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Highlights:

• Keyword-based encrypted data retrieval – data demanders efficiently search encrypted
datasets using keywords without decryption, enhancing flexibility and reducing computa-
tional overhead.

• Tamper-proof transaction integrity – leveraging blockchain’s immutability, the searchable-
encryption-based data transaction protocol (SDTP) records all transactions on-chain
to prevent denial-of-transaction and data tampering, fostering trust in decentralized
ecosystems.

• Formal security guarantees – the protocol’s security is rigorously validated via the
Tamarin verification tool, ensuring resistance against impersonation, data leakage, and
man-in-the-middle attacks.

Abstract: With the development of artificial intelligence and big data, data has become an
important part of production factors, and the sharing and transaction of data have a very high
importance. Through the storage service of the cloud data transaction platform, users can send
data to the cloud platform remotely, and flexibly access and transmit data through the Internet
anytime and anywhere. However, this approach faces growing data security concerns. When
users transmit data to the cloud, they will not have full control over their data. Data stored
in the cloud may be altered, deleted, leaked, or misappropriated, especially in public cloud
environments. Many current data transaction platforms simply adopt a decentralized model
to avoid this problem, but still perform poorly in the face of massive transaction scenarios.
In addition, when the data demander receives the required data, there is the problem of
denying the transaction, which challenges the availability of the data transaction platform and
affects the trust of the data transaction participants in the transaction platform. This paper
proposes a secure searchable-encryption-based data transaction protocol (SDTP) utilizing
blockchain technology and searchable encryption. In the proposed protocol, the transaction
platform does not gain access to the provider’s raw data, and the data provider has all decision-
making rights over the data. The data demander can search for the target encrypted data
using only keywords before receiving the original data authorized by the data provider. In
addition, blockchain technology, with its decentralized and tamper-proof characteristics, has
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made important contributions to the transformation of traditional centralized data transaction
platforms, and the entire data transaction process is recorded on the blockchain, effectively
preventing problems such as demander denial and data tampering. In this paper, a formal
verification tool is used to ensure that the proposed protocol meets the ideal security standard
expected by the secure data transaction protocol, and the security of the protocol against
attacks is proved from the perspective of non-formal theoretical analysis.

Keywords: searchable encryption; blockchain; data transaction; data sharing; formal analysis

1. Introduction

Traditional cloud service providers (CSPS) typically use encrypted channels to upload the data
owner’s data to cloud storage servers, and then utilize access control technologies and intrusion
prevention systems to secure the storage of big data in the cloud. While data is encrypted both
during the upload process and during its storage in the cloud, encryption keys are typically
created or negotiated by cloud service providers, making it relatively easy for them to decrypt
the data. In June 2020, Japanese centralized exchange coincheck was hacked. More than 2000
customers’ personally identifiable information fell into the hands of the attackers. In 2022,
the database of PayBito, a data exchange in the United States, was attacked by ransomware,
and the personal information of more than 120,000 users was illegally stolen. Many privacy
breaches show that market forces cannot protect cloud service providers from risks such as
potential data loss and privacy breaches. Although service providers will provide services
according to user needs and regulations, they still try to understand or collect users’ privacy.
Therefore, it is objectively believed that cloud storage service providers (platforms) are honest
and curious.

Data Provider Data Demander

Cloud/
Data Transaction Platform

ciphertext trapdoor
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keyword dictionary

keyword keyword

Miner Miner Miner
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Figure 1. Typical searchable encryption (SE) schemes.
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A typical data transaction platform consists of three parties: data providers, transaction
platforms and data demanders [1]. Specifically, the provider transmits the data set to a trusted
data transaction platform, and the data demander selects the data product of interest and
places an order online. After receiving the transaction application and payment from the
demand side, the data transaction platform transmits the target data to the demand side under
the authorization of the provider, and pays the corresponding amount to the data provider
(after deducting the platform commission). When data is transmitted and stored in clear text
on cloud platforms, sensitive information is vulnerable to being compromised by attackers,
unauthorized users, and semi-trusted cloud providers . In contrast, when data is uploaded in
encrypted form, it is difficult for authorized users to find the specific encrypted information
they need among the numerous ciphertexts stored on the platform [2]. Encrypted data faces the
problem of difficult retrieval, which limits the availability and flexibility of data to some extent.
For users, to retrieve encrypted data, the basic method is to download all the relevant ciphertext
stored on the cloud platform, then decrypt the entire encrypted data set, and continue to operate
until the target data is found. However, this approach comes with a lot of communication and
computational overhead, which is extremely impractical.

To solve this problem, Boneh et al. [3] introduce public key encryption with keyword
search (PEKS), a practical mechanism designed to facilitate searching encrypted data on cloud
storage platforms, which can be applied to the data demander to retrieve the data from the
provider in ciphertext. In a typical searchable encryption (SE) scheme, as shown in Figure 1,
the data provider selects a keyword from a public dictionary, creates a search ciphertext, and
empresses the selected keyword into that ciphertext [2]. At the same time, the data demander
selects a keyword from the dictionary, generates a search trap linking to that keyword, and
sends it to the transaction platform. The platform then uses the search trap to find the relevant
ciphertext. The platform proposed in this paper also uploads the entire transaction process to
the blockchain for storage.

This paper examines recent advancements in key cryptographic technologies related to
data transactions and proposes a secure data transaction protocol scheme utilizing searchable
encryption for various transaction scenarios. This is a unified system that integrates searchable
encryption, blockchain technology, homomorphic encryption technology and hash computing
technology. The main challenges of the system include:

1) Data providers are reluctant to disclose privacy concerns about real data to transaction
platforms. Data providers often hold large amounts of sensitive information, which may
involve important areas such as personal privacy, trade secrets, or national security. As a result,
data providers are deeply concerned about providing data to transaction platforms, fearing
that if the real data is exposed, it could have serious consequences. Transaction platforms
play a key role in data transactions, but some dishonest transaction platforms may engage
in bad behavior and may use their management and storage authority in data transactions to
secretly cache data sets provided by data providers without their knowledge and authorization.
To address the first challenge, common solutions employ techniques such as homomorphic
encryption and searchable encryption [2][4], or rely entirely on blockchain for data transactions
[5]. Considering the integrity and confidentiality that the data transaction system needs to
meet and the limitations of relying solely on the blockchain for transactions in the big data
transaction scenario, we still use the centralized transaction platform. In traditional data
transaction systems, a centralized platform usually relies on a trusted third party to oversee
the keys of providers, consumers, and the platform itself [4][6][7]. Our solution enables data
transaction participants to manage public and private key pairs in the form of local storage,
and can customize key management strategies according to specific security requirements. If
participants stop the dynamic manipulation of data, the model allows them to remove keys
from local storage. The original data is always transmitted and stored in a confidential state,
the transaction platform has no access to the original data, and the data demander can only
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retrieve the data through keyword search. For example, consider a data provider who wants to
share medical records. The provider encrypts the records using searchable encryption, and
the data demander can search for specific keywords (e.g., "diabetes") without decrypting the
entire dataset.

2) The rejection problem of the data demander after obtaining the data. Dishonest
claimants may refuse to acknowledge and refuse to deal after obtaining the raw data. The
rejection behavior of data demanders has a serious negative impact on the data transaction
ecosystem. From the perspective of the whole market, this behavior destroys the trust mech-
anism of data transactions, increases the cost and risk of data transactions, and hinders the
healthy development of data markets. To address the second challenge and ensure the non-
repudiation of the data transaction system, we propose the use of digital signature technology
to verify that the data has been obtained by the demand side. In addition, blockchain tech-
nology will be used to record the entire data transaction process. If the demand side is still
dishonest after receiving the data, the transaction platform can take measures such as stopping
transactions and freezing funds, thus ensuring and improving the availability of the platform.
For instance, when a data demander requests and receives data, the transaction is recorded on
the blockchain, providing a tamper-proof record of the transaction.

3) Privacy of data transaction protocol at logical layer. The privacy analysis of data
transaction systems usually rely on the application of laminar flow data capture, mainly
checking whether the data privacy is guaranteed in the actual data transaction process. However,
in order to conduct a more comprehensive privacy analysis, it is necessary to consider whether
there are privacy disclosure vulnerabilities at the logical level of protocol design, so as to avoid
the risk of privacy disclosure at the details that cannot be discovered by capturing packets. In
order to solve the third challenge, we conduct formal security analysis of the proposed protocol
using the Tamarin tool and perform logical layer simulation verification for key privacy, data
security, protocol availability, and so on.

The main contributions of this work are summarized as follows.
1. We propose a blockchain-based data transaction protocol based on searchable en-

cryption. The protocol relies on Searchable Public-Key Ciphertexts with Hidden Struc-
tures(SPCHS) and blockchain technology to ensure that the platform cannot steal data, the
supplier cannot tamper with and forge data, and the demander cannot deny the transaction
facts.

2. We perform an extensive informal analysis of our designed protocol and show that our
proposed SDTP protocol can resist known attack vectors.

3. We formally analyze our proposed SDTP protocol in the automatic verification tool
Tamarin, and prove the security of SDTP in terms of protocol executability, data confidentiality,
key confidentiality and privacy confidentiality.

The rest structure of this paper is composed of: Section 2 reviews related work, while
Section 3 discusses the key concepts that underpin the design of the proposed protocol. In
Section 4, a thorough overview of the protocol is presented, breaking down each phase in
detail. Section 5 offers a security analysis of the protocol. Finally, Section 6 summarizes the
conclusions drawn from this study.

2. Related work

Public-key-based searchable encryption: Searchable encryption (SE) schemes [8] enable
secure searching of outsourced data through encryption. Typically, these schemes compromise
some security guarantees and permit limited information leakage to enhance search efficiency.
Boneh et al. introduced the first public key encryption scheme that supports keyword search
(PEKS), which has since been refined in terms of sublinear search capabilities [9], efficiency
[10], and security [11]. In contrast, the Searchable Public key Ciphertext with Hidden Structure
(SPCHS) [12] enables rapid keyword searches while maintaining the semantic integrity
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of encrypted keywords. By concealing relationships among the data, SPCHS generates
ciphertexts that are searchable, thereby minimizing the statistical information revealed to
the search algorithm about the group members. The search complexity in SPCHS relies on
the actual range of ciphertexts that contain the queried keywords, rather than the variety of
all ciphertexts. Consequently, we ultimately choose the SPCHS system for our searchable
encryption scheme.

Blockchain-supported data transaction: Lu et al. [13] and Dixit et al. [14] created a
blockchain-based cloud storage protocol tailored for industrial Internet of Things (IoT) sensors,
employing group signature schemes and integrating smart contracts with proxy re-encryption
to enable secure data sharing in industrial settings. Meanwhile, Ma et al. [15] proposed a
dynamic data-sharing scheme for smart factories that utilizes blockchain for authentication,
storing ciphertext indexes and public keys to prevent tampering; their tracking algorithm
effectively identifies and blacklists malicious users. Zhao et al. [16] presented a blockchain-
based fair data transaction protocol for the big data market, utilizing ring signatures to enhance
the privacy of data providers while promoting fairness in decentralized applications (DApps)
and employing similarity learning to ensure the availability of transaction data. Wang et al.
[17] introduced a data transaction scheme based on the Bitcoin framework, where data is first
encrypted with a symmetric key and then further secured with RSA encryption. Only the
user who completes the payment can access the private key required for decryption. Lastly,
Dai et al. [18] developed a blockchain-based data transaction ecosystem (SDTE) that allows
data buyers to access only the analysis results generated by Intel SGX. In this system, data
from various sellers is processed in separate SGX environments, and the most-voted result is
considered final, rewarding the seller who provided that result.

Recent advances in blockchain-based searchable encryption: recent works have
explored the integration of blockchain and searchable encryption for various applications. For
instance, Jiang et al. [19] proposed a bloom filter-based multi-keyword search protocol for
blockchain-based intelligent transportation systems, significantly improving search efficiency
and privacy preservation. However, their work primarily focuses on single-keyword searches
and does not address the issue of data transaction integrity. Similarly, Hu et al. [20] introduced
a decentralized privacy-preserving search scheme using Ethereum smart contracts, ensuring
the correctness and fairness of search results. While their approach provides a robust solution
for decentralized search, it does not consider the complexities of multi-party data transactions,
particularly the issue of demander denial. Chen et al. [21] proposed a blockchain-based
searchable encryption scheme for electronic health records sharing, ensuring data privacy and
integrity in healthcare applications. However, their work is limited to the healthcare domain
and does not address the broader challenges of data trading platforms. Additionally, Chen et
al. [5] presented a secure and efficient blockchain-based data trading approach for the Internet
of Vehicles, focusing on the security and efficiency of data transactions in vehicular networks.
While their work provides valuable insights into secure data trading, it does not incorporate
searchable encryption techniques.

While several prior works have explored the integration of blockchain and searchable
encryption, our proposed protocol, SDTP, introduces several novel techniques to address the
unique challenges of data transaction platforms:

1. Blockchain-based transaction integrity: our protocol leverages blockchain’s decen-
tralized and tamper-proof characteristics to record the entire data transaction process. This
ensures that the transaction platform cannot tamper with the data, and the data demander
cannot deny receiving the data after the transaction is completed.

2. Formal security verification: we introduce a formal verification tool to ensure that the
proposed protocol meets the ideal security standards expected for secure data transactions.
This is a significant advancement over existing approaches, which often rely on informal
security analysis.
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3. Dynamic data updates: our protocol supports dynamic updates to the encrypted data,
allowing data providers to add or remove data without compromising the security or efficiency
of the system. This is particularly important in data transaction scenarios where data is
frequently updated.

3. Preliminaries

3.1. Searchable encryption

With the swift progress of cloud services, a growing number of users have decided to store their
data in cloud platforms [22]. Although this brings convenience, it also makes data leakage
incidents occur frequently. In order to protect data privacy, encryption technology has attracted
much attention. However, as data volume and distribution continue to grow, traditional
encryption methods struggle to address the demands of large-scale data management. This
challenge has led to the emergence of searchable encryption technology [23].

Searchable encryption is an innovative concept that allows users to retrieve data from
an untrusted third party without decryption. Let the data owner be DO, the data user be DU ,
and the cloud platform server be CS. In the searchable encryption scheme, DO uploads the
encrypted data E(D) to CS. As a cloud service consumer, DU can retrieve the uploaded data
after being authorized by DO. DU submits a search token T (which can be regarded as a
keyword query) to CS, and CS uses T to retrieve the encrypted data stored internally and returns
the matching results.

Among them, asymmetric searchable encryption mainly relies on asymmetric encryption
algorithm, namely PEKS. The fundamental operations consist of initialization, public key
encryption, trapdoor generation using the private key, and search steps. In asymmetric search-
able encryption, the public key PK is employed to encrypt the plaintext data M and produce
the corresponding ciphertext [24]. Meanwhile, the private key SK is utilized for decrypting the
ciphertext and generating keyword trapdoors. In contrast to symmetric searchable encryption,
the asymmetric searchable encryption algorithm can create a searchable label L based on the
public key and keyword K, allowing the encrypted data to be stored on a cloud platform server.
That is E(D,L) = Enc(PK,M,K)→CS, a user can generate a trap gate TK,SK = Trap(SK,K)
based on the keyword and the searchable private key to retrieve the encrypted data. PEKS not
only safeguards data privacy but also allows the demander to locate the provider’s information.
The provider generates searchable ciphertext related to critical data using the demander’s
public key and then uploads it to the platform. The demander, in turn, utilizes his key to create
a keyword trapdoor, which they upload to search for the corresponding ciphertext.

Searchable encryption technology has a wide range of application scenarios, which can
not only protect data privacy, but also achieve efficient data search and management. In cloud
computing, it enables users to securely store and manage sensitive data while ensuring privacy
protection. For data sharing, it enhances security and privacy measures, facilitating efficient
data retrieval and sharing. Regarding location privacy, it allows users to access necessary
services and information without compromising their personal location data.

3.2. Homomorphic encryption

Homomorphic encryption is a unique technique that allows for data processing without the
need to access the actual data itself. Suppose the plaintext numbers a and b are added to obtain
c = a+b, then encrypted into Enc(a) and Enc(b) by homomorphic encryption, and Enc(c′)
is obtained by operating on the ciphertext. c′ represents the result of performing homomorphic
operations on encrypted data. When decrypted, c′ is equal to c, that is, Dec(Enc(a) +
Enc(b)) = a+b, which is the basic operation property of homomorphic encryption. It is like
putting an "encryption cloak" on the data with special functions, so that the data can still be
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used for meaningful calculation in the encrypted state.
General encryption technology needs to decrypt the data before calculation, which has

disadvantages. If the decryption process goes wrong, the data will be exposed, and the
decryption and re-encryption process may lead to the risk of information leakage. In contrast,
homomorphic encryption provides a higher level of protection by performing computations on
ciphertext without exposing the original data. Homomorphic Encryption is divided into Fully
Homomorphic Encryption (FHE), Partially Homomorphic Encryption (PHE) and Somewhat
Homomorphic Encryption (SHE). While FHE can perform any computation, PHE and SHE
can only perform certain types of computations. Homomorphic encryption technology is
widely used in secure cloud computing, privacy protection, data exchange and cryptography.

In the data transaction platform, data privacy protection and effective use are very im-
portant, and homomorphic encryption is just to meet this demand. The provider can upload
the encrypted data to the platform, and the platform can perform various calculations and
processing, such as data analysis and data mining, without decryption [16]. In a financial data
transaction platform, banks can securely transmit encrypted customer transaction data to data
analysis agencies. These agencies employ homomorphic encryption to perform statistical anal-
yses on the ciphertext, such as calculating total transaction amounts and transaction frequency,
without ever accessing the plaintext data. This method not only protects customer privacy but
also promotes safe transactions and facilitates valuable insights from the data.

3.3. Blockchain

Blockchain is a distributed ledger technology that consists of a series of blocks of data,
with each block containing transaction information from a particular time frame. Its key
characteristics include decentralization, immutability, and transparency. Decentralization
implies that no single entity governs the entire network; instead, it is sustained by numerous
nodes. For instance, in the Bitcoin network, miner nodes globally engage in transaction
validation and the creation of new blocks.

The immutability is due to the cryptographic techniques used in the blockchain. Let the
current block be Bn, which contains H(Bn−1) of the previous block Bn−1. H(Bn−1) represents
the hash value of the previous block. Once data is stored on the blockchain, altering it becomes
a challenging task. Any modification to one block will cause the hash of subsequent blocks to
change and thus be easily detected. Transparency means that the transaction information on
the blockchain is visible to all nodes. Although the specific content of the transaction may be
encrypted, the existence and history of the transaction are publicly available.

The work of blockchain is mainly divided into the steps of transaction generation, broad-
cast, verification and packaging into blocks. When a user initiates a transaction, such as
sending a certain amount of bitcoins to another user in the Bitcoin network, this transaction
information is broadcast to nodes throughout the network. Once the transaction information
is received, the node verifies its legitimacy, checking factors like the sender’s balance. Valid
transactions are then placed into a pool, awaiting packaging. Miner nodes find a random
number that satisfies certain conditions through competitive calculation, and this process is
called mining. The miner who finds the random number collects transactions from the pool
to form a new block, which is subsequently added to the blockchain. This new block is
shared across the entire network, where other nodes check its validity. If the block is verified
successfully, they incorporate it into their versions of the blockchain.

Blockchain technology is crucial in data transaction platforms. Its decentralized nature
diminishes reliance on a single central authority, enhancing both the security and reliability
of data transactions. Data can be stored on the blockchain, and multiple nodes work together
to maintain the integrity of the data, avoiding the risk of data being tampered or deleted by
a single authority. Additionally, the immutable nature of blockchain guarantees both the
authenticity and traceability of data [25]. Every transaction record is securely stored on the
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blockchain, making it resistant to tampering. This feature allows for the clear tracking of data
sources and transaction processes, thereby increasing the overall credibility of the data.

4. Proposed protocol

Based on the cryptographic characteristics of public key searchable encryption, the data trans-
action protocol based on searchable encryption provides retrieval support for data demanders,
ensures a supply-centered transaction system in the process of data transaction, and ensures
that the data in the whole transaction is transmitted and stored in secret state. Each entity is
described as follows:

(1) Data provider
The data provider owns the raw data and is responsible for encrypting it. Public key

searchable encryption is used to prepare the data in a secret form for uploading to the transac-
tion platform. Data providers must guarantee the security of information throughout both the
encryption and transmission processes. They should choose reliable encryption algorithms
and key management methods to prevent data from being illegally stolen or tampered with.

(2) Data demander
As a data demander, it has the right to purchase data and can submit search requests to

the transaction platform according to its own needs. When the data demanders obtain the
encrypted data that fulfills their requirements, they can decrypt and utilize it with the data
provider’s permission. The demander must adhere to applicable regulations regarding data
usage and is prohibited from using the data for illegal or unauthorized purposes.

(3) Transaction platform
The transaction platform is responsible for receiving encrypted data uploaded by data

providers and storing encrypted data. It is essential for them to guarantee both the security
and availability of data. To prevent data loss or corruption, they should implement dependable
storage technologies and effective backup strategies. At the same time, the transaction platform
provides retrieval services for data demanders and carries out security supervision in the whole
process. The transaction platform uses blockchain to record and track the entire transaction
process.

Table 1. Notations.

Symbol Description
Pro Data provider
Dem Data demander
Ser Platform server
Key Raw data keywords
A Search trapdoor
B Search ciphertext
M Search plaintext

Data Raw data
Data_Hash Hash value of raw data

Data_Hash2 Hash value of fresh raw data
Data_Hash3 Hash value of raw data before sent to the platform
Data_Hash4 Hash value of the data obtained by the data demander

The detailed process of the data transaction protocol based on searchable encryption
(Figure 2) is as follows.
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Figure 2. Flow chart of the data transaction protocol. 9
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4.1. Data initialization

Step 1: The data provider and the data demander first complete user registration on the
platform, and obtain the account and password of the login transaction platform, that is, the
identity authentication certificate. Upon user login, the platform authenticates the individual’s
identity using a password.

Step 2: The public and private key pairs generated by the data provider, data de-
mander and transaction platform using SM2 algorithm are {public_pro, private_pro},
{public_dem, private_dem}, {public_ser, private_ser}, respectively. The data provider and
demander send their public keys to the transaction platform.

Step 3: The data provider runs searchable public key cryptography locally (e.g.,
the SPCHS system) to create a searchable encryption public and private key pair
{public_search, private_search}, uses public_search to encrypt Data keyword to generate
the original data keyword Key, and uses the hash algorithm – SM3 algorithm to generate the
original data hash value Data_Hash. The original Data is encrypted by using public_pro
of the provider. The encrypted public-private key pair which can be searched and encrypted
and the hash value Data_Hash of the data file are appended to generate the encrypted data
file. The private_search is encrypted by the public key public_pro of the data provider.
Since only the data provider possesses the private key, only he can decrypt the shipping data
encrypted with the public key, making it impossible for the platform and the data demander to
access the ciphertext.

Algorithm 1 Data Initialization

Require: Raw data (Data), keywords (Key), security parameters
Ensure: Encrypted data, searchable keys, and hash values

1: Generate public-private key pairs:
2: (public_pro, private_pro) for data provider ▷ Generate provider’s key pair
3: (public_dem, private_dem) for data demander ▷ Generate demander’s key pair
4: (public_ser, private_ser) for transaction platform ▷ Generate platform’s key pair
5: Data provider generates searchable encryption keys:
6: (public_search, private_search)← SPCHS_KeyGen() ▷ Generate searchable keys
7: Encrypt raw data keywords:
8: Key← Encrypt(public_search,keywords) ▷ Encrypt keywords using public key
9: Compute hash value of raw data:

10: Data_Hash← SM3(Data) ▷ Compute hash using SM3 algorithm
11: Encrypt raw data using data provider’s public key:
12: Enc_Data← Encrypt(public_pro,Data) ▷ Encrypt raw data
13: Encrypt private_search using data provider’s public key:
14: Enc_private_search← Encrypt(public_pro, private_search) ▷ Encrypt private search key
15: Store encrypted data, keys, and hash values locally. ▷ Local storage for secure access

4.2. Data upload

Step 1: The data provider sends a key pair {public_search, private_search}Encpublic_pro
, en-

crypted with the platform’s public key, to the platform. The platform then stores this key pair,
which is encrypted using the public_pro.

Step 2: The data provider will use public_search, Key and Data_Hash obtained by
the SM3 algorithm to upload to the platform through the SM4 algorithm. The SM4 key is
encrypted through the public key public_ser of the transaction platform. The platform can
decrypt the searchable encryption public key public_search, the secret data (keyword) Key
and the original data hash value Data_Hash by SM4 algorithm, but the platform can not
further get the plaintext. This process ensures that the data is not stolen by the malicious
platform. The platform side stores and backs up the secret data, and Data_Hash of is stored
on the chain certificate. When the data provider updates the information, he computes the hash
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value and keywords for the new data, encrypts it using the SM4 algorithm, and then uploads
the encrypted data to the platform. The platform stores the updated secret data along with its
hash value.

To verify the authenticity and reliability of the data submitted by providers, the platform
can conduct random spot checks during regular maintenance. This process entails choosing a
segment of the confidential data and then requesting the original data from the provider. If the
raw data is not standard, the platform can refuse to distribute this data set.

Algorithm 2 Data upload

Require: Encrypted data (Enc_Data), searchable keys (public_search, Enc_private_search), hash value
(Data_Hash)

Ensure: Encrypted data stored on the transaction platform
1: Data provider sends encrypted key pair to the platform:
2: Send({public_search,Enc_private_search}, public_ser) ▷ Send keys to platform
3: Platform stores the encrypted key pair. ▷ Store keys securely
4: Data provider encrypts Key and Data_Hash using SM4:
5: Enc_Key← SM4_Encrypt(SM4_key,Key) ▷ Encrypt keywords
6: Enc_Data_Hash← SM4_Encrypt(SM4_key,Data_Hash) ▷ Encrypt hash value
7: Data provider sends encrypted Key and Data_Hash to the platform:
8: Send({Enc_Key,Enc_Data_Hash}, public_ser) ▷ Send encrypted data to platform
9: Platform decrypts Key and Data_Hash using its private key:

10: Key← SM4_Decrypt(private_ser,Enc_Key) ▷ Decrypt keywords
11: Data_Hash← SM4_Decrypt(private_ser,Enc_Data_Hash) ▷ Decrypt hash value
12: Platform stores encrypted Key and Data_Hash, and uploads Data_Hash to the blockchain. ▷ Store and

record data
13: Platform verifies data authenticity by requesting raw data from the provider if necessary. ▷ Optional

verification

4.3. Data search

Step 1: The data demander sends the transaction application to the platform, and the plat-
form forwards the transaction application to the data provider, and at the same time sends
public_dem of the data demander to the provider.

Step 2: After the data provider agrees to the transaction, the platform establishes this
transaction, and records and protects the transaction process through the blockchain technology.
The data provider uses public_dem of the data demander to encrypt the searchable encryption
private key private_search, and transmits it to the data demander through the platform.

Step 3: The data demander utilizes private_dem to decrypt and retrieve the searchable
encrypted private key private_search. The search trapdoor A is generated by the search
plaintext M and the searchable encrypted private key private_search, and the search trapdoor
A is sent to the platform.

Step 4: The platform uses public_search and the search plaintext M to generate the search
ciphertext B, and then combines the received search trapdoor A to retrieve the encrypted data,
and returns the search results to the data demander.
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Algorithm 3 Data search

Require: Data demander’s search request, keywords (Key), searchable keys (public_search, private_search)
Ensure: Matching encrypted data

1: Data demander sends a search request to the platform:
2: Send(Search_Request, public_ser) ▷ Send search request
3: Platform forwards the request to the data provider. ▷ Forward request to provider
4: Data provider agrees to the transaction and encrypts private_search using data demander’s public key:
5: Enc_private_search← Encrypt(public_dem, private_search) ▷ Encrypt private search key
6: Platform sends encrypted private_search to the data demander:
7: Send(Enc_private_search, public_dem) ▷ Send encrypted key to demander
8: Data demander decrypts private_search using its private key:
9: private_search← Decrypt(private_dem,Enc_private_search) ▷ Decrypt private search key

10: Data demander generates a search trapdoor A using private_search and search plaintext M:
11: A← Trapdoor(private_search,M) ▷ Generate search trapdoor
12: Data demander sends search trapdoor A to the platform:
13: Send(A, public_ser) ▷ Send trapdoor to platform
14: Platform generates search ciphertext B using public_search and search plaintext M:
15: B← Search_Ciphertext(public_search,M) ▷ Generate search ciphertext
16: Platform retrieves matching encrypted data using A and B:
17: Matching_Data← Retrieve(A,B) ▷ Retrieve matching data
18: Platform returns search results to the data demander. ▷ Return results to demander

4.4. Data transaction

Step 1: After receiving feedback from the platform, the data demander may apply to exchange
all (or part of) the data. Firstly, the data provider generates SM4 random symmetric encryption
key, encrypts Data with the symmetric encryption key, encrypts the symmetric key with
public_dem of the data demander, and then sends it to the data demander.

Step 2: The Data demander decrypts the symmetric key with private_dem, then decrypts
the symmetric key to get the original data Data′, calculates the hash value of the original
data and encrypts it with the demander’s private key private_dem before sending it to the
transaction platform. The transaction platform uses public_dem of the demander to verify the
identity of the demander, and determines whether the hash value matches the hash value on
the blockchain. If the hash value is verified, the platform updates the asset balances in both
the data provider’s and demander’s accounts, and subsequently records the transaction on the
blockchain.

4.5. Technical integration details

The proposed SDTP protocol integrates three key cryptographic technologies: searchable
encryption, homomorphic encryption, and blockchain tools. Below, we explain how these
technologies are integrated into the protocol to ensure security, privacy, and efficiency.

4.5.1. Searchable encryption

Searchable encryption (SE) is a cryptographic technique that allows users to search over
encrypted data without decrypting it. In SDTP, SE is used to enable data demanders to retrieve
encrypted data using keywords. The integration of SE in SDTP is as follows:

Keyword encryption: The data provider encrypts keywords using a searchable encryption
public key (publicsearch). This allows the data demander to generate a search trapdoor (A)
using their private key (privatesearch) and search for encrypted data without revealing the
keywords or the data content.

Trapdoor generation: The data demander generates a trapdoor (A) by combining the
search plaintext (M) with their private key (privatesearch). The trapdoor is then sent to the
transaction platform, which uses it to retrieve the matching encrypted data.
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Algorithm 4 Data transaction

Require: Encrypted data (Enc_Data), data demander’s request, transaction details
Ensure: Successful data transaction recorded on the blockchain

1: Data demander requests data exchange from the platform:
2: Send(Exchange_Request, public_ser) ▷ Send exchange request
3: Data provider generates a random symmetric key (SM4_key) and encrypts raw data using SM4_key:
4: Enc_Data← SM4_Encrypt(SM4_key,Data) ▷ Encrypt raw data
5: Data provider encrypts SM4_key using data demander’s public key:
6: Enc_SM4_key← Encrypt(public_dem,SM4_key) ▷ Encrypt symmetric key
7: Data provider sends encrypted data and SM4_key to the data demander:
8: Send({Enc_Data,Enc_SM4_key}, public_dem) ▷ Send encrypted data and key
9: Data demander decrypts SM4_key using its private key:

10: SM4_key← Decrypt(private_dem,Enc_SM4_key) ▷ Decrypt symmetric key
11: Data demander decrypts raw data using SM4_key:
12: Data← SM4_Decrypt(SM4_key,Enc_Data) ▷ Decrypt raw data
13: Data demander computes hash value of raw data and encrypts it using private_dem:
14: Data_Hash← SM3(Data) ▷ Compute hash value
15: Enc_Data_Hash← Encrypt(private_dem,Data_Hash) ▷ Encrypt hash value
16: Data demander sends encrypted hash value to the platform:
17: Send(Enc_Data_Hash, public_ser) ▷ Send encrypted hash to platform
18: Platform verifies the hash value against the blockchain record:
19: if Verify(Data_Hash,Blockchain_Record) then proceed. ▷ Verify hash value
20: Platform updates account balances and records the transaction on the blockchain. ▷ Record transaction

Search efficiency: By leveraging searchable encryption, SDTP ensures that data deman-
ders can efficiently search for encrypted data without compromising data privacy. This is
particularly important in scenarios where the data provider does not want to reveal the raw
data to the transaction platform.

4.5.2. Homomorphic encryption

Homomorphic encryption (HE) allows computations to be performed on encrypted data
without decrypting it. In SDTP, HE is used to enable secure data processing on the transaction
platform. The integration of HE in SDTP is as follows:

Data processing: The transaction platform can perform computations (e.g., data aggrega-
tion or analysis) on encrypted data without accessing the raw data. This ensures that the data
remains confidential even during processing.

Secure transactions: HE is used to encrypt sensitive transaction details (e.g., payment
information) before they are stored on the blockchain. This ensures that the transaction details
are protected from unauthorized access.

Privacy preservation: By using HE, SDTP ensures that the data provider’s privacy is
preserved throughout the data transaction process. The transaction platform cannot access the
raw data, even when performing computations.

4.5.3. Blockchain tools

Blockchain technology is used in SDTP to ensure the integrity, transparency, and immutability
of data transactions. The integration of blockchain tools in SDTP is as follows:

Transaction recording: All data transactions are recorded on the blockchain, ensuring
that the transaction history is tamper-proof and transparent. This prevents issues such as data
tampering or demander denial.

Decentralization: The use of blockchain eliminates the need for a centralized authority,
reducing the risk of single points of failure and enhancing the security of the data transaction
platform.
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Smart contracts: Smart contracts are used to automate the data transaction process. For
example, when a data demander requests data, the smart contract verifies the transaction details
and ensures that the data provider is compensated fairly.

Data integrity: The blockchain ensures that the data stored on the transaction platform
is authentic and has not been altered. This is achieved by storing the hash value of the data
(DataHash) on the blockchain and verifying it during data retrieval.

By integrating searchable encryption, homomorphic encryption, and blockchain tools,
SDTP provides a secure, efficient, and privacy-preserving solution for data transactions. These
technologies work together to ensure that the data provider retains control over their data,
the data demander can efficiently search for and retrieve encrypted data, and the transaction
platform ensures the integrity and transparency of the transaction process.

5. Security analysis

This section offers a comprehensive security evaluation of the proposed protocol. We employ
Tamarin, an automated verification tool, for formal safety assessment. In addition, we explore
prevalent security vulnerabilities and threats related to authentication and access management,
as well as strategies on how to address these challenges in decentralized environments such as
data transaction platforms.

5.1. Formal security verification: simulation used by tamarin tool

We leverage the Tamarin tool, a widely recognized automated verification software, to evaluate
the resilience of the proposed protocol against different attack vectors in the authentication
framework. Simulations using this tool show that the proposed protocol effectively protects
against threats like impersonation, passive secret disclosure, and man-in-the-middle attacks,
providing robust security.

The Tamarin prover is a powerful tool for symbolically modeling and analyzing security
protocols. It requires a detailed model of the protocol, outlining the operational specifications
for different roles, the characteristics of potential adversaries, and the properties that the
protocol must satisfy. Tamarin can automatically generate proofs to demonstrate compliance
with these specified properties, even when multiple instances of protocol roles interact with
simultaneous adversarial actions.

Tamarin provides extensive capabilities for modeling and analyzing security protocols.
It employs a rich language based on multiset rewriting rules to specify both protocols and
adversaries, establishing labeled transition systems where states include adversary knowledge,
network messages, newly generated values, and symbolic representations of protocol states.
The attacker interacts with the protocol by altering existing messages and generating new
ones. Additionally, Tamarin accommodates equational specifications for certain cryptographic
operators. Safety properties are represented as trace properties, which are then evaluated
against the transition system’s trace or the observed equivalence of two transition systems.

In the proposed protocol, data provider, data demander and transaction platform commu-
nicate with each other and are modeled as the roles Supplier, Purchaser and Server. We begin
by defining the cryptographic primitives utilized in the protocol, representing messages as
terms constructed from functions that fulfill property descriptions. Next, we establish multiset
rewriting rules to model the protocol’s behavior. Finally, we articulate the properties to be
proven (lemmas) to outline the necessary security attributes of the protocol. These declarations
are essential to the protocol design; without them, the Tamarin tool would lack the information
needed for verification.

The following security properties (See Appendix for the code.) are defined for the
proposed protocol:

(1) Protocol executability
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lemma execute:lemma execute:
exists-traceexists-trace
"   Ex A B x #j #i. Suc1(A,x)@j & Suc2(B,x)@i"

Figure 3. Formal analysis program of protocol executability.

The protocol executability lemma ensures that all parties can successfully complete their
respective steps in the protocol. The variables and actions/facts used in this lemma are as
follows:

• Suc1(A, x): This predicate indicates that entity A has successfully completed a protocol
step related to data x. For example, Suc1(Sup,Data) means that the supplier Sup has
successfully uploaded the data Data. This fact is generated in the Sup_ac_Verif_to_Pur
rule, where the supplier completes the data upload process.

• Suc2(B, x): This predicate indicates that entity B has successfully completed a protocol
step related to data x. For example, Suc2(Pur,Data) means that the purchaser Pur has
successfully retrieved the data Data. This fact is generated in the CC9 rule, where the
purchaser completes the data retrieval process.

• #i, #j: These are time points in the protocol execution trace. They represent the order in
which events occur.

The results of formal analysis (Figure 4) show that the executable path can be found during
the execution of the protocol interaction, and the proposed protocol is proved to be executable,
which indicates that the design of the protocol matches the current technical environment and
capabilities. It can run smoothly on the existing software and hardware platforms, whether it is
the encryption operation of the data provider, the retrieval request of the data demander, or the
storage and management service of the transaction platform, it can be realized by the existing
technical means. This means that each part of the protocol is clear and easy to operate. The
data provider can successfully complete the data encryption and upload in accordance with
the prescribed steps, and there will be no errors or omisations due to the complex operation.
The data demander can accurately submit the search request and decrypt and use the data
correctly after obtaining authorization. The transaction platform can also effectively manage
data storage, provide retrieval services and carry out security supervision, and the whole
process of data transaction is smooth and unimpeded.
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Figure 4. Formal analysis results of protocol executability.
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(2) Data Security

lemma Security_Data:lemma Security_Data:
"   All  x #i. Security_Data(x)@i  ��� not (Ex #j. K(x)@j)"

Figure 5. Formal analysis program of data security.

The data security lemma ensures that the data remains confidential throughout the transac-
tion process. The variables and actions/facts used in this lemma are as follows:

• Security_Data(x): This predicate indicates that data x is secure and has not been
compromised. For example, Security_Data(Data) means that the data Data remains
confidential and has not been leaked. This fact is generated in the Sup_ac_Verif_to_Pur
rule, where the data is encrypted and securely transmitted.

• K(x): This represents the knowledge of an adversary about data x. If K(x) is true, it
means that the adversary has obtained data x. This fact is generated in the reveal rule,
where the adversary attempts to reveal sensitive information.

The formal analysis results (as shown in Figure 6) show that there is no leakage event in
the whole process of data interaction, which proves that the proposed protocol satisfies data
security, indicating that the design of the data transaction protocol is scientific, reasonable,
rigorous and effective. The analysis results show that the encryption mechanism of the protocol
is strong enough to deal with potential security threats, whether from external hackers or
internal misbehavior. At the same time, it also shows that the protocol takes security risks into
account in all aspects of data transaction, and takes corresponding preventive measures.

(3) Provider’s private key privacy
The provider’s private key privacy lemma ensures that the provider’s private key remains

secure throughout the transaction process. The variables and actions/facts used in this lemma
are as follows:

• Security_pw(x): This predicate indicates that the private key x of the provider is secure
and has not been compromised. For example, Security_pw(pw) means that the provider’s
private key pw remains confidential. This fact is generated in the setup_Sup_Server
rule, where the provider’s private key is securely generated and stored.

• K(x): This represents the knowledge of an adversary about the private key x. If K(x) is
true, it means that the adversary has obtained the private key x. This fact is generated in
the reveal rule, where the adversary attempts to reveal the private key.

The formal analysis results (Figure 8) indicate that the provider’s private key remains
secure throughout the transaction process. This confirms that the proposed protocol upholds
privacy and safeguards the supplier’s security during transactions. It shows that the protocol
designer has carefully addressed the critical role and sensitivity of the supplier’s private key
in data transactions, implementing multi-layered and comprehensive security measures to
safeguard it.
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Figure 6. Formal analysis results of data security.

18



Blockchain Article

lemma Security_pw:lemma Security_pw:
"   All  x #i. Security_pw(x)@i  ��� not (Ex #j. K(x)@j)"

Figure 7. Formal analysis program of provider’s private key privacy.

Figure 8. Formal analysis results of provider’s private key privacy.

(4) Demander’s private key privacy

lemma Security_Pursk:lemma Security_Pursk:
"   All  x #i.  Security_Pursk(x)@i ��� not (Ex #j. K(x)@j)"

Figure 9. Formal analysis program of demander’s private key privacy.

The demander’s private key privacy lemma ensures that the demander’s private key remains
secure throughout the transaction process. The variables and actions/facts used in this lemma
are as follows:

• Security_Pursk(x): This predicate indicates that the private key x of the demander
is secure and has not been compromised. For example, Security_Pursk(sk) means
that the demander’s private key sk remains confidential. This fact is generated in the
setup_Pur_Server rule, where the demander’s private key is securely generated and
stored.

• K(x): This represents the knowledge of an adversary about the private key x. If K(x) is
true, it means that the adversary has obtained the private key x. This fact is generated in
the reveal rule, where the adversary attempts to reveal the private key.

The formal analysis results (Figure 10) indicate that the private key of the demander
remains secure throughout the entire transaction process. This demonstrates that the pro-
posed protocol effectively safeguards privacy and protects the demander’s security during
transactions. Furthermore, it highlights that the protocol’s designer has thoroughly considered
the critical importance and sensitivity of the demander’s private key in data transactions.
Multi-level and all-sided security measures are adopted to protect the private key of the
demander.
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Figure 10. Formal analysis results of demander’s private key privacy.
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In summary, after rigorous formal analysis, the protocol shows many outstanding features.
With its executability, data security and private key privacy, it provides a reliable, efficient and
secure solution for the field of data transaction. The protocol demonstrates high compatibility
with the current technical landscape, facilitating smooth operations for data providers during
encryption and upload, for data demanders in retrieval and usage, and for the transaction
platform in storage management and retrieval services. This compatibility establishes a solid
foundation for efficient data transactions. Throughout the entire protocol, data security is
comprehensively ensured. From the generation of data to its final use, robust encryption, secure
transmission channels, and stringent storage management and access controls work together to
create a resilient security framework, preventing unauthorized access, tampering, or destruction
of data during transactions. In terms of private key privacy, both the provider’s private key and
the demander’s private key are strictly protected in the whole data transaction process without
leakage risk. This makes the ownership and use rights of data accurately controlled, and data
providers and demanders can interact with each other in a secure environment, which greatly
enhances the trust of all parties in data transaction.

5.2. Informal security analysis

We will illustrate the security of the proposed protocol against different attack vectors through
clear and intuitive reasoning. It’s important to note that we use an informal, heuristic approach
for this security analysis. This approach seeks to showcase the protocol’s robustness against
additional attacks not addressed in the previous section.

Credential theft and padding: In conventional centralized systems, attackers frequently
steal credentials to obtain unauthorized access. Because a user’s identifier and credentials are
kept in a single authentication repository, an attacker may exploit access to the authentication
server to steal user credentials. While in our proposed protocol, decentralized identity and
credential management is achieved by using the concept of key localization. Each party creates
and manages its own secret key without relying on the market to maintain it. Users have full
control over their own keys, which gives them greater autonomy. Although in the proposed
protocol, credentials still have the possibility of being stolen or leaked, it is less attractive to
attackers because there is no centralized repository, and sometimes it is not even worth the
attacker’s great effort to steal.

Non-repudiation: When a party uses its private key to sign a statement, it cannot later
deny the action, thus guaranteeing non-repudiation. This process relies on digital signatures
and verification, which are founded on asymmetric cryptography. In order to prevent this
attack, before the data demander confirms the receipt of the goods and the provider obtains the
transaction income, the data demander is required to digitally sign the information confirming
the receipt of the goods with the private key, and the platform is verified to confirm the identity,
because only the data demander knows its private key, which ensures non-repudiation.

Replay attack: An attacker might intercept and replay messages exchanged between a
supplier and a demander, potentially gaining access to sensitive information such as payment
details or confidential data. To mitigate this risk, the data provider should verify the freshness
of the public/private key pair and other key information before initiating a transaction with
the demander. Moreover, it is crucial to update the key pair before every transaction and
implement strategies to mitigate the risk of inference attacks.

Privilege escalation and abuse: To mitigate the risks posed by malicious users, adopting
a least privilege access model is essential. This approach ensures that individuals are assigned
only the permissions necessary for their specific tasks, confined to defined timeframes and
conditions. Additionally, usage-based access control continuously evaluates the relevance of
access permissions for various resources. Implementing targeted authorization policies that
are bound by specific conditions and obligations can greatly reduce the potential entry points
for attackers.

21



Blockchain Article

Denial of service attack: In a traditional centralized system, a DoS attack can cripple the
entire platform by overwhelming the central server with excessive requests, rendering it unable
to process legitimate transactions. However, our protocol leverages the decentralized nature of
blockchain technology to mitigate this risk. Since the transaction platform is supported by a
distributed network of nodes, even if one or several nodes are targeted by a DoS attack, the
remaining nodes can continue to operate and process transactions. This ensures the availability
and reliability of the platform. Additionally, the use of blockchain consensus mechanisms
(e.g., Proof of Work or Proof of Stake) ensures that malicious actors cannot easily disrupt
the network by flooding it with invalid transactions. Each transaction must be validated by
multiple nodes, making it computationally infeasible for an attacker to overwhelm the system.
Furthermore, the protocol incorporates rate-limiting mechanisms at the application layer to
prevent excessive requests from a single user, further reducing the risk of DoS attacks.

Data tampering attack: Data integrity is a critical concern in data transaction platforms,
as any unauthorized modification of data can lead to severe consequences, such as financial
losses or breaches of trust. Our protocol addresses this issue by leveraging the immutability of
blockchain technology. Once data is uploaded to the blockchain, it cannot be altered without
changing the entire chain, which is computationally infeasible due to the cryptographic hash
linking between blocks. Specifically, the protocol uses the SM3 hash algorithm to generate
a unique hash value for each piece of data. This hash value is stored on the blockchain, and
any attempt to tamper with the data will result in a mismatch between the stored hash and
the recalculated hash, immediately exposing the tampering attempt. Moreover, the protocol
employs digital signatures to ensure the authenticity of data transactions. Each transaction is
signed by the data provider using their private key, and the signature is verified by the platform
using the corresponding public key. This ensures that only authorized parties can initiate
transactions, and any unauthorized modifications to the data will be detected and rejected.

6. Performance evaluation

To validate the efficiency and scalability of the proposed SDTP protocol, we conducted
extensive experiments comparing its performance with a traditional data transaction scheme.
This section presents the experimental setup, performance metrics, results, and analysis.

6.1. Experimental setup

The experiments were performed on a workstation running Python 3.9, utilizing libraries
such as NumPy and Matplotlib for data generation and visualization. We generated a dataset
consisting of 1000 data points, each associated with 1 to 10 keywords randomly selected from
a pool of 100 keywords. The comparison scheme was implemented to simulate a traditional
data transaction protocol without the optimizations introduced in SDTP. Both schemes were
evaluated based on four key metrics: query time, storage cost, communication cost, and
computation cost.

6.2. Performance metrics and results

The performance of SDTP was evaluated against the traditional scheme, and the results are
summarized as follows:

1. Query time: SDTP exhibited a slightly higher query time (0.0006 s) compared to the
traditional scheme (0.0005 s) (Figure 11). This minor difference is attributed to the additional
security measures implemented in SDTP, such as blockchain-based transaction recording and
searchable encryption.
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Figure 11. Query time comparison.

2. Storage cost: SDTP significantly reduced storage overhead, achieving an average cost
of 1000.00 units compared to 1200.00 units for the traditional scheme (Figure 12). This 16.7%
reduction is due to SDTP’s efficient encryption and storage strategies.
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Figure 12. Storage cost comparison.

3. Communication cost: SDTP demonstrated a 32.6% reduction in communication cost,
with an average of 0.29 units compared to 0.43 units for the traditional scheme (Figure 13).
This improvement is achieved by minimizing unnecessary data transmissions and optimizing
the communication protocol.
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Figure 13. Communication cost comparison.

4. Computation cost: SDTP outperformed the traditional scheme in computation efficiency,
reducing the average cost to 1.4833 units compared to 2.1982 units (Figure 14). This 32.5%
reduction is a result of SDTP’s streamlined computation process and elimination of redundant
calculations.
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Figure 14. Computation cost comparison.

6.3. Analysis and discussion

The experimental results highlight the superior performance of SDTP in storage, communica-
tion, and computation costs. While the query time of SDTP is slightly higher, this trade-off is
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justified by the enhanced security and transparency provided by blockchain technology.
The slight increase in query time is a reasonable trade-off for the additional security

features, such as tamper-proof transaction recording and privacy-preserving search capabilities.
These features are essential for building trust in data transaction platforms, especially in public
cloud environments.

7. Conclusion

With the continuous growth of data volume, more and more valuable data are eager to be
widely used, and the demand for data transaction is also constantly expanding. Although the
research on cryptographic techniques that can be used to protect the security of data transaction
has accumulated a large number of rich achievements in various directions, the comprehensive
application research on the whole process of data transaction is less. Integrating protection
technologies for data storage, trading, sharing, computing, and analysis presents significant
challenges. Achieving synergy among diverse research outcomes to address security issues in
data transactions is complex. A mere mechanical combination of solutions can lead to various
problems, including security vulnerabilities, inefficiencies, and compatibility issues, such
as redundant encryption and frequent communication demands. In this paper, we propose a
blockchain-supported data transaction protocol based on searchable encryption. The protocol
and system rely on searchable public key encryption and blockchain technology, taking
into account privacy and security, ensuring that the platform cannot steal data, the provider
cannot tamper with data, and the demander cannot deny the transaction fact. Finally, we
conduct a comprehensive formal and informal security analysis of the proposed protocol.
The findings indicate that our protocol demonstrates several outstanding features, offering a
reliable, efficient, and secure solution for data transactions. Its strengths lie in executability,
data security, and the protection of private key privacy.
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Appendix

1 theory PSE begin
2

3

4 builtins: bilinear-pairing,diffie-hellman,asymmetric-encryption
5 functions: key/1, SM3/1,SM4ENC/2,SM4DEC/2,up/1,H1/1,H2/1
6 equations:SM4DEC(SM4ENC(M,K),K)=M
7

8 rule setup_Sup_Server:
9 [ Fr(~pw)]

10 --[ ]->
11 [ !ServerSuppw($Sup,~pw) ]
12

13 rule setup_Pur_Server:
14 [ Fr(~pw)]
15 --[ ]->
16 [ !ServerPurpw($Pur,~pw) ]
17 /*rule reveal:
18 [ !SharedKeyWithServer(X, k) ]
19 --[ Reveal(X,k),Init_once('1') ]->
20 [ Out(k), Reveal(X,k)]
21 */
22

23 /* 1 */
24 rule SuptoSer:
25 let
26 h=pmult(~a,'g')
27 SM4key=up(pw)
28 W=key(~Data)
29 C1=pmult(~r,'g')
30 t=em(H1(W),pmult(~r,h))
31 C2=H2(t)
32 C=SM4ENC(<C1,<C2,SM3(W)>>,SM4key)
33 in
34 [ !ServerSuppw($Sup,pw),Fr(~Data),Fr(~a),Fr(~r)]
35 --[ ]->
36 [ Out(<C,h>) ,Supupload($Sup,pw,~Data,~a,~r,W,C1,C2) , !Open(W)]
37

38 /* 2 */
39 rule SerStore:
40 let
41 SM4key=up(pw)
42 M=SM4DEC(C,SM4key)
43 C1=fst(M)
44 C2=fst(snd(M))
45 SM3W=snd(snd(M))
46 in
47 [ In(<C,Apub>),!ServerSuppw($Sup,pw)]
48 --[ ]->
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49 [ Serupload($Sup,pw,C1,C2,SM3W)]
50

51 /* 3 */
52 rule PurtoSer:
53 let
54 h=pk(~a)
55 in
56 [ !ServerPurpw($Pur,pw),Fr(~a),!Open(W)]
57 --[ Security_Pursk(~a)]->
58 [ Purstate1($Pur,pw,h,W,~a),Out(<'Trans_Req',h>),Outs1(<'Trans_Req',h>)]
59

60 /* 4 */
61 rule Ser_ac_Pur_to_Sup_fst:
62 [ Outs1(<'Trans_Req',Apubs>),Serupload($Sup,pw,C1,C2,SM3W),!ServerSuppw($Sup,pw),!ServerPurpw($Pur,pws)]
63 --[ ]->
64 [ Outs2(<'Trans_Req',Apubs>),Serupload2($Sup,pw,$Pur,pws,C1,C2,SM3W)]
65

66 /* 5 */
67 rule Sup_ac_Ser_to_Ser_snd:
68 let
69 C=aenc(a,Apubs)
70 in
71 [ Outs2(<'Trans_Req',Apubs>),Supupload($Sup,pw,Data,a,r,W,C1,C2)]
72 --[ ]->
73 [ Out(C),Supstate1($Sup,pw,Data,a,r,W,C1,C2,Apubs)]
74

75 /* 6 */
76 rule Pur_ac_Sup_to_Ser:
77 let
78 a=adec(C,sk)
79 Trapdoor=pmult(a,H1(W))
80 in
81 [ In(C),Purstate1($Pur,pw,h,W,sk)]
82 --[ ]->
83 [ Out(Trapdoor),Purstate2($Pur,pw,h,W,sk,a,Trapdoor)]
84

85 /* 7 */
86 rule Ser_Verif_to_Sup:
87 let
88 A=H2(em(Trapdoor,C1))
89 in
90 [ In(Trapdoor),Serupload2($Sup,pw,$Pur,pws,C1,C2,SM3W)]
91 --[ Eq(A,C2)]->
92 [ Out3('Suc')]
93

94 /* 8 */
95 rule Sup_ac_Verif_to_Pur:
96 let
97 Csk=aenc(~key,Apubs)
98 C=SM4ENC(Data,~key)
99 in
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100 [ Out3('Suc'),Supstate1($Sup,pw,Data,a,r,W,C1,C2,Apubs),Fr(~key)]
101 --[ Suc1($Sup,Data),Security_pw(pw),Security_Data(Data)]->
102 [ Out(<Csk,C>)]
103

104 /* 9 */
105 rule CC9:
106 let
107 key=adec(Csk,sk)
108 Data=SM4DEC(C,key)
109 in
110 [ In(<Csk,C>),Purstate2($Pur,pw,h,W,sk,a,Trapdoor)]
111 --[ Suc2($Pur,Data)]->
112 [ ]
113

114

115 restriction Verif:
116 "
117 All x y #i. Eq(x,y) @ i ==> x = y
118 "
119

120 lemma execute:
121 exists-trace
122 "
123 Ex A B x #j #i. Suc1(A,x)@j & Suc2(B,x)@i
124 "
125

126 lemma Security_Data:
127 "
128 All x #i. Security_Data(x)@i ==> not (Ex #j. K(x)@j)
129 "
130

131 lemma Security_pw:
132 "
133 All x #i. Security_pw(x)@i ==> not (Ex #j. K(x)@j)
134 "
135

136 lemma Security_Pursk:
137 "
138 All x #i. Security_Pursk(x)@i ==> not (Ex #j. K(x)@j)
139 "
140

141 end
142

143

144
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