategies
accordingly. The black-box nature of neural networks makes it difficult to provide such
transparency, leading to potential mistrust and inefficiency in their application[12].

Our work introduces ARTEMIX: AiRdrop hunTEr detection via a boosting-based
Merging, Integration, and eXtraction framework. A novel model for identifying airdrop
hunters, focusing on suspicious patterns typically found only in airdrop hunter accounts.
In simple terms, we first built three key classifiers from different perspectives based on
the revealed patterns of various airdrop hunters: 1)Nodes participating in typical hunter
trading patterns. 2)Nodes with typical trading time patterns. 3)Nodes with typical trading
characteristics. We also extracted important features from the constructed complete transaction
graph: community detection and classification results based on 11 transaction node basic
features using the Louvain algorithm [13]. Finally, we constructed a community-boosting-
based framework, integrating the extracted node features and classifier detection results.
This system focuses on representative trading features and greatly reduces the model’s
training and inference costs while maintaining excellent scalability within the model
framework. Experimental results show that our model outperforms existing graph inference
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models across various metrics in identifying airdrop hunters, providing a new and effective
framework for addressing airdrop issues in the community. The codes are available at
https://github.com/qCanoe/ARTEMIX-2024.git.

In summary, the contributions of this work are threefold:
• We introduce ARTEMIX, a novel community-boosting-based framework that integrates

multiple detection modules and community detection techniques to identify airdrop
hunters. This framework enhances detection accuracy and efficiency, significantly out-
performing existing graph neural network methods.

• We developed three custom-designed feature extraction components, focusing on trading
patterns, trading time patterns, and trading characteristics, which enables effective utiliza-
tion of critical features for detecting airdrop hunters, emphasizing model interpretability.

• Our experimental results demonstrate that our model achieves state-of-the-art perfor-
mance, outperforming existing graph inference models across various metrics in identi-
fying airdrop hunters, providing a new and effective framework for addressing airdrop
issues and other on-chain anomaly detection tasks in the Web3 community.

2. Background and related work

2.1. Web3 and decentralized applications

In recent years, Web3 (also known as Web 3.0) technology has demonstrated tremendous
potential across various fields. Web3 aims to use decentralized and serverless architecture to
create a user-centric internet[14]. Unlike the current internet (Web 2.0), which is primarily
controlled by centralized entities such as large tech companies, Web3 leverages blockchain
technology and decentralized protocols to empower users and enhance transparency, security,
and privacy[15]. Web3 has become an all-encompassing term representing a vision for a
new and improved internet. At its core, Web3 seeks to return power to users in the form of
ownership through blockchain, cryptocurrencies, and non-fungible tokens (NFTs)[16]. It has
shown potential applications in various aspects of society, including finance, fostering the
emergence of many new design mechanisms[17, 18, 19, 20, 21]. For instance, the development
of Decentralized Autonomous Organizations (DAOs) showcases how these organizations can
manage and enforce rules through smart contracts, eliminating intermediaries in traditional
organizational structures and enabling more democratic and transparent governance[22].

The emergence of Ethereum aims to address some of the limitations and challenges of
Bitcoin. It provides developers with a tightly integrated end-to-end system for building soft-
ware in mainstream computing paradigms: a trusted object messaging computing framework
with smart contracts, which are scripts that can run synchronously across multiple nodes on
a distributed ledger without external trusted institutions[23]. On Ethereum, we can classify
transactions into two types: external transactions and internal transactions. External transac-
tions are initiated by user addresses and can be direct transactions between user addresses or
function calls to smart contracts. Internal transactions are initiated by smart contracts, which
can transfer among themselves or send tokens to users, such as in the case of airdrop contracts.

Ethereum and smart contracts provide a powerful platform for the popularity of decentral-
ized applications (DApps). Currently, Ethereum is the distributed ledger technology (DLT)
with the largest DApp market[24]. Decentralized applications (DApps) are applications that
can operate autonomously and typically execute on a decentralized computing blockchain
system using smart contracts[18]. Like traditional applications, DApps offer some functions
or utilities to their users. However, unlike traditional applications, DApps execute without
human intervention and do not belong to any single entity. Instead, DApps distribute tokens
that represent ownership. These tokens are allocated to system users according to algorithmic
rules, diluting the ownership and control of the DApp[25]. In the absence of any single entity
controlling the system, the application becomes decentralized. Tokens play multiple roles
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within the DApps ecosystem, covering aspects such as functionality, governance, liquidity,
user participation, value transfer, and smart contract execution[26]. For instance, many DApps
use governance tokens to achieve decentralized governance, allowing token holders to vote on
the future direction of the project or use tokens for payments and providing liquidity.

2.2. Airdrop and airdrop hunter

In the design of tokenomics, DApp teams must consider various key aspects that significantly
influence a project’s success. Tokenomics refers to the entire economic structure of a project’s
token, encompassing its supply, distribution, incentive mechanisms, and utility. A meticulously
crafted tokenomics strategy not only facilitates a seamless project launch and operation but
also stimulates community engagement and long-term development[27]. A well-defined
tokenomics structure should align the interests of the community with the project’s goals,
balancing token supply to avoid inflation while ensuring sufficient liquidity.

Airdrops are a popular incentive mechanism used by DApp teams to promote their projects
and attract users. By distributing a certain amount of tokens for free to specific groups or
the broader public, projects can enhance their visibility and user engagement[28]. Airdrops
effectively onboard new users, reward early adopters and active community members and
foster a robust ecosystem around the DApp[4]. The mechanism of airdrops can vary, ranging
from requiring users to complete specific tasks such as social media promotions, joining
community channels, participating in beta testing, or simply holding a certain amount of
cryptocurrency[29]. These tasks not only help spread awareness but also ensure that recipients
are somewhat invested in the project[28].

Airdrops, intended to distribute tokens widely, are susceptible to Sybil attacks. In such
attacks, malicious actors create multiple wallets to receive more tokens than they are due. We
refer to these actors as airdrop hunters, who fabricate fake accounts and manipulate activities
to unfairly gain more airdropped tokens[8]. In our paper, we use the term “Airdrop Hunter” to
denote what is commonly known in the Web3 community as an “Airdrop Sybil.” For example,
if a protocol requires specific transactions or interactions with a smart contract for airdrop
eligibility, airdrop hunters can perform these actions from multiple wallets to claim excess
tokens[30]. These hunters often employ scripts or bots to generate numerous fake accounts on
the target platform. These scripts can automate the creation of random usernames and emails,
fill out registration forms, and even use specialized services for captcha verification[4].

The presence of airdrop hunters within the Web3 ecosystem introduces several detrimental
effects that jeopardize the foundational principles of blockchain technology. Decentralization,
a cornerstone of blockchain systems, is compromised when airdrop hunters disproportionately
acquire tokens. Zhang et al. [31] highlighted how Sybil attacks, such as those orchestrated by
these hunters, result in token concentration among a small number of malicious actors, thereby
undermining the decentralization goals inherent in tokenomics strategies. Airdrop hunters also
distort transaction volumes by engaging in repetitive and meaningless activities, such as wash
trading, back-and-forth trading, and cyclic transactions. These practices impose significant
computational and economic burdens on blockchain networks. For instance, Liu et al. [32]
demonstrated that inefficient transaction patterns inflate gas fees and prolong transaction times,
creating barriers for legitimate users. Moreover, financial inclusion, a key tenet of blockchain
systems aimed at democratizing access to resources and opportunities, is adversely affected
by the activities of airdrop hunters. Exploiting their technical expertise and resources, these
actors monopolize rewards, effectively excluding smaller participants who lack the capacity to
compete. Cong et al. [33] argued that such exclusionary practices hinder the democratization
of blockchain ecosystems and contribute to systemic inequities.

Many significant airdrops have exposed gaps in anti-Sybil measures. For instance, Aptos
lacked effective anti-Sybil rules during its airdrop, resulting in hunters acquiring many $APT
tokens, which they later sold in large quantities, causing market disruptions. Researchers
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found that Sybil addresses accounted for 40% of the tokens deposited into exchanges[34].
Similarly, in the case of Blur, one of the largest NFT marketplaces, analysts revealed that 50%
of Blur’s NFT trading volume came from fewer than 300 wallets, while 1% of “whales” held
84% of the total value locked in Blur’s bid pools [8].

2.3. Airdrop Hunter Detection

To combat the prevalence of airdrop hunting, some cryptocurrency projects have developed
anti-Sybil technologies. Notably, the Arbitrum Foundation implemented rules to determine
which addresses were eligible for ARB token airdrops[35]. These rules included:

• Limited Operations: Addresses with few operations within a 48-hour period.
• Balance Threshold: Addresses with a balance of less than 0.005 ETH at the time of the

snapshot.
• Prior Identification: Addresses identified as Sybil in the Hop Protocol airdrop.

It is speculated that users verifying multiple wallets from a single IP address on the airdrop’s
official website were disqualified, although this has not been officially confirmed[36]. Many
believe that implementing KYC (Know Your Customer) systems could help solve this problem.
However, permissionless and anonymous participation are core values of Web3[36]. While
identity verification can prevent the creation of Sybil accounts, it also increases user friction
and compromises privacy. Additionally, KYC technology is susceptible to forgery, identity
theft, and phishing scams. Preventing KYC fraud often requires new efforts and strategies[37].

Recent research highlights various advanced techniques for detecting fraudulent activities
in cryptocurrency networks, particularly focusing on identifying complex transaction patterns
and wash trading, which contribute to detecting airdrop hunters. Victor and Weintraud [10]
concentrate on detecting and quantifying wash trading on decentralized exchanges. They
achieve this by creating token transaction graphs and employing trade volume matching along
with strongly connected components (SCCs) heuristic methods to identify and quantify wash
trading activities. Similarly, Victor [38]proposes heuristic methods for clustering Ethereum ad-
dresses, utilizing deposit address reuse, multiple airdrop participations, and self-authorization
to group addresses on the Ethereum blockchain, thereby identifying entities controlling mul-
tiple addresses. In the realm of transaction network detection, Wu et al. [39]explore the
use of hybrid pattern detection for mixing services in Bitcoin transactions. They provide
a feature-based network analysis framework to identify the statistical properties of mixing
services from three levels—network level, account level, and transaction level—and propose
the concept of attributed temporal heterogeneous (ATH) motifs to better characterize the
transaction patterns of different types of addresses.

In the task of detecting airdrop hunters, Liu and Zhu [7] proposed an innovative mecha-
nism to combat Sybil attacks during airdrop events. Their approach combines comprehensive
address behavior analysis and pattern recognition to filter out malicious actors, effectively dis-
tinguishing genuine participants from fraudulent ones. Zhou et al. [8]introduced ARTEMIS,
a graph neural network system designed to identify airdrop hunters in the NFT market.
ARTEMIS analyzes NFT transaction patterns and employs multimodal deep learning tech-
niques to extract insights from NFT metadata, significantly outperforming existing methods in
detecting airdrop hunters. Meanwhile, with the rapid advancement of large language models
(LLMs), their application in blockchain technology and airdrop hunter detection has garnered
increasing attention. ARTEMIS integrates LLMs to analyze metadata and unstructured tex-
tual information—such as NFT descriptions and user comments—enabling semantic-level
identification of potential malicious behaviors. Furthermore, a research project from Berkeley
explores the integration of LLMs with blockchain systems to enhance transaction analysis,
anomaly detection, and smart contract auditing [40]. This project highlights the potential
of LLMs in capturing complex semantic relationships and transaction patterns, laying a
foundation for more accurate detection of airdrop hunters and transaction analysis.
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In the industry, Trusta Labs’ anti-Sybil detection mechanism is the mainstream approach
for identifying airdrop hunters[41]. Their two-stage AI-ML framework uses clustering algo-
rithms to identify Sybil communities. The first stage employs community detection algorithms
like Louvain and K-Core to analyze the asset transfer graph (ATG) and detect tightly connected,
suspicious Sybil groups. The second stage involves calculating user profiles and activities for
each address, refining clusters with K-means to reduce false positives from the first stage. This
method is consistent with the primary approach used across different airdrop projects. Overall,
most transaction graph-driven algorithms face two major drawbacks: high computational costs
and suboptimal accuracy. Therefore, we introduce a community-enhanced fusion framework
to integrate different detection modules, improving the overall performance of the task.

3. Dataset

This section introduces the dataset utilized in the study, derived from Blur’s NFT transaction
records spanning October 2022 to April 2023. The dataset comprises 2,453,280 NFT trans-
actions involving 203,370 unique addresses, with 4,808 labeled as airdrop hunters. Typical
behaviors such as self-trading, back-and-forth trading, and short transaction cycles are an-
alyzed to identify patterns indicative of airdrop hunters. These patterns form the basis for
feature extraction and model training, enabling effective differentiation between hunters and
legitimate users.

3.1. Airdrop hunters in blur

After defining the detection of airdrop hunters as our initial objective, we used transaction
records collected from the Blur (https://blur.io/) project as our data source for the experiment.
Blur is a decentralized NFT marketplace and aggregator platform. With the explosive growth
of the NFT market, it has attracted a diverse range of participants. However, existing platforms
often overlook the needs of professional traders. Blur emerged in early 2022, aiming to address
this gap by offering a feature-rich, zero-fee marketplace specifically designed for experienced
traders[42]. It provides real-time marketplace aggregation, allowing users to sweep and list
across NFT marketplaces, snipe reveals, and manage their portfolios efficiently. Blur is also the
first marketplace to introduce incentivized royalties [42] (Blur’s airdrop system rewards users
who list NFTs with royalties, encouraging them to support creators within the ecosystem).

In the NFT domain, OpenSea has long dominated the field due to its first-mover advantage.
Blur needs to gain recognition and acquisition in an already competitive market, with rivals
such as OpenSea, GEM, and LooksRare. To achieve this goal, the team leveraged point-based
incentives in one of the most diverse ways ever seen in the Web3 space. Blur strategically
distributed its native token $BLUR through a series of airdrops, which not only attracted users
but also fostered a sense of ownership and community. During Blur’s second token airdrop
on February 15, 2023, over 300 million tokens (more than 10% of the total supply) were
distributed, attracting 115,834 users, surpassing OpenSea[43].

On-chain analysis revealed that the sudden increase in Blur’s NFT trading volume was
primarily driven by whales (traders holding large amounts of specific assets) who continuously
bought and sold NFTs through the market’s bid pools to "mine" the next airdrop’s token
rewards[44]. The airdrop incentive mechanism significantly facilitated the spread of wash
trading. Post-airdrop on-chain data analysis showed that 50% of Blur’s NFT trading volume
came from fewer than 300 wallets, and 1% of "whales" held 84% of the total value locked
in Blur’s bid pools[45]. This phenomenon negatively impacts the community’s growth,
potentially causing severe token price manipulation and harming the project’s overall health.
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3.2. Data description

The dataset used in this study comes from the Blur airdrop hunter dataset constructed by Zhou
et al.[8]. This dataset was compiled using the Etherscan API (https://etherscan.io/) to collect
all NFT transaction data and airdrop records related to Blur from October 19, 2022, to April 1,
2023. For traded NFTs, comprehensive metadata was collected, including NFT images, de-
scriptions, and attributes. Clustering techniques were used to process transaction information,
and subsequent labeling was employed to meticulously compare airdrop records to identify
airdrop hunters. The dataset includes 2,453,280 NFT transactions involving 203,370 unique
user addresses. The official Blur address (0xf2d15c0a89428c9251d71a0e29b39ff1e86bce25)
conducted a total of 123,815 airdrops, of which 4,808 (approximately 4%) were labeled as
airdrop hunters, with the rest being regular traders. Each transaction’s timestamp, type (buy or
sell), value (based on ETH tokens), sending/receiving addresses, NFT collection, and relevant
NFT ID were logged. Historical transaction and smart contract interaction records for each
wallet were also compiled. For each transaction, the dataset captures critical details such as:

• Timestamps: The exact time each transaction occurred.
• Transaction Types: Whether the transaction involved buying or selling.
• Transaction Values: Measured in ETH tokens.
• Addresses: Including sender and receiver wallet addresses.
• NFT Information: Metadata including NFT collection and unique identifiers.

Although the Blur dataset has been very supportive regarding the findings in this study,
there are a number of limitations that affect generalizing these findings. More specifically,
this dataset is based mainly on Blur’s airdrop campaigns; hence, it does not reflect all the
strategies of airdrop hunters on other platforms. For instance, the variations in the airdrop
rules of the platforms, such as interaction requirements or user screening mechanisms, may
evoke differences in behavioral pattern variation. Also, the Blur dataset primarily targets the
NFT market, and thus it cannot feature the critical variance of the wider blockchain domain,
including DeFi or token-oriented airdrops.

Thus, our model places an emphasis on the identification of specific anomalous traits
that are innate in the transactional patterns between addresses for improving the applicability
and generalizability of the findings. This kind of method is particularly aptly positioned for
challenges brought about by differences in platforms and ecosystems. In this regard, it does
the extraction of attributes that are independent of platforms from transactions, including trans-
action frequency, temporal pattern, and structural features of transaction networks. Our model
only tries to capture universal behavioral patterns of airdrop hunters rather than relying on the
rules or environment of a particular platform. This methodology enhances the performance of
this model on the Blur dataset and provides a theoretical basis for extending its applicability
to other platforms.

3.3. Typical hunter example

To uncover the behavioral patterns of airdrop hunters, we conducted a comprehensive analysis
of the Blur dataset by constructing transaction graphs and employing advanced graph analysis
techniques. Specifically, we modeled transaction records as directed graphs, where nodes
represent user addresses, and edges denote transactions between them. From the dataset, we
manually identified three representative interaction patterns of airdrop hunters, which are
illustrated in Figure 1. All addresses and transaction records used in the figure are sourced
directly from our Blur dataset.

The Figure 1 illustrates three typical transaction patterns observed in our dataset to
identify potential airdrop hunters. The first pattern shows star trading pattern (0xe5e...580)
where a central node connects to multiple peripheral nodes with numerous inbound and
outbound transactions, indicating a single entity interacting with many others to simulate
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Figure 1. Airdrop hunter transaction patterns: insights extracted from the blur dataset.

high activity. The second pattern is a sequential pattern subgraph (0xb5d...849), depicting a
circular chain of transactions among several nodes, forming a loop that suggests coordinated
activity to create the appearance of genuine transactions. The third pattern is a transaction loop
example showing repetitive transactions between specific addresses, highlighting frequent
exchanges that indicate manipulative behavior, such as the loop involving nodes 0x998...b05
and 0xd64...cce with over 1000 transactions in both directions, and another loop among nodes
0x704...19e, 0x103...219, and 0xe1c...ffd, with numerous transactions exchanged among
them. These patterns are indicative of behaviors often associated with airdrop hunters, who
manipulate transactions to appear more active in the network and thus qualify for airdrop
rewards. These patterns are characteristic of behaviors commonly linked to airdrop hunters,
who strategically manipulate transactions to appear more active within the network and qualify
for airdrop rewards. Accurately identifying the key features of these intricate transaction
patterns is essential for our model.

4. Methodology

4.1. Method overview

To achieve superior performance in detecting airdrop hunters, we have introduced ARTEMIX.
The methodology of ARTEMIX is primarily divided into two phases as shown in Figure 2.
The first phase involves constructing three main classifiers based on the different patterns
of airdrop hunters, including nodes participating in typical hunter trading patterns, nodes
exhibiting typical trading time patterns, and nodes with characteristic trading behaviors. Key
node classification features were extracted from the transaction graph. This process involved
embedding edge weights using cosine similarity based on 11 fundamental node features and
applying the Louvain algorithm to obtain community detection results. In the second phase,
these features and classifier results are integrated into a community learning model utilizing
a boosting algorithm for combined training, resulting in the final inference model. This
approach effectively highlights essential features, reduces model training and inference costs,
and maintains scalability. In this section, we will elucidate our design rationale and introduce
the various modules of ARTEMIX.

4.2. Typical hunter trading patterns

Airdrop hunters frequently employ customized trading strategies to curate accounts that fulfill
more extensive criteria for airdrops in the Web3 ecosystem. Within the vast network of trading
addresses and complex trading records, several distinctive patterns can be identified. These
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Figure 2. The framework of ARTEMIX.

patterns are effective in flagging suspicious airdrop hunter addresses in the trading ecosystem.
These behavioral traits, embedded in the complex transaction graph, are often subtle yet
discernible. Despite their relative simplicity, these patterns tend to emerge consistently among
airdrop hunters, whether consciously or unconsciously, over extended periods of interaction
with multiple accounts. Subsequent analyses reveal that these filters are notably effective in
identifying genuine airdrop hunters.

4.2.1. Self-trading

Self-trading involves an account engaging in transactions with itself. This tactic is often
employed to create artificial trading volume, manipulate market perceptions, or simulate
activity to meet airdrop eligibility criteria. Although self-trading is generally not the primary
strategy for airdrop hunters, it is prevalent in a significant number of transactions among certain
addresses. Due to the signature mechanism of blockchain transfers, transactions between
addresses undergo multiple confirmations by entities, ensuring that each transaction has a
clear and deliberate purpose. Self-trading occurs on most marketplaces as a method of wash
trading, which is commonly associated with airdrop hunters. Wash trading involves buying
and selling the same asset to create misleading market activity and can be used to inflate the
perceived demand for a token or meet specific trading volume thresholds necessary for airdrop
eligibility. By examining transaction histories, we can identify such nodes where the buying
and selling addresses are identical. This identification process is crucial for distinguishing
legitimate trading activities from manipulative practices.

In our dataset of 203,101 addresses, we detected 1303 addresses that have engaged in
self-trading transactions. By comparing these addresses with the airdrop hunter labels in our
dataset, we found that 694 out of these 1303 addresses are identified as airdrop hunters. This
indicates that using this single filter allows us to successfully identify approximately 14.4%
of airdrop hunters from the 4808 airdrop hunters present in our dataset. This identification
indicates that self-trading transactions can serve as a significant indicator for detecting airdrop
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hunters, but it also is not the sole indicator.

4.2.2. Back-and-forth trading

This behavior is characterized by the repetitive trading of the same or different NFTs between
two addresses. This pattern directly reflects the traits of airdrop hunters: increasing community
engagement and on-chain transaction volumes across multiple accounts through numerous
meaningless transactions. The primary objective is to incur only the gas fees for these
transactions in order to receive airdrop rewards. Although this method is not the main
interaction tool for hunters, we can still identify many addresses that fit this pattern in on-
chain records. However, this has to account for the fact that some legitimate users of the
community may use multiple addresses for the purpose of securing their assets or facilitating
their transactions. Therefore, we tweak our filters to work effectively by setting a reasonable
threshold. This is in the context of the minimum number of transactions that should be
between two identified accounts. Derived from the ROC curve in Figure 3, we can identify the
optimized threshold of 4 through choosing the peak Youden’s index. Evaluation results show
this approach has ultimately filtered out 3374 addresses, and among them, it can correctly
identify 1977 airdrop hunter addresses, taking up to 58.6% of all airdrop hunter addresses. This
indicates that this behavioral characteristic provides strong evidence for identifying airdrop
hunters.

Figure 3. ROC curve for three typical trading patterns.

4.2.3. Short cycles

Detecting suspicious addresses involved in short cycles among a few nodes is crucial for
uncovering potential airdrop hunting activities. These short cycles involve a small group of
addresses repeatedly transacting among themselves, creating the illusion of increased activity
and engagement on the blockchain. This behavior is often used to exploit airdrop distribution
mechanisms that reward higher levels of interaction and transaction volume.

To detect such patterns, we construct a directed graph where nodes represent addresses and
edges represent transactions between them. We then implement a cycle detection algorithm
focusing on cycles of lengths 2 to 3, as these are indicative of suspicious activity aimed at
mimicking legitimate interactions. By setting a threshold for the number of cycles an address
must participate in to be flagged as suspicious (Table 3), we can filter out legitimate users who
might occasionally participate in short cycles for valid reasons.

During the evaluation, this filter demonstrated remarkable performance. Out of a total of
3439 addresses filtered, 92.56% were marked as airdrop hunters in the dataset. This provides
strong evidence for identifying the trading habits of some airdrop hunter manipulators. This
method effectively uncovers airdrop hunters engaging in repetitive transactions among a few
addresses to exploit the system. By applying the cycle detection algorithm to the transaction
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graph and filtering addresses based on the established threshold, we identify those that
participate in an unusually high number of short cycles. Evaluating and validating the results
against known airdrop hunter addresses ensures the approach minimizes false positives and
accurately identifies malicious behavior.

4.2.4. Holding the same NFT multiple times

This trait is marked by an account repeatedly acquiring and selling the same NFT. Such
behavior may be used to inflate the perceived value of the NFT or to simulate trading activity
to meet airdrop eligibility criteria that require holding specific assets. We can spot these
patterns by tracking the ownership history of NFTs and identifying accounts that repeatedly
interact with the same tokens.

An NFT’s Unique Identifier (UI) is a distinctive code or label used to distinguish it from all
other NFTs. This identifier is a unique string of numbers or characters that uniquely identifies
and differentiates each NFT. On the blockchain, each NFT has a UI, ensuring that even if
NFTs share the same name, description, or appearance, they remain distinct and independent.
When the exact same NFT repeatedly appears in the transaction history of a single address,
this address is highly likely to exhibit the characteristics of an airdrop hunter. However, it is
essential to note that some collectors might trade similar NFTs frequently, and certain top-tier
NFTs naturally have a low circulation rate. Therefore, this indicator alone cannot conclusively
identify an airdrop hunter.

To refine this filtering process, we set a threshold: if an identical NFT appears more
than the threshold number of times in the transaction history of the same address, it will be
flagged for further analysis. After testing, we determined a best threshold of 3 (Table 3).
Consequently, we identified 782 addresses that met this criterion. Among these, 415 addresses
were already marked as airdrop hunters in our dataset, validating the effectiveness of this
filter.By monitoring the unique identifiers of NFTs and setting appropriate thresholds, we can
effectively identify patterns indicative of airdrop hunting. This method, while not foolproof,
provides a robust tool for filtering suspicious activity in the NFT trading space.

4.3. Transaction time patterns

In the second module of ARTEMIX feature extraction, we focus on uncovering behavioral
characteristics hidden within the timestamps of transaction records across different addresses.
Most professional airdrop hunters categorize and isolate their addresses to maximize their
gains through mixed strategies. A simple example is that they typically manually interact
with key addresses while using automated scripts for lower-quality duplicate accounts. These
scripts often operate with fixed daily interaction strategies. By analyzing transaction time
patterns, we can effectively identify such scripts. Additionally, manually operated addresses
usually display specific time strategy habits over a longer timeline, requiring us to monitor
transaction habits across multiple time dimensions.

To simulate the behavior of airdrop hunters, we observe two main characteristics in their
transaction time patterns: (1)Abnormal Trading Behavior During Specific Time Periods:
Airdrop hunters often show unusual trading activity during particular time frames; (2)Regular
Daily or Weekly Trading Patterns: Airdrop hunter addresses typically exhibit consistent daily
or weekly trading patterns. By focusing on timestamp patterns, we aim to design more effective
detection mechanisms to identify and mitigate suspicious activities. In the following sections,
we introduce methods for identifying suspicious addresses based on these two characteristics
and conduct a preliminary evaluation of their effectiveness.

As shown in Figure 4, in the selected typical transaction frequency heatmaps, normal users
tend to conduct more transactions during certain characteristic time periods. This behavior
reveals the users’ trading tendencies, and there are significant differences in these trading
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Figure 4. Heatmap analysis of different transaction time patterns.

patterns from day to day, demonstrating the inherent randomness of their trading activities.
Typically, these high-frequency trading periods align with the users’ daily routines, which is
characteristic of genuine individuals interacting normally in the market. In contrast, entities
known as Airdrop Hunters, who often control numerous virtual addresses, exhibit different
trading behaviors. As illustrated in Figure 1, their transactions usually form one or more
clusters, typically resulting in a central node that connects all sub-nodes. These central nodes
are responsible for receiving and distributing the assets of the entire transaction cluster. Unlike
normal users, Airdrop Hunters do not engage in frequent interactions; instead, they conduct
large-scale transactions at specific predetermined times. A typical example of this transaction
pattern is depicted in the second heatmap of Figure 4, which we term as Abnormal Trading
Behavior. The address in question conducts a high volume of transactions concentrated on
Thursday evenings and Saturday afternoons, with significantly lower transaction volumes
at other times. Over an extended period, these characteristics deviate significantly from the
trading behavior tendencies of normal users.

To identify addresses with abnormal trading behavior in our dataset, we employed the
Isolation Forest algorithm [46], a classic technique using binary trees in anomaly detection.
The algorithm has a linear time complexity and a low memory requirement, making it well-
suited for high-volume data. Unlike decision tree algorithms, Isolation Forest uses only
the path-length measure or approximation to generate the anomaly score, without relying
on leaf node statistics on class distribution or target value. In our detection process, we
initially extracted the timestamps of transaction records for each address. We then segmented
these timestamps into four distinct time windows: 1 hour, 6 hours, 1 day, and 1 week.
For each address, we calculated the number of transactions within each time window and
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combined these as time-based features. Next, we applied the Isolation Forest algorithm to
the time features across the entire dataset, opting to use the default parameter settings after a
comparative analysis. The detector identified 1,385 anomalous addresses during the dataset
evaluation, with 1,252 of these being labeled as airdrop hunters. The precision reached
an impressive 90.4%, underscoring the effectiveness of this feature detection approach in
accurately identifying airdrop hunters and detecting anomalous transaction behaviors.

Figure 4’s third heatmap illustrates the second typical trading time pattern—Regular Daily
or Weekly Trading Patterns. The address shows highly regular trading activities during three
specific time periods each day of the week: 0-2h, 10-13h, and 20-23h. Additionally, the address
displays a similar trading frequency outside these concentrated time periods. This behavior is
characteristic of automated airdrop trading scripts. The differences between automated scripts
and real users mainly lie in two aspects: 1. Automated scripts follow identical daily or weekly
trading patterns with little variation. 2. Automated scripts trade at uniformly distributed time
intervals, whereas real users, due to their regular schedules, typically have sparse trading
periods. Thus, trading patterns that adhere to such regularity can be easily identified as airdrop
hunters. To identify periodic trading patterns indicative of automated behavior, we applied the
Fast Fourier Transform (FFT) to transaction time series data. The FFT is an algorithm that
computes the Discrete Fourier Transform (DFT) or its inverse (IDFT), transforming a time
series from the time domain to the frequency domain to identify periodic components within
the data[47]. The DFT of a sequence x[n] of length N is given by:

X [k] =
N−1

∑
n=0

x[n]e−i 2π

N kn (1)

where X [k] represents the frequency components, x[n] is the time-domain data, N is the
total number of data points, and i is the imaginary unit. We began by loading and preprocessing
transaction data, converting timestamps to datetime format, and aggregating them into hourly
intervals to form a consistent time series for each address. The hourly transaction counts were
centered by subtracting the mean:

T ′[n] = T [n]−µ (2)

where µ is the mean of the transaction counts T [n]. The FFT was then applied to yield
frequency components x f and their corresponding magnitudes y f :

|Y [k]|=
√

ℜ(Y [k])2 +ℑ(Y [k])2 (3)

where ℜ(Y [k]) and ℑ(Y [k]) are the real and imaginary parts of the FFT result, respectively.
Significant periodic patterns were identified by applying a threshold of 20 to the magnitudes,
with peaks exceeding this threshold indicating notable periodicity:

Significant Peaks = {k | |Y [k]|> threshold} (4)

Addresses exhibiting such peaks were flagged for periodic trading patterns. This method
effectively distinguishes the uniform, regular trading patterns of automated scripts from the
irregular patterns typical of human traders, aiding in the detection of airdrop hunters and
enhancing the integrity of the trading environment.

4.4. Characteristic trading features

In this subsection, we delineate the distinctive trading characteristics of airdrop hunters in
comparison to regular users, as illustrated in Figure 5. Airdrop hunters exhibit particular
trading strategies, such as high asset turnover rates and frequent repurchase behaviors. Their
wallets typically interact with a substantial number of different NFT projects over extended
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periods. Additionally, airdrop hunters’ addresses are often highly active, characterized by
frequent transactions, a larger number of interaction addresses, and a tendency to use regular
small-amount transactions to maximize the number of airdrops received.

To ensure that we do not overlook the fundamental characteristics of these airdrop hunter
addresses, we have extracted and quantified four representative features. The visual analysis of
these features is conducted through a series of density plots, providing a detailed comparison
across various metrics:

(a) Collections of NFTs Purchased: The density plot reveals that airdrop hunters (blue)
tend to purchase a significantly higher number of NFT collections compared to regular users
(green). Airdrop hunters exhibit a wider spread, with many purchasing up to 300 collections,
whereas regular users show a higher density at the lower end, purchasing fewer collections.

(b) Average NFT Holding Time: The holding time for NFTs indicates a clear distinction
between the two groups. Airdrop hunters generally hold NFTs for a shorter duration, with the
density decreasing sharply beyond 25 days. In contrast, normal users display a wider range of
holding times, with a substantial portion holding NFTs for as long as 100-200 days, suggesting
a more long-term investment behavior.

(c) Unique Address Interactions: The interaction with unique addresses highlights that
airdrop hunters engage with a significantly larger number of unique addresses. The density
plot shows a broad distribution up to 10,000 unique addresses for airdrop hunters. In contrast,
regular users exhibit a higher density at lower interaction counts, engaging with fewer unique
addresses overall.

(d) Number of Active Days: Airdrop hunters and regular users also differ in terms of

Figure 5. Comparison of airdrop hunters and regular users.
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their activity levels. Airdrop hunters have a density that spans a broader range of active days,
indicating sporadic but numerous engagements. Regular users tend to have a higher density
concentrated at fewer active days, suggesting more consistent but less frequent activity.

To enhance the accuracy and robustness of detecting airdrop hunters, we employed a
Random Forest classifier [48] to integrate characteristic trading features. Random forests are
an ensemble of tree predictors, where each tree depends on the values of a random vector
sampled independently and with the same distribution for all trees in the forest. The Random
Forest model was trained using features extracted from our dataset, each contributing to
distinguishing airdrop hunters from regular users by capturing unique trading behaviors. The
model’s reliability and generalizability were validated using cross-validation techniques.

In addition to the previously discussed trading characteristics, we introduce PageRank as
an independent feature to evaluate the influence and importance of wallet addresses within
the transaction graph of the NFT ecosystem. PageRank, a widely used algorithm for ranking
nodes in a network, assigns higher values to addresses that are more central or influential
based on their connectivity and transaction activity[49].

By analyzing the PageRank distribution across airdrop hunters and regular users, we gain
further insights into the strategic positioning and behaviors of these groups. Airdrop hunters,
who typically engage with a larger number of addresses and execute frequent transactions,
tend to have higher PageRank values, highlighting their central role within the trading network.
This feature, although not integrated into the Random Forest classifier, serves as a comple-
mentary measure to distinguish between airdrop hunters and regular users, providing a more
comprehensive understanding of their trading patterns and network influence.

4.5. Community boosting fusion model

Common graph methods and heuristic algorithms often underperform regarding training cost
and accuracy. Additionally, they lack model portability and flexibility for diverse airdrop
initiatives. To address these issues, we propose a novel Community Boosting Fusion Model.
This model integrates node feature extraction with classifier detection results using a boost-
ing algorithm to enhance the detection of airdrop hunters. Our method is easily portable,
straightforward to optimize, and suitable for various airdrop models.

4.5.1. Model input

The Community Boosted Fusion Model we developed integrates various essential elements
derived from blockchain transaction data. Initially, we devised four filters to detect and exclude
common transaction patterns associated with airdrop hunters by picking the most effective
thresholds. These filters produce four separate lists of suspicious addresses, detecting potential
malicious actors by analyzing identified suspicious transaction patterns. In addition, we
have created two specialized detectors for identifying anomalous transaction timing patterns.
These detectors examine the duration and arrangement of transaction timings, generating
two lists of questionable addresses. Their main emphasis is on atypical transaction timing
patterns, such as the clustering of high-frequency transactions within defined time intervals
and the presence of extremely regular trading habits like those of bots. In order to improve
the accuracy of detection, we employed a random forest model to combine four transaction
parameters related to airdrop hunting. This resulted in a suspicion score being assigned
to each address. This score quantifies the likelihood of each account engaging in airdrop
hunting during the full transaction cycle. The random forest model integrates various factors,
including transaction amount volatility, transaction counterparties, and address activity level,
to generate a comprehensive suspicion assessment. By combining the information from the
four transaction pattern filters, two transaction timing pattern detectors, and the random forest
fusion model, our model is able to acquire a comprehensive picture of the blockchain network.
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The ultimate community fusion model enhances the precision of identifying malevolent
actors, successfully detecting those who are trying to avoid discovery by employing intricate
techniques.

4.5.2. Community detection

Community detection is a fundamental step in our model, aimed at identifying clusters
of nodes that exhibit dense interconnections. We employ the Louvain algorithm, a well-
established method for detecting communities in large networks.The Louvain method for
community detection is a method to extract non-overlapping communities from large networks
created by Blondel et al.[50] This algorithm maximizes modularity, ensuring that the detected
communities are highly cohesive. By identifying these communities, we can better understand
the structure of the network and isolate regions where airdrop hunters may operate.

Our Louvain algorithm is based on a similarity graph, where each node represents an
address, and each edge represents the similarity weight of transaction flows between two
addresses. By partitioning the similarity graph, we identify potential communities. In addition
to constructing the transaction network graph of addresses, we extract basic features of nodes
from transaction data to compare similarities between nodes. Specifically, we extract 11
basic transaction features for the i-th address, including total asset value, number of NFT
holdings, number of transactions, etc., and denote j as the index of the features. Through data
processing, we obtain the feature vector of the i-th address Xi = {x1,x2, . . . ,x11}. For better
similarity calculation, we normalize the feature data such that ∑

11
j=1 x j = 1. After extracting

the address behavior features, we choose cosine similarity to calculate the similarity between
nodes, which is generally more suitable for handling high-dimensional sparse data [51].

d(X1,X2) =
∑

11
i=1 X1,i ·X2,i√

∑
11
i=1 X2

1,i ·
√

∑
11
i=1 X2

2,i

(5)

The cosine similarity value d(X1,X2) ranges from 0 to 1, with smaller values indicating
higher similarity between transaction flows. By establishing a similarity graph, we use the
Louvain algorithm for community detection and adjust the resolution parameter to determine
the granularity of the detected communities [51]. We use modularity to measure the effec-
tiveness of the community partitioning, where modularity is defined as a value in the range
[−0.5,1], used to measure the density of links inside communities compared to links between
communities [52]. A modularity closer to 1 indicates a more pronounced community/cluster
division. It is generally considered that a modularity above 0.3 can produce a relatively good
partitioning effect.

Through experiments, we used the Louvain algorithm with a resolution of 1.0, detecting
2973 communities among 203,101 addresses, with a modularity of 0.31. We then isolate these
communities and train them separately, combining them to further improve the accuracy of
detecting airdrop hunters. By combining multiple detection modules (including transaction
pattern filters, transaction time pattern recognizers, and a random forest fusion model), we
can conduct a more comprehensive analysis, while community classification ensures more
effective identification of different categories of airdrop hunters.

4.5.3. Community boosting fusion model

The primary innovation of our approach is encapsulated in the community boosting fusion
Model. This model synergizes node features with initial classifier detection results using a

1. Total Asset Value. 2. Number of NFT Holdings. 3. Number of NFT Collections Holdings. 4. Number of Transactions. 5. Number of
Internal Transactions. 6. Total Number of $ETH Transfers. 7. Total Number of $ETH Withdrawals. 8. Total Number of ERC-20 Token
Transfers In. 9. Total Number of ERC-20 Token. Transfers Out. 10. Number of NFT Transfers In. 11. Number of NFT Transfers Out.
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boosting algorithm. Boosting, an ensemble learning technique, amalgamates multiple weak
classifiers to forge a robust final model. Within this framework, boosting incrementally en-
hances detection accuracy by rectifying misclassifications from preceding iterations. This
iterative refinement augments the model’s adaptability to various airdrop projects, thereby bol-
stering its portability. The integration of community detection with boosting not only amplifies
detection accuracy but also ensures operational efficiency and optimization simplicity.

In scenarios where community detection yields optimal classification outcomes—where
addresses within the same community are controlled by a single entity and demonstrate
analogous trading strategies—a boosting algorithm can proficiently assign the most suitable
classifier to each community. By aggregating the final weights, we can merge all features
to construct an optimal model tailored to each specific community’s characteristics. The
low complexity of each module within our model enables the efficient training of optimal
detection models every communities within a brief timeframe, utilizing minimal computational
resources. Ultimately, these models are consolidated to conduct comprehensive detection
across the entire dataset, thereby enhancing both accuracy and efficiency.

In our research, Decision trees [53] were selected as the base classifiers, with the Adaptive
Boosting (AdaBoost) algorithm [54] serving as the boosting model. Decision Trees are partic-
ularly advantageous due to their simplicity and strong interpretability, which clearly delineate
decision paths. The AdaBoost algorithm improves the performance of weak classifiers by
iteratively adjusting sample weights, culminating in a more accurate and robust final model.
Training individual models for each community allows us to capture unique characteristics and
optimize classifier performance based on each community’s specific attributes. We build these
community-specific models in order to integrate them into the full dataset with the capability
of being effective on large-scale data but still maintaining the level of community precision.
This ensures that our system identifies trading patterns and realizes small anomalies in keeping
the growth of the Web3 community safe.

5. Experiments

5.1. Experimental setup

Task Description: Our experiment utilizes the Blur dataset, introduced in Section 3, which
comprises 203,101 addresses, including 4,808 airdrop hunter addresses. The airdrop hunter
detection model outputs a binary classification, with airdrop hunters labeled as the positive
class and regular users as the negative class. For the purpose of the experiment, the dataset is
split into a training set and a validation set at a 7:3 ratio. The training tasks are divided into
three main parts: constructing the detection module, performing community detection, and
training the final ensemble model. In the validation set, we evaluate the model using precision,
recall, and F1 score for positive samples. Precision measures the proportion of true positive
predictions, recall measures the proportion of actual positives correctly identified, and the
F1 score is the harmonic mean of these two metrics. Consequently, we primarily use the F1
score to compare the models’ overall performance. Given the task’s specific nature, where
the priority is to avoid penalizing regular users, we focus on maximizing precision over recall
(minimizing false positives).

Baselines: In this experiment, our model was first compared with the ARTEMIS model
proposed by Zhou et al.[8], an optimized graph neural network system specifically designed
to identify airdrop hunters in NFT transactions. The hyperparameters for ARTEMIS were set
according to the optimal parameters described in their work. Additionally, we compared our
model with three baseline approaches: (1)Structured Data Methods: This includes methods
such as SVM [55] and LightGBM [56], which rely solely on node features for classification
and cannot utilize edge information; (2)Graph Random Walk-Based Methods: This category
includes methods like DeepWalk [57] and Node2Vec [58], which leverage both graph structure
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and node features; (3)GNN-Based Methods: This includes models such as GCN [59], Graph-
SAGE [60], GAT [61], and GIN [62]. We meticulously optimized the hyperparameters for
each baseline model, including learning rate, batch size, and other key parameters, employing
grid search to attain the best performance on the dataset.

Implementation: In the model feature integration, the implementation of the first module
continues to follow the previous evaluation parameter selection method. For the three typical
hunter trading filters that require threshold selection, the optimal performance thresholds
were determined using ROC curve comparison. Based on the test set, the thresholds for the
Back-and-Forth Trading filter, short cycles trading filter, and NFT Cycle Trading filter were
selected as 4125, and 3, respectively. In the second module, the contamination rate of the
Isolation Forest algorithm was set to 0.01. During the spectral analysis phase, we established
a fixed threshold of 20 to identify significant periodic patterns. The Random Forest algorithm
used in the Characteristic Trading Features was configured with default parameters. For the
community detection part, the Louvain algorithm was employed with a resolution parameter
set to 1.0. The optimal modularity community division was selected from the results of ten
partitions. For the final ensemble model, we conducted multiple experiments on the parameters
of the DecisionTreeClassifier and AdaBoostClassifier. The results showed that the fluctuations
of the three indicators were within the normal range of different training iterations (<0.1).
Therefore, we used the default parameter settings for the final evaluation. All models are
trained and evaluated in five rounds and the results are averaged.

5.2. Performance evaluation

Table 1. Comparison for Airdrop Hunters Detection.

Method Precision Recall F1

SVM [55] 0.744 0.544 0.629
LightGBM [56] 0.793 0.597 0.680
DeepWalk [57] 0.567 0.501 0.496
Node2Vec [58] 0.620 0.502 0.500
GCN [59] 0.648 0.896 0.752
GraphSAGE [60] 0.562 0.934 0.701
GAT [61] 0.464 0.873 0.579
GIN [62] 0.680 0.903 0.776
ARTEMIS[8] 0.820 0.833 0.826

ARTEMIX 0.928 0.869 0.898

The performance evaluation for airdrop hunter detection methods is summarized in Table
1. The table compares various models using precision, recall, and F1-score metrics. Among
the evaluated methods, ARTEMIX outperforms all others, achieving the highest precision
(0.928), recall (0.869), and F1-score (0.898). This indicates that ARTEMIX has a balanced
performance in terms of accurately identifying airdrop hunters while maintaining a low rate
of false positives and false negatives. A high precision value, as achieved by ARTEMIX,
indicates that when the model identifies an airdrop hunter, it is very likely correct. This is
crucial in scenarios where the cost of mislabeling legitimate users as hunters is high, as it can
lead to user dissatisfaction and damage to the platform’s reputation. In ARTEMIX, the recall
is also strong (0.869), indicating that the model does not overly sacrifice its ability to detect
airdrop hunters while maintaining high precision. The F1-score, which is the harmonic mean
of precision and recall, further confirms ARTEMIX’s balanced performance, showing that it
effectively manages the trade-off between these two metrics.

The ARTEMIS model shows strong performance with an F1-score of 0.826, the second
highest among all methods, while traditional machine learning models like SVM and Light-
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GBM lag behind with F1-scores of 0.629 and 0.680, respectively. Graph-based neural networks
such as GCN, GraphSAGE, and GIN improve recall rates—especially GraphSAGE with a
recall of 0.934—but at the cost of precision, leading to lower overall F1-scores compared
to ARTEMIX and ARTEMIS. Node embedding techniques like DeepWalk and Node2Vec
perform even worse, with F1-scores of 0.496 and 0.500, respectively, indicating that while
they capture structural graph features, they fall short for airdrop hunter detection. Overall,
ARTEMIX’s superior performance highlights its effectiveness in accurately and reliably detect-
ing airdrop hunters, making it a valuable tool for combating fraud in blockchain ecosystems.

5.3. Ablation study

To comprehensively evaluate the contribution of each component in our proposed ARTEMIX
model, we conducted an ablation study by systematically removing key components and
observing the impact on performance metrics such as precision, recall, and F1 score. The
results, summarized in Table 2, show that the full ARTEMIX model achieves the highest
performance across all metrics, demonstrating the synergistic effect of all components. Specif-
ically, removing time-based features results in a drop in Recall and F1 Score, indicating
that temporal information is crucial for accurately identifying airdrop hunters, as it captures
essential behaviors indicative of hunter activities. Excluding feature engineering components
significantly reduces Recall and F1 Score, highlighting the importance of handcrafted features
in capturing nuanced behaviors of airdrop hunters that raw data alone might miss. Omitting the
pattern detection modules impacts both Precision and Recall, confirming that pattern detection
is vital for identifying suspicious activities by capturing complex behaviors characteristic of
airdrop hunters.

Table 2. Ablation Study for Different Modules.

Method Precision Recall F1

ARTEMIX (full model) 0.928 0.869 0.898

Ablation study of different modules

w/o Trading Patterns 0.917 0.849 0.882
w/o Trading Features 0.889 0.775 0.828

w/o Time Patterns 0.913 0.862 0.887

5.4. Model Efficiency

The ARTEMIX model is specifically designed to efficiently detect airdrop hunters in NFT
transactions by integrating community detection with Boosting classifiers. By leveraging
this unique combination, ARTEMIX first segments the graph data into multiple smaller
communities, where each community’s nodes share similar structural characteristics. This
community detection approach allows ARTEMIX to break down large-scale graph data into
more manageable subsets, significantly reducing the overall computational complexity.

Next, ARTEMIX trains boosting classifiers separately within each community, rather than
training a single complex model across the entire graph. This method not only reduces the
computational resources required for training but also avoids potential bottlenecks that can
arise when processing global graph data. Specifically, the model utilizes AdaBoost, which
iteratively trains a series of weak classifiers, such as decision trees, and adjusts the weights of
the samples in each iteration to gradually enhance accuracy. This approach is computationally
efficient as it avoids the need to process complex graph structures or perform extensive matrix
operations. Additionally, AdaBoost’s inherent parallelization capabilities enable rapid training
on multi-core processors.
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Compared to other models, ARTEMIX shows a marked improvement in computational
efficiency. Traditional structured data methods like SVM and LightGBM are known for
their speed but struggle to capture the intricate relationships within graph structures. Mean-
while, graph-based models such as DeepWalk and Node2Vec, though effective at preserving
graph topology through random walks and embeddings, can become resource-intensive when
dealing with very large graphs. Graph Neural Networks (GNNs) like GCN, GraphSAGE,
GAT, and GIN offer powerful tools for capturing both node and edge information but are
computationally expensive, especially models like GAT that incorporate attention mechanisms.
ARTEMIS, another model that employs advanced GNN techniques, also faces challenges with
its computational demands, despite its effectiveness. ARTEMIX breaks down the problem
into community-level tasks, leveraging AdaBoost’s lightweight computational advantages
to reduce costs and time consumption significantly. This makes ARTEMIX not only more
efficient at handling large-scale graph data but also better suited for resource-constrained
environments or applications that demand quick responses.

Table 3. Comparison of AdaBoost and GNN.

Aspect AdaBoost GNN

Complexity O(m · logn+T · k ·n′) O(L ·m ·d)

Main Bottleneck Low-dimensional feature training +
community partitioning

Global message passing +
embedding propagation

Complexity
Characteristics

Reduced to local scale through
community partitioning

Linear growth with the number of
nodes/edges and feature dimensions

As outlined in the table 3, AdaBoost’s complexity, O(m · logn+T · k ·n′), is significantly
smaller than GNN’s O(L ·m ·d) due to several key differences. Firstly, AdaBoost leverages
community detection to partition the graph into smaller subgraphs, dramatically reducing
the scale of operations to local communities with n′ ≪ n. In contrast, GNNs operate on the
entire graph, requiring global message passing that scales linearly with the total number of
edges m and feature dimensions d. Secondly, AdaBoost operates on low-dimensional, hand-
crafted features (k), making each iteration lightweight, while GNNs process high-dimensional
embeddings (d) across multiple layers (L), significantly increasing computational demands.
Moreover, AdaBoost’s iterative approach with a fixed number of weak classifiers (T ) further
limits its complexity, whereas GNNs must repeatedly perform matrix multiplications and
aggregations for each layer. These distinctions underscore why AdaBoost, when combined
with community-based partitioning, is computationally more efficient than GNNs, particularly
for large-scale graph tasks.

6. Discussion

6.1. Generalizability and robustness

ARTEMIX is a highly adaptable and robust framework designed to analyze not only Blur
NFT marketplace data but also various Web3 protocols and platforms. Its architecture in-
tegrates advanced transaction feature extraction, temporal pattern analysis, and community
detection, enabling its application in diverse scenarios such as detecting complex incentive
mechanisms in DeFi projects or analyzing virtual asset transactions within the GameFi sec-
tor. The framework’s adaptability is further underscored by its ability to dynamically adjust
feature extraction modules to suit different ecosystems, such as integrating unique behavioral
patterns for ERC-20 and ERC-721 tokens or addressing varying airdrop strategies employed
by platforms.

ARTEMIX employs a Boosting-based ensemble learning methodology, combining trans-
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action patterns, temporal features, and community characteristics into a cohesive model that
excels in detecting intricate behavioral patterns. This adaptability is enhanced through incre-
mental learning and real-time data updates, enabling ARTEMIX to respond to evolving tactics
used by airdrop hunters, such as mimicking genuine user behavior or leveraging cross-chain
transactions. To future-proof its capabilities, ARTEMIX is set to incorporate adversarial
testing and data augmentation techniques, which will not only bolster its ability to generalize
across dynamic blockchain ecosystems but also enhance its defense mechanisms against in-
creasingly sophisticated threats. This comprehensive and flexible design positions ARTEMIX
as a reliable detection tool across a wide range of decentralized platforms and use cases.

6.2. Mitigating false positives in airdrop strategies

While the Blur airdrop strategy has been notably effective in driving community participation,
it carries the inherent risk of misclassifying genuine participants as airdrop hunters. Addressing
this challenge necessitates a deep investigation into the root causes of false positives and the
continuous refinement of differentiation mechanisms.

One promising approach involves a detailed analysis of behavioral data associated with
high-frequency traders. This could include manual verification of transaction tags provided
by clients, which may reveal patterns characteristic of airdrop hunters, such as repetitive
or automated transactions between related accounts. Incorporating case studies of common
false-positive scenarios into research efforts, alongside quantifying the false-positive rate,
would provide a foundation for improving classification methodologies.

To further enhance discriminatory capabilities, more sophisticated behavioral metrics
should be integrated. Examples include tracking social network engagement scores, active par-
ticipation in governance or voting, and sustained investment behaviors, such as longer holding
periods for NFTs or tokens. A credibility scoring model could combine trading behaviors with
community engagement metrics to yield a composite score reflecting a user’s likelihood of
being a genuine participant. Additionally, identifying post-airdrop behaviors—such as the
immediate liquidation of assets—could offer valuable features for model training, enabling
more precise classification.

Beyond refining analytical models, revisiting the structural design of airdrop rules is
essential to address their influence on false-positive rates. Adjustments to incentive mech-
anisms could promote long-term community participation while discouraging exploitative
behaviors by airdrop hunters. By aligning these rules more closely with overarching ecosystem
objectives, greater fairness and equity can be achieved, fostering a healthier, more sustainable
community dynamic.

6.3. Understanding the success of Web3 community

The impact of airdrop hunters and speculators on Web3 projects is indeed significant. They
squeeze the space for healthy users to develop and thrive, causing them to lose confidence in
the projects. However, despite the fact that airdrops serve as a crucial mechanism to incentivize
users, we believe that in the context of the entire project design, the overall performance of
tokenomics is only slightly affected by airdrop strategies [63]. For instance, TerraUSD (UST)
stablecoin and its native cryptocurrency Luna (LUNA) were once among the most popular and
successful projects in the cryptocurrency space. However, in May 2022, the mechanism that
pegged UST to the US dollar broke down, causing both UST and LUNA prices to plummet to
near zero, leading to significant turmoil in the crypto market [64]. There are many reasons
behind the collapse of UST, but poor tokenomics is a major factor. Tokenomics encompasses
the entire ecosystem of a cryptocurrency, from its distribution and supply to its demand and
utility. The key to design lies in how tokenomics should nurture a thriving ecosystem.

From a broader community perspective, most initial members of current Web3 projects
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are attracted by the financial attributes of airdrops rather than the governance attributes. For
example, 86.39% of initial members of Paraswap sold their PSP within six months and left
the community [4]. Financial incentives are excellent for attracting users in the short term,
but they do not help retain users and promote community engagement in the long run. A
thriving Web3 community must first have a clear and compelling vision that resonates with
its members and reflects core values such as decentralization, user control, and openness.
Effectively communicating this vision helps community leaders attract like-minded individuals
who are passionate about the project’s goals. Identifying airdrop hunters is important, but it is
not the sole determinant of a Web3 community’s success. Instead, innovative strategies that
promote engagement, trust, and growth are key. Aligning community goals with principles
of decentralization, transparency, and user empowerment is crucial. Essential strategies
include defining a clear vision and mission, implementing inclusive decision-making through
decentralized governance, and incentivizing active participation through tokens or rewards.
Understanding user behavior and values is vital for incentivizing and building a community. By
summarizing their behavioral traits and the values and ideologies driving them [65], we might
more easily find answers. We believe that by prioritizing these elements, Web3 communities
can establish a strong, loyal, and highly engaged user base, driving sustainable growth and
innovation.

7. Limitations and future work

7.1. Limitations

Despite the optimistic outcomes, our research has limits. The dataset utilized to evaluate
ARTEMIX is predominantly derived from Blur, potentially lacking representation of the full
spectrum of airdrop hunting behaviors across various platforms. The model’s dependency on
specific features identified within the Blur dataset raises concerns regarding its applicability
to platforms with differing trading dynamics. Furthermore, our analysis concentrated solely
on particular user behavior data within the dataset, employing relatively rudimentary meth-
ods. The absence of tailored algorithms for the comprehensive examination of user trading
characteristics and behavior identification constrains its performance when faced with other
complex and unanticipated trading behaviors. Although we have optimized the computational
requirements for training and deploying the model, the necessity for real-time updates presents
a challenge for smaller projects with limited resources. Additionally, ARTEMIX’s reliance on
historical trading data renders it a reactive method rather than a proactive detection mechanism,
highlighting the need for real-time detection capabilities.

7.2. Future work

Future research should prioritize diversifying datasets to include multiple NFT marketplaces
and a broader range of airdrop events, thereby improving the model’s generalizability and
adaptability across different contexts. The development of real-time data analysis capabilities
is essential to shift detection mechanisms from reactive to proactive, enabling immediate
interventions against airdrop hunters and reducing their impact. Advanced machine learning
techniques, particularly deep learning models capable of adapting dynamically to emerging
patterns, can further enhance the robustness and precision of detection systems. Collaborations
with blockchain projects for real-world implementation and testing are crucial for validating
these models in practical settings, while advancements in algorithmic efficiency or the integra-
tion of distributed computing resources can ensure these sophisticated detection tools remain
accessible to smaller projects with limited resources.

Additionally, a deeper exploration of blockchain user behavior patterns—encompassing
factors such as transaction frequency, timing, and interaction networks—can reveal nuanced
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characteristics associated with airdrop hunting, enabling the identification of more complex
and subtle behaviors. These refinements will collectively enhance ARTEMIX’s applicability
and effectiveness across diverse blockchain platforms and environments, fostering a healthier
and more resilient blockchain ecosystem.

8. Conclusion

In this paper, we present ARTEMIX, a new model for identifying airdrop hunters in NFT
transactions. It outperforms previous models by using a mix of custom-engineered features
and a boosted ensemble learning strategy. The system’s capacity to precisely detect airdrop
hunters while simultaneously ensuring effectiveness and scalability renders it a powerful
instrument for augmenting the integrity of airdrop events and the wider Web3 ecosystem. The
results of our study emphasize the significance of prioritizing crucial characteristics that have
a substantial influence on the accuracy of detection, as well as the advantages of incorporating
various detection modules into a cohesive framework. To further advance the field of airdrop
hunter identification and ensure the sustainable evolution of decentralized communities, it is
crucial to address the observed constraints and explore future research avenues.
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