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Highlights:

* The process of optimizing transaction sequences and template parameters is modeled
as a Markov Decision Process in RL-BES, providing a systematic approach to address
decision-making challenges in complex MEV detection and offering new insights for
future research.

* RL-BES innovatively integrates reinforcement learning with the MCTS algorithm, com-
bining two deep reinforcement learning networks and evaluation algorithms. This results
in a more advanced theoretical framework and enhanced MEV extraction performance
compared to traditional methods.

* A custom model evaluation tool is developed within RL-BES to intelligently optimize
transaction ordering in a simulated blockchain environment and assess performance.
This tool facilitates efficient MEV detection and extraction, allowing for customizable
adjustments of different network structures and parameters to continuously analyze the
best algorithmic solutions for MEV extraction.

Abstract: The rapid growth of decentralized finance (DeFi) has provided numerous benefits,
but it has also presented significant economic security challenges. One of the most critical
issues is Maximum Extractable Value (MEV). MEV refers to the opportunities for miners or
validators to earn additional profits by altering the order of transactions. However, current MEV
detection methods have notable limitations. These include poor adaptability of algorithms, the
vastness of the search space, and the inefficiency of methods that rely on traditional heuristic
approaches. To overcome these challenges, we introduces a reinforcement learning-based
MEVYV optimization system for blockchain—RL-BES (Reinforcement Learning for Blockchain
Economic Security). This system employs two deep reinforcement learning networks to
optimize transaction ordering and template parameters, integrated with Monte Carlo Tree
Search (MCTYS) for effective path exploration. Furthermore, we presents a custom model
evaluation tool designed to adjust various networks and parameters, facilitating the analysis of
the best algorithmic solutions for on-chain MEV extraction. Experimental results indicate that
the RL-BES system excels in multiple DeFi applications. It demonstrates faster convergence
and consistently surpasses the performance of Flashbot and other similar detection tools.
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1. Introduction

With the rapid development of blockchain technology [1-4], decentralized finance (DeFi) has
become a crucial component of the modern financial ecosystem [5]. DeFi refers to a range
of financial services built on blockchain technology and smart contracts, including lending,
trading, liquidity provision, asset management, and insurance. Unlike traditional financial
systems, DeFi eliminates intermediaries, allowing users to transact directly. This reduces
transaction costs and enhances transparency and efficiency [6]. Users can freely engage in
financial transactions globally, gaining higher returns and liquidity. However, despite the
conveniences DeFi offers, it also presents a series of economic security challenges, particularly
the issue of Maximum Extractable Value (MEV).

MEV refers to the opportunities for miners or validators to earn extra profits by rearranging,
inserting, or deleting transactions within blockchain transactions [7]. This phenomenon not
only affects the fairness of transactions but also undermines the economic security of the
network. The existence of MEV can lead to unknowing economic losses for some users,
especially in high-frequency trading and volatile market environments [8]. Furthermore,
MEYV strategies vary widely, including arbitrage, liquidation, and sandwich attacks. Arbitrage
strategies capitalize on price differences across markets for profit [9], while liquidation
strategies involve profiting from the liquidation of distressed assets in the event of loan defaults
[10]. Sandwich attacks occur when an attacker inserts their transactions before and after a
user’s transaction to profit from the price movements [11]. These strategies not only harm the
fairness of transactions but can also lead to decreased market liquidity and overall trust.

Detecting, analyzing, and optimizing MEV is challenging due to the complex search space
of blockchain transactions and the dynamic nature of trading environments [12]. Although
some progress has been made in the research of MEV detection and optimization, existing
methods often face issues such as poor adaptability, inefficiency, and dependence on fixed
rules, limiting their effectiveness in detecting and mitigating MEV [13].

To address these challenges, we propose a reinforcement learning-based blockchain MEV
optimization system—RL-BES (Reinforcement Learning for Blockchain Economic Security)
that combines deep learning, reinforcement learning, Monte Carlo Tree Search (MCTS), and
Markov Decision Process (MDP).

Deep learning enables the system to process complex transaction data, while reinforcement
learning allows it to optimize strategies through interaction with the environment. MCTS
provides an efficient way to explore the vast search space of transaction sequences, and
MDP offers a systematic framework for decision-making in dynamic environments. Together,
these methods enable RL-BES to effectively detect and optimize MEV extraction, enhancing
blockchain economic security.

The innovations of RL-BES are highlighted in several key aspects:

e MDP modeling: we model the process of optimizing transaction sequences and template
parameters as a Markov Decision Process (MDP), providing a systematic approach to
address decision-making challenges in complex MEV detection, thereby offering new
insights for future research.

e Multiple algorithms combining: we innovatively introduce reinforcement learning
and the MCTS algorithm, independently designing two deep reinforcement learning
networks and evaluation algorithms, achieving a more advanced theoretical framework
and improved MEV extraction performance compared to traditional methods.

e Tool implementation: we develop a custom model evaluation tool that intelligently
optimizes transaction ordering in a simulated blockchain environment and assesses
performance. This tool enables efficient MEV detection and extraction while allowing for
customizable adjustments of different network structures and parameters to continually
analyze the best algorithmic solutions for on-chain MEV extraction.
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e Organizations: the remaining organization of this paper is listed as follows: Section 2
provides a summary and analysis of existing works related to MEV detection. Section 3
outlines relevant background knowledge. Section 4 details the algorithms and internal
implementation of the RL-BES system. Section 5 discusses experimental preparations,
methodologies, and results. Section 6 addresses the significance, limitations, and potential
improvement directions of the RL-BES system. Finally, Section 7 summarizes the
contributions and findings of this research.

2. Related work

Currently, there are four main approaches to optimizing the extraction of MEV: hard coding
specific contracts, semantic modeling and formal verification, traditional optimization
algorithms along with heuristic methods and advanced machine learning methods.

2.1. Hard coding methods

Hard coding specific contracts is one of the early attempts at MEV optimization. This method
involves predefining contracts and trading rules in specific transaction scenarios to directly
adjust transaction ordering for MEV extraction. Torres ef al. [14] and Qin et al. [15] were
among the first to use this approach to measure historical MEV and optimize extraction on
corresponding contracts on Ethereum. The advantages of this method include its simplicity and
rapid deployment. However, hard coding relies heavily on fixed contract structures, lacking the
flexibility to adapt to different contracts. When new contracts are introduced, the existing rules
may become invalid, requiring the system to be re-coded and adjusted. Moreover, hard coding
cannot address unforeseen new MEV extraction scenarios, resulting in poor generalization
and limited performance in the complex and rapidly evolving DeFi ecosystem.

2.2.  Semantic modeling methods

The method utilizing semantic modeling and formal verification tools conducts rigorous
semantic analysis of trading behaviors to ensure logical consistency and security in the MEV
optimization process. This approach employs formal verification tools to define and assess
optimized transaction paths. McLaughlin et al. [16] have modeled on-chain arbitrage behaviors
and conducted MEV detection by programming the general semantics of smart contracts and
simulating MEV detection. Similarly, Babel et al. have used comparable methods to measure
and optimize on-chain MEV [17], while Li et al. have modeled various typical representations
of MEV to detect corresponding MEV situations [18]. The advantage of semantic modeling
lies in its ability to accurately capture the relationships between trading behaviors. However,
these methods often require complex model construction and reasoning, leading to high
computational costs. Additionally, the scalability of formal verification tools is limited; when
faced with complex trading combinations or new trading patterns, pre-analysis, re-modeling,
and verification are often necessary.

2.3.  Traditional and heuristic methods

Traditional optimization algorithms and heuristic methods are also common techniques for
addressing MEV issues. These methods typically employ traditional optimization techniques,
such as Particle Swarm Optimization (PSO), Genetic Algorithms (GA), or Greedy Algorithms,
in an attempt to find suboptimal solutions within a limited search space.

Zhou et al. utilized the Sequential Least Squares Programming (SLSQP) algorithm to
constrain MEV optimization [19]. Their work focused on analyzing the potential vulnerabili-
ties in the DeFi ecosystem through the use of flash loans and attempting to optimize MEV
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extraction within a certain framework. However, a significant shortcoming of their approach is
that it was highly dependent on the specific assumptions and constraints set by the SLSQP
algorithm. In a highly dynamic DeFi environment where market conditions and transaction
patterns can change rapidly, this rigidity limited the ability of their method to adapt and capture
the full range of MEV opportunities. Moreover, the SLSQP algorithm, like many traditional
optimization algorithms, may not be efficient enough when dealing with the large and complex
search spaces typical in DeFi transactions.

Babel et al. applied a similar genetic algorithm approach to optimize the MEV extraction
process [20]. The genetic algorithm they used had the advantage of being relatively straight-
forward to implement and could potentially find good solutions in smaller-scale problems.
However, it also had notable limitations. The genetic algorithm relied on a fixed set of genetic
operators and fitness functions, which might not be suitable for all types of MEV scenarios.
As the DeFi landscape evolves and new types of transactions and strategies emerge, the lack
of adaptability of these fixed rules could lead to suboptimal results.

Therefore, the advantages of heuristic algorithms include their relative ease of implemen-
tation and effectiveness in finding near-optimal solutions for smaller-scale problems. However,
they exhibit several limitations. First, heuristic methods often rely on fixed rules, which
lack the adaptability to handle dynamic and complex DeFi environments. Second, heuristic
methods struggle with efficiency in large search spaces, as they typically explore suboptimal
solutions within limited computational budgets. Finally, traditional methods lack flexibility in
adjusting the ordering of transactions and the parameters, resulting in underestimated results
for the extraction of MEV.

2.4. Advanced machine learning methods

Recent studies have demonstrated the potential of advanced machine learning techniques
in addressing blockchain optimization challenges. Gai et al. [21] proposed the use of large
language models (LLMs) to enhance smart contract analysis and transaction processing
efficiency, providing a novel approach to handling complex blockchain interactions. Their
work highlights the importance of leveraging machine learning for scalable and adaptive
blockchain systems. Similarly, Tian ef al. [22] introduced an interdisciplinary approach
combining reinforcement learning and mechanism design to optimize incentive structures in
Proof-of-Stake (PoS) Ethereum. In addition, Islam er al. [23] emphasizes the significance of
consensus algorithms in blockchain networks and the challenge of malicious nodes due to
decentralization. It introduces MRL - PoS, a multiagent reinforcement learning based PoS
algorithm that adapts to user behavior, manages malicious nodes via rewards and penalties, and
learns to counter new threats. Zhao et al. [24] explores the application of deep reinforcement
learning in forecasting and risk management of the cryptocurrency market trend. It uses the
LSTM model for data analysis, combines multiple factors, and the experimental results prove
its practical value, with future research suggesting improvements to the LSTM model for
better performance. Their research underscores the effectiveness of reinforcement learning in
designing economically secure blockchain protocols.

2.5. Improvements of RL-BES

To address these challenges, RL-BES introduces several key improvements. First, RL-BES
overcomes the limitations of traditional hard coding methods by incorporating a reinforcement
learning framework that can adaptively optimize transaction ordering within blocks containing
different contracts. Second, RL-BES mitigates the high computational complexity associated
with semantic modeling and formal verification tools by modeling the semantics of important
behaviors from common DeFi applications, significantly reducing computational and explo-
ration costs. Additionally, by combining MCTS with deep reinforcement learning algorithms,
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RL-BES can efficiently search for optimal transaction sequences within a vast search space,
enhancing the flexibility and efficiency of optimization tasks. Table 1 compares RL-BES with
some existing tools.

Table 1. Comparison of tool functionality.

Tool MEV High High Sorting Custom

names detection generalization efficiency function tuning
MEV-explore [25] v X X X X
MEV-inspect [26] v v X X X
Flash(bot) Pan [27] v X X X X
Lanturn [20] v v X v X
RL-BES v v v v v

3. Preliminaries

3.1. DeFi

Decentralized Finance (DeFi) is one of the key applications of blockchain technology, aimed
at replacing traditional financial services with smart contracts and decentralized protocols.
DeFi offers services in a wide range of areas, including lending, trading, payments, insurance,
derivatives, and stablecoins, with the goal of creating a financial system that is transparent,
efficient, and free of intermediaries [28]. Transactions in DeFi are recorded on the blockchain,
with all operations automatically executed by smart contracts. This makes DeFi highly
transparent and resistant to censorship. Typical DeFi use cases include:

Decentralized Exchanges (DEXSs): platforms like Uniswap and SushiSwap allow users
to trade tokens directly via smart contracts without relying on centralized exchanges. These
exchanges often use Automated Market Maker (AMM) mechanisms, replacing traditional
order books with liquidity pools [29].

Lending protocols: platforms like Aave and Compound enable users to borrow assets by
collateralizing crypto assets, while also earning interest. This eliminates intermediaries like
banks, making borrowing more transparent and accessible [30].

Stablecoins: examples include DAI and USDC, which maintain price stability against fiat
currencies through algorithms or collateralization. These are widely used in transactions and
payments to mitigate the price volatility of cryptocurrencies [31].

3.2. MEV

Maximum Extractable Value (MEV) refers to the additional profit that block producers
(miners or validators) can extract by manipulating transaction ordering, inserting, or deleting
transactions during block creation. Before a transaction is included in a block on Ethereum, it
resides in the mempool, a publicly accessible pool of pending transactions visible to everyone
[32]. Miners can monitor the mempool and reorder transactions to maximize their profit.
Common causes of MEV formation include:

Arbitrage: miners exploit price differences between decentralized exchanges by executing
buy or sell orders at advantageous prices.

Liquidation: in decentralized lending protocols, miners can prioritize liquidation transac-
tions when the value of collateral falls below a certain threshold, earning liquidation rewards.

Sandwich attacks: attackers insert their transactions before and after a user’s transaction
to profit from price slippage.
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The mathematical definition of MEYV is as follows. MEV can be expressed as the profit
difference between the original transaction order and the optimized order:

n
MEV = Z (P;(new order) — P;(original order)) (1)
i=1
Where P; represents the profit of the i-th transaction under different ordering scenarios.
During the MEV optimization process, miners attempt to rearrange the transaction sequence
to maximize this value, thereby extracting the highest possible value.
Existing solutions are often limited to specific scenarios, lacking generalizability and
scalability. Therefore, optimizing transaction ordering and improving economic security have
become important research topics in blockchain.

3.3.  Reinforcement learning

Reinforcement Learning (RL) is a machine learning method that autonomously learns and
optimizes strategies, widely applied to decision-making problems in dynamic environments
[33]. Unlike traditional supervised learning, RL relies on interactions with the environment
and uses reward signals to guide strategy optimization. The core idea is to balance exploration
and exploitation, gradually identifying an optimal strategy that maximizes long-term rewards
[34].

Reinforcement learning problems are typically modeled as a Markov Decision Process
(MDP) [35], which includes the following elements:

State (s): represents the information available to the agent about the environment at a
specific moment.

Action (a): denotes the decision made by the agent when in a particular state.

Transition (P(s'|s,a)): describes the probability of transitioning from state s to a new
state s’ after executing action a.

Reward (r): refers to the immediate feedback received by the agent after taking an action
in the environment.

Discount factor (y): balances immediate rewards and future rewards, where the value of
v is between [0, 1].

The goal of reinforcement learning is to maximize the cumulative reward R; by optimizing
the policy 7(a|s). The expected cumulative future reward is defined as:

Rt:E

i 7/(”Hk+1] (2)
k=0

By optimizing the policy, the agent can select the most optimal actions in different states
to achieve the maximum expected long-term reward.

34. MCTS

Monte Carlo Tree Search (MCTS) is a search algorithm that identifies optimal solutions by
simulating future states and progressively expanding a decision tree [36]. It is particularly
suitable for path optimization in complex search spaces with a large number of state and action
combinations. The key idea is to recursively simulate possible future scenarios, gradually
constructing a decision tree that encompasses all possible paths, thus providing optimal
strategy guidance for current decisions. MCTS consists of four main steps:
e Selection: starting from the root node, a node along an existing path in the tree is selected
for expansion. The selection process typically uses a heuristic strategy like the Upper
Confidence Bound (UCB1) algorithm [37], which balances exploration and exploitation:
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InN(s)

UCBI1(s,a) = Q(s,a) +c Ne.a) (3)

Where Q(s,a) represents the average reward received when selecting action a in state s.
N(s) is the number of times state s has been visited. N(s,a) is the number of times action
a has been selected in state s. ¢ is a constant that balances exploration and exploitation.

e Expansion: once a node that is not fully expanded is selected, new child nodes are
created to represent the next possible actions.

e Simulation: from the newly expanded node, actions are selected randomly, and the
decision process is simulated until a terminal state is reached. This step explores future
scenarios through random sampling, independent of the existing decision tree.

e Backpropagation: the reward information from the simulation is propagated back up
the tree, from the newly expanded node to the root, updating the statistics of all nodes
along the way.

By repeatedly executing these steps, MCTS gradually optimizes the structure of the deci-
sion tree, making it an effective solution for high-dimensional and uncertain search problems.
In transaction ordering and MEV extraction, MCTS can dynamically adjust transaction se-
quences, ensuring a balance between exploration efficiency and optimality during the search
process.

4. The RL-BSE system

4.1. Model overview

The RL-BES system we designed combines reinforcement learning and MCTS to address
the challenges of transaction reordering and parameter adjustment in DeFi applications. Its
goal is to maximize the MEV on the blockchain, thereby enhancing economic security.
The system efficiently explores optimal transaction orders within a vast search space using
MCTS, and continuously optimizes the transaction sequence and key parameters through
reinforcement learning. By modeling transaction reordering and parameter optimization as a
MDP, the system can dynamically adjust strategies in complex environments. Additionally,
it incorporates attention mechanisms and convolutional neural networks (CNN) to enhance
adaptability in sequence and parameter tuning.
The choice of deep learning, reinforcement learning, MCTS, and MDP in RL-BES is
motivated by their complementary strengths in addressing the challenges of MEV extraction.
e Deep learning: deep learning excels at processing large amounts of transaction data
and extracting complex features, which is essential for understanding the relationships
between transactions in DeFi environments.

¢ Reinforcement learning: reinforcement learning enables the system to learn optimal
strategies through experiments and error, making it well-suited for dynamic and complex
tasks like transaction reordering.

e Monte Carlo Tree Search (MCTS): MCTS provides an efficient way to explore the vast
search space of possible transaction sequences, allowing RL-BES to identify high-reward
paths without exhaustive enumeration.

e Markov Decision Process (MDP): MDP offers a systematic framework for modeling the
decision-making process in MEV optimization, ensuring that RL-BES can dynamically
adjust strategies based on the current state of the environment.

By integrating these methods, RL-BES achieves a robust balance between exploration
and exploitation, enabling it to effectively optimize MEV extraction in complex blockchain
environments.
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Figure 1 illustrates the execution steps of the RL-BES system.

e Data input and MDP modeling: the system begins by inputting a transaction dataset,
which has been semantically modeled and initialized with key DeFi application param-
eters. This provides a simplified semantic representation of the transaction sequence.
In addition, the system will model the corresponding tasks as MDP to obtain the basic
policy network framework. This process will be explained in detail in Section 4.2.1 and
Section 4.2.2.

e Variable initialization: next, the input transaction sequence is processed by the reorder-
ing network, which predicts a set of initial action selection probabilities. The parameter
optimization network then generates a set of initial template parameters.

e MCTS exploration: the system uses MCTS to explore the search space of transaction
reordering. Each path in the tree represents a potential transaction sequence. MCTS
dynamically evaluates these paths to identify promising reordering schemes, which are
passed to the local simulation environment for reward calculation. This process will be
explained in detail in Section 4.3.1.

e Transaction simulation and reward extraction: in the local simulation environment,
the system performs a simulated block mining based on the currently explored transaction
sequence. The MEV of the block is calculated as the reward for the current output, which
is then fed into the reinforcement learning network module for updates.

e Reinforcement learning network update: the calculated MEV reward, along with
the current transaction sequence, is fed into the attention-based reordering network and
the CNN-based parameter optimization network. Through processes such as network
optimization and backpropagation, the weights and parameters of the networks are
updated. This process will be explained in detail in Section 4.3.2 and Section 4.3.3.

e Feedback into MCTS exploration: after the network updates, the system predicts a
new set of action selection probabilities and template parameters for the input transaction
sequence. This process is repeated, allowing the reinforcement learning network to
continuously update while recording the optimal MEV extraction results and transaction
order, until the predefined number of iterations is reached.

RL-BES

@ MEV Extraction Environment
Represented Reordering Policy Network

eneactere @g
@ n n+1 n+2

e
Calculate MEV

0, 0xf34ac..., Oxclaif... 1 DEXs CEX

Parameter Policy Network (Uniswap...) (Binance)

1, 0xb5b90..., 0x7e1d4...
2, miner, Uniswap, a; @ l@

3, 0x7bfb8..., 0xd421d... l

l 1, 0xb5b90..., 0x7e1d4...

MCTS Algorithm 2, miner, Uniswap, a,

@ 0, 0xf34ac..., Oxclaif...

3, 0x7bfb8..., 0xd421d...

Figure 1. The RL-BES system.
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4.2.  Problem modeling

In this section, we discuss how to model the problem of transaction reordering and parameter
optimization in DeFi as a mathematical problem. This is essential for applying reinforcement
learning techniques later. We will cover the modeling of key parameters and the construction
of the Markov Decision Process (MDP), with a focus on providing a reasonable environment
for reinforcement learning.

4.2.1. Semantic modeling of key parameters

In DeFi applications, various key parameters directly affect transaction outcomes and profits.
Examples include the collateral ratio in lending protocols, slippage thresholds in decentralized
exchanges, and liquidation thresholds. We perform semantic modeling of these critical
parameters so that they can be flexibly adjusted during the optimization process. Here is an
example to illustrate the types of these parameters:

In the UniswapV3 protocol, the slippage tolerance parameter affects the execution price
of a trade[38]. If the slippage is too high, users may incur significant losses. Conversely, if the
slippage is too low, the trade may fail to execute. The formula for the slippage threshold is
given by:

Slippage = Fe— £ x 100% (4)
Fe

Where P, is the price anticipated by the user before initiating the trade. P, is the actual
price at which the trade is completed.

Similarly, we model relevant key parameters from protocols like UniswapV3 as o, (x =
1,2...) and convert the raw transaction dataset into a semantically represented format. By doing
so, we simplify the modeling of complex contract interactions into a transaction sequence,
represented by function names and key parameters. This allows our system to avoid needing
in-depth knowledge of contract implementation and meaning. Consequently, the complexity
of the modeling process is greatly reduced, enhancing the system’s generality and adaptability
for detecting various contracts.

To better illustrate this process, Figure 2 presents an example of semantic modeling
concerning the behavior of providing liquidity in UniswapV3. Firstly, we initialize key
parameters, such as liquidity and range values as different variables o, (x = 1,2,3) . Then,
we simplify the entire transaction data into an atomic transaction representation. Finally, we
convert this atomic transaction representation into a data form that can be recognized by our
model through semantic modeling.

"from" : User,
"to" : PositionManager,
L "value": 0,
@ Initialize key "function":addLiquidity,
parameters as a@ | "calldata": {"tokenIn":tokenA, "tokenOut": tokenB,
“fee": fee, "liquidity":a1, "tickLower":a2,
"tickUpper":a3}

l

User adds a1 liquidity in price range a2 to a3

@ Semantic
modeling atomic |0, User, PositionManager, addLiquidity, a1, a2, a3
representation

@ Simplify raw
transaction data

Figure 2. Example of semantic modeling.
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4.2.2. Modeling reordering and optimization problem as MDP

We unify the transaction reordering and parameter optimization problem into a MDP frame-
work, allowing reinforcement learning networks to address this issue. Specifically, the four
key components of an MDP (state, action, reward, and transition) are used to clearly describe
how transaction sequence arrangement and parameter adjustments affect MEV extraction.
e State space (5): at time step #, each state s; represents the current transaction sequence
and the associated DeFi parameters. We denote s, = {7, 0}, where T is the transaction
sequence, and O refers to the fixed DeFi parameters (e.g., slippage or collateral ratio).

e Action space (A): at time ¢, action a; represents the reordering and adjustment of DeFi
parameters. The action space is defined as a; = {Reorder(T), Adjust(6)}, where T is
the transaction sequence, and 6 denotes the DeFi parameters.

e Transition function (P): the transition function P(s;,a,) defines how the system moves
from one state s; to the next state s, after taking action a;. The transition is determined
by the state transition function which takes into account the effect of reordering and
parameter adjustment:

se41 = P(sr,ar) (5)

where P is the state transition function that determines the new transaction sequence and
parameter settings.

e Reward function (R): the reward function R(s;,a,) quantifies the effect of action a; on
the MEV optimization problem. In the context of MEV extraction, the reward function is
defined as:

R(st,a;) = MEV(T; 41,6, 11) — Cost(T; 11,6 11) (6)

where MEV(T,11,6,.1) represents the MEV extracted in the next time step, and
Cost(T;41, 6,41 ) refers to the associated transaction costs.

¢ Discount factor (y): the discount factor y € [0, 1] balances immediate and future rewards,
ensuring that the model takes future rewards into consideration.
The overall goal of MDP is to find an optimal strategy 7* that maximizes the cumulative
discount reward, namely:

m* =argmaxE | Y YR(s;,a;) (7)
T =0

Figure 3 illustrates the structure of modeling transaction reordering and parameter op-
timization as an MDP. At time step 7, the system is in state s, = {T, 0 }, which includes the
current transaction sequence 7 and the related DeFi parameter settings 6. The RL-BES
strategy network chooses an action @, = {Reorder(7T'), Adjust(0)}, either reordering the trans-
actions or adjusting the parameters. After the action a; is executed, the system transitions to
a new state s,41. The reward function R(s;,a;) evaluates the effect of this action. Through
multiple iterations, the system learns the optimal policy to maximize MEV extraction.

10



Blockchain Article

Agent
Reordering Policy Parameter Policy
Network Network
State: s, = Reward: 1y Action: a; =
{T, 6} {Reorder(T),
Adjust(6)}
Tet1 Environment
Simulation Tool — MCTS

St+1

Figure 3. MDP framework.

4.3. Model and algorithm design

In this section, we will provide a detailed explanation of the core algorithm design within
the RL-BES system. This includes the exploration method for transaction sorting (based on
MCTYS), the reordering policy update mechanism (reinforcement learning network based on
attention mechanisms), and the process of optimizing transaction parameters (reinforcement
learning network based on convolutional neural networks).

4.3.1. Exploration of sorting schemes: MCTS algorithm

To effectively search for the optimal sorting in the vast space of transaction sequences, we
employ MCTS as the search algorithm. MCTS combines a policy network for initializing
the leaf nodes and evaluating rewards, and uses the UCB1 algorithm for action selection.
Algorithm 1 describes the code execution process of the algorithm. Through the four steps of
selection, expansion, simulation, and backpropagation, it recursively constructs a decision tree
in the search space to find the optimal transaction order. The MCTS algorithm mainly consists
of the following phases:
e Tree initialization and node expansion: during each iteration of the search process, the
algorithm expands the decision tree to include new nodes that correspond to possible
transaction sequences. The following information is recorded for each node:

— N: Number of times the node has been visited.

— W: Sum of rewards from the root to the current node.

— Q: Average reward of the node (calculated as (%))

— P: Action prior from the reordering policy network.

e UCBI action selection: at each non-leaf node, the UCB1 formula is used to select the
next action. The UCBI1 algorithm balances exploration and exploitation, ensuring that
actions with higher uncertainty are explored, while also exploiting actions that are known
to yield better results. The UCB1 formula is as follows:

YN

UCB1(a) = Q(a) +we x Pla) x4 [ -5y

(8)

where Q(a) is the average reward for action a. P(a) is the prior probability provided by
the reordering policy network. N(a) is the number of visits to action a. N is the total
number of visits to all actions. w, is the weight for adjust exploration.

e Model and state transition: after selecting an action «; , the system transitions to a
new state s, 1, representing a new transaction sequence. The system then evaluates the
immediate reward r;, which is calculated as follows:

11
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r=Ax(1—axe)x(1+p)xiy 9)

where « is the entropy regularization parameter, used to balance exploration and ex-
ploitation. A is the confidence score of the selected action. p reflects the progress of the
transaction sequence. ;4 is a temporal discount factor, ensuring that actions taken earlier
in the sequence are rewarded more heavily.

Simulation and backpropagation:

in this phase, the system continues to expand the tree by simulating further actions, and
then backpropagates the cumulative rewards to update the values of N, W, and Q . This
allows the tree to update its knowledge of the optimal transaction sequence and improve
its decision-making in future iterations.

Termination:

the search process terminates when a predefined number of iterations are completed, or
when the algorithm converges to a sufficiently optimal solution. The sequence with the
highest cumulative reward is selected as the final transaction order.

Algorithm 1 MCTS-Based transaction ordering

Require: Transaction pool, reordering policy network, parameter policy network, initial state
Ensure: Best action sequence, best reward

1: Initialize the MCTS tree as an empty dictionary

2: for iteration in range(max_iterations) do

for simulation in range(num_simulations) do

4: state < initial_state
5: path < empty_list
6: cumulative_reward <+ 0
7: while —is_empty(state_stack) do
8: state < state_stack.pop()
9: if state not in tree then
10: action_probs < reordering_policy_network.predict(state)
11: Initialize rree[state] with N, W, Q, P
12: end if
13: node <+ tree|state]
14: action < select_action(state, node.P)
15: next_state < next_state(state, action)
16: reward < evaluate_ DRL(state, action)
17: cumulative_reward+ = reward
18: path + (node,action,reward)
19: state_stack < next_state
20: end while
21: Backpropagate along path to update N, W, Q values
22: end for
23: best_action_sequence < sequence with the highest cumulative reward
24: params <— parameter_policy_network.predict(best_action_sequence)
25: reward < evaluate_MEV (transaction_pool, params)
26: rewards < reward
27: end for

28: best_reward < MAX (rewards)
29: return best_action_sequence,best_reward

4.3.2. Reordering policy network based on attention mechanism

To further optimize the transaction ordering scheme, RL-BES introduces a reinforcement
learning network based on the attention mechanism. In this model, the policy network employs
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multi-head attention and residual connections. These are combined with layer normalization
and entropy regularization to efficiently capture the complex relationships in transaction
sequences and enhance the network’s exploration capability.

The core idea of the network is to use the self-attention mechanism to compute the weight
of each transaction in the sequence. Through the multi-head attention mechanism, the network
performs weighted summation[39]. This allows the network to simultaneously focus on
information at different positions in the transaction sequence, ensuring effective integration of
global information.

The model updates the network weights through the backpropagation algorithm, aiming
to maximize the reward function for the transaction sequence. At each update step, the model
predicts the probability of the next action based on the input state. These probabilities reflect
the likelihood of each transaction being selected as the optimal one. Eventually, the model
continuously learns and optimizes the reordering strategy for the transaction sequence. The
structure of the network is shown in Figure 4, and the detailed design is as follows:

¢ Input and fully connected layers: the input to the reordering strategy network is the
feature vector representing the transaction sequence state. First, two fully connected
layers are used for feature extraction, mapping to 128-dimensional and 64-dimensional
hidden layers, respectively. Each layer uses the ReLU activation function, allowing the
network to capture the nonlinear features of the transaction sequence. During this process,
residual connections are introduced to prevent vanishing or exploding gradients. This
is especially important in deeper networks, where residual connections help by adding
the input directly to the output through shortcut connections, enhancing the network’s
expressiveness.

To maintain the stability of the network output, layer normalization is applied to ensure
the output of each layer is uniformly distributed, reducing fluctuations during training.
Additionally, the Dropout mechanism is used to randomly deactivate some neurons,
effectively preventing overfitting.

e Multi-head attention mechanism: after processing through the initial fully connected
layers, the network introduces a multi-head attention mechanism to further capture global
dependencies in the transaction sequence.

The multi-head attention mechanism allows the network to focus on the sequence from
multiple perspectives, improving its ability to model complex transaction relationships.
Through multiple attention heads, the network learns the associations in the transaction
sequence from different feature spaces, enhancing its ability to capture global depen-
dencies. This step concatenates the outputs from each attention head and passes them
through another fully connected layer.

e Output layer: after processing through the multi-head attention mechanism, the output
layer of the network maps the features back to the same dimensions as the input. This
generates a probability distribution for the selection of each transaction.

The Softmax function is used to convert the output into valid probabilities, ensuring that
the probability of all transaction sequences falls between 0 and 1 and sums to 1. This
enables effective strategy selection.

e Loss function and policy update: the loss function of the network uses negative log-
likelihood loss, combined with reward signals and an entropy regularization term for
optimization. The loss function is expressed as follows:

L:—Zlogng(ai|s,~)-r,~—/lH(7r9) (10)
i=1
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4.3.3.

where 7g (a;|s;) represents the probability of selecting action a; under state s; with policy
network parameters 6. r; is the corresponding reward. H(7g) is the entropy of the policy,
and A is the hyperparameter controlling the strength of exploration.

By calculating the logarithm of the action probabilities, the network can guide policy up-
dates while maximizing the expected reward. The introduction of entropy regularization
helps to increase the network’s exploration ability, preventing it from getting stuck in
local optima too early. The exploration weight allows the network to balance between
exploration and exploitation when selecting strategies.
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: O
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[1,0,0,1..] o (128 units) | | (0.5) 5 (64 units) ' O 1 softmax action_probs
O O O
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FC1 Residual FC2 Residual
(128 units) (64 units)

Figure 4. Reordering policy network.

Parameter policy network based on CNN

In terms of parameter optimization, RL-BES uses a reinforcement learning model based on
convolutional neural networks (CNNs) to update key parameters in DeFi transactions. CNNs
are effective in capturing spatial correlations between parameters and improving optimization
performance through layer-by-layer convolution operations[40]. The network represents each
parameter as a two-dimensional matrix input, extracts features through convolutional layers,
and adjusts adaptively in combination with reinforcement learning. The structure of the
network is shown in Figure 5, and the detailed design is as follows:

Input and convolutional layers: the first part of the network uses two convolutional
layers with 16 and 32 output channels, respectively, to extract local features from the
input transaction state. This state is treated as a one-dimensional data sequence, and the
convolutional layers are used to identify important patterns in local regions of the input
data.

Each convolutional layer is followed by a ReLU activation function to introduce nonlin-
earity. The output of the convolutional layers is flattened into a one-dimensional vector
for further processing by the fully connected layers.

Fully connected layers: after the convolutional layers, the output is passed through
three fully connected layers. These layers progressively reduce the dimensionality of
the data and generate the final parameter values. Each fully connected layer is followed
by a ReLU activation function to maintain nonlinearity. Additionally, normalization is
applied to each layer to stabilize the training process and ensure standardized outputs
across layers.

Furthermore, after the first two fully connected layers, Dropout layers are introduced to
prevent overfitting, ensuring good generalization on unseen data.

Output layer: the output layer of the network is responsible for predicting the specific
values of the transaction parameters. After passing through multiple fully connected
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layers, the features are mapped back to the same dimensions as the input. The final
output is generated through a ReLU activation function.

The main purpose of using the ReLU activation function is to ensure that the predicted
parameter values are non-negative, as parameters such as transaction amount and slippage
range must be valid non-negative values.

e Loss function and policy update: the network’s loss function and policy update are
consistent with the reordering policy network. It also uses a negative log-likelihood loss,
combined with reward signals and an entropy regularization term for optimization.
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(128 units) (64 units)

Figure 5. Parameter policy network.

5. Experiment and results

5.1. Tool design

To validate the effectiveness of our RL-BES system in optimizing MEV on the blockchain, we
designed a simple experimental tool using Python to simulate a local Ethereum environment.
The tool is built on the Hardhat [41] framework, which offers a powerful suite of tools to
compile, deploy, and debug smart contracts with ease. One of its standout features is the ability
to run a local Ethereum network that can simulate the behavior of the mainnet, allowing for
efficient testing and iteration in a safe and controlled environment. We have used it to simulate
private forks of Ethereum locally by connecting to an Ethereum archive node via RPC.

Additionally, the evaluation part of the tool incorporates the overall structure of RL-BES,
including core functions such as prediction, feedback, and recording. In each experiment,
the transaction sequence is processed based on the sorting scheme generated by RL-BES
and executed on the local Ethereum private fork. The collected results provide support for
subsequent experimental analysis.

5.2.  Experiment design

5.2.1. Dataset

For the experiment, we create a dataset which includes historical transaction data
from three popular AMMs on the Ethereum blockchain—UniswapV2, Sushiswap, and
UniswapV3—along with one of the most popular lending protocols, AaveV2.

Firstly, we choose a set of data primarily consisting of blocks where liquidity events on
Sushiswap and UniswapV?2 exceed 500 ETH, liquidity events on UniswapV3 exceed 1000
ETH, and liquidation events involving collateral (ETH) on AaveV2. During data collection,
each block was uniquely categorized using a priority-based classification approach. Aave, as a
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lending protocol, is fundamentally different from decentralized exchange (DEX) protocols.
Therefore, when blocks containing transactions that meet the criteria are encountered, those
blocks are first selected for inclusion in the Aave-specific dataset, and only after that is the
priority relationship between DEX protocols considered. Blocks satisfying the criteria for DEX
protocols were assigned with priority to UniswapV3, followed by UniswapV2 and Sushiswap.
For example, if a block contained transactions matching both UniswapV3 and UniswapV?2
standards, it would be categorized as UniswapV3, and only its UniswapV3 transactions would
be semantically modeled. This ensures a one-to-one relationship between blocks and their
respective datasets.

Then, to ensure data quality, blocks containing invalid transactions or excessively complex
interactions were identified and removed. We define complex transactions as those involving
excessively long dependency chains or multiple nested smart contract calls. These transactions
tend to introduce significant uncertainty in the modeling process due to their non-linear
dependencies, where the outcome of one transaction might depend on multiple preceding
transactions. This non-linearity complicates the state space representation, making it harder
for the model to accurately predict the effects of these transactions and leading to incorrect
estimations of rewards and suboptimal decision-making.

Due to these issues, such blocks with complex transactions are excluded from the dataset.
Removing these data helps the model maintain focus on more predictable and consistent
patterns, ensuring more reliable and accurate results.

Finally, a total of 286 data entries, representing 3.2% of the dataset, were removed. After
carrying out symbolic semantic modeling on these remained data, we have a dataset with a
total of 8542 blocks. The data distribution is shown in Table 2.

Table 2. Datasets overview.

Dataset Blocks
AaveV2 4189
UniswapV3 3121
UniswapV2 869
Sushiswap 363

5.2.2. Experiment baseline and comparison

To measure the performance of RL-BES, we use Flashbots as a baseline model and Lanturn, a
similar MEV extraction tool, as the comparison in our experiments.

Flashbots is a widely adopted MEV extraction tool in the blockchain ecosystem, known
for its robust transaction bundling mechanism and API standardization. It serves as a practical
industry benchmark for evaluating MEV optimization solutions. Flashbots generates optimal
transaction orderings through its automatic bidding mechanism, where searchers typically bid
for the highest possible MEV profits. Thus, the bid MEV opportunities from the transaction
bundles obtained via the Flashbots API [42] serve as the minimum base data for judging the
extractable MEV in a given block.

Lanturn proposes a traditional genetic algorithm-based framework for MEV detection,
capable of exploring transaction sequences that achieve the optimal MEV within a block,
representing traditional heuristic optimization techniques. This makes it an ideal candidate
for comparing methodological differences between traditional and reinforcement learning-
based approaches. Additionally, its publicly available performance data facilitates objective
evaluation. Therefore, To evaluate the advanced nature and efficiency of the RL-BES algorithm,
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we compare its performance with that of both Flashbots and Lanturn on the same dataset to
verify the effectiveness of our algorithm.

5.3.  Experimental setup

Our experiments are run on a high-performance server equipped with 36 Intel(R) Core(TM)
19-10980XE processors and 256 GB of memory. This setup ensures sufficient computational
resources and memory support for large-scale transaction reordering tasks. To simulate a
real Ethereum blockchain environment, the experiment uses the Ethereum archive node RPC
provided by Merkle[43], with Hardhat as the local development environment. The Hardhat
version used is 0.8.4, and the simulated private fork is based on the "London" hard fork.

5.4.  Experimental results

5.4.1. MEV extraction performance

In order to comprehensively evaluate the MEV extraction performance, we selected a range of
Ethereum blocks with block heights from 11834049 to 14986955 as our evaluation range. We
conducted 50 independent trials for Lanturn and RL-BES and recorded the average MEV for
each block. Within this evaluation, we included several prominent DeFi platforms, including
Uniswap, Sushiswap, and AaveV2, to perform the MEV calculation for RL-BES and compare
it with Flashbots baseline and Lanturn.

From Figure 6 and Figure 7, we can observe that the RL-BES model significantly outper-
forms Flashbots baseline in the majority of blocks in terms of MEV extraction, demonstrating
both greater stability and higher extraction values. Furthermore, RL-BES exhibits competitive
performance against Lanturn, often yielding better results in certain block ranges, thus indi-
cating the efficacy of our reinforcement learning-based optimization for transaction ordering.
More importantly, in blocks with higher MEV opportunities, RL-BES consistently extracts
more value than the other methods, which demonstrates the significant advantages of RL-BES
on these blocks.

To provide a detailed quantitative comparison, we calculated key statistical metrics for
each method, including the mean and quartiles (1st quartile, median, and 3rd quartile) of the
extracted MEV across the selected blocks. These metrics allow for a deeper understanding of
the robustness of the extraction process. Additionally, we also computed the standard deviation
and range of the mean to assess the consistency within the MEV values.

Table 3 summarizes the statistical performance of MEV extraction by RL-BES, Flashbots,
and Lanturn across the evaluation blocks. RL-BES achieves a mean MEV extraction increase
of 337.3% compared to Flashbots baseline and a 57.5% improvement over Lanturn on average.

17



Blockchain Article

100
—— Flashbots

904 —— RL-BES

80

70

60

50 1

MEV (in ETH)

40 4
30 4

20 A

AR D DD D
P &SN DR P
5
o
v

N S & gV
>N D7 07 OV AV
Sy AV O .07 5O NP7 W 6T A &
NN N AN SN NN MNP AN RN PN SN AN

Block Number
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Figure 7. Maximum MEV extracted by RL-BES and Lanturn.

Table 3. Statistical comparison of MEV extraction performance.

Metric RL-BES (ETH) Lanturn (ETH) Flashbots (ETH)
Mean 29.3 (21.5) 18.6 (2.2) 6.7
Ist Quartile (Q1) 21.2 16.2 5.1
Median 27.3 19.3 7.9
3rd Quartile (Q3) 34.2 21.5 9.0

5.4.2. Runtime performance

In the context of MEV extraction, runtime is a critical factor, especially when comparing
different search algorithms. Since the search algorithms of RL-BES and Lanturn differ
significantly, it is important to establish a unified method of evaluation. To ensure a fair
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comparison, we measured the time taken by each algorithm to find the maximum MEV in
their respective search processes. Specifically, we recorded the runtime as the earliest point at
which the two algorithms converged on the highest MEV value.

We conducted 50 independent trials for each algorithm, across a block range from
11834049 to 14986955, and recorded the average runtime for each block. By taking the
mean of these 50 runs, we obtained a reliable estimate of the average time taken by each
algorithm to reach the optimal solution in different blocks.

Figure 8 clearly illustrates the runtime performance comparison between RL-BES and
Lanturn. The RL-BES model, which combines reinforcement learning with Monte Carlo
Tree Search (MCTS), demonstrates significantly faster convergence than Lanturn. Lanturn,
which employs traditional genetic algorithms and Gaussian sampling for exploration, generally
requires more time to achieve convergence, as seen by the consistently higher runtimes
across the block range. Besides, in blocks with higher transaction complexity, such as block
13541873, 13935986 and 14724212, RL-BES demonstrates a notable reduction in runtime
compared to Lanturn.

Table 4 presents a statistical summary of the runtime data collected from the 50 experi-
ments with the associated standard error for both RL-BES and Lanturn. The table includes the
mean and variance for each tool’s runtime, providing a comprehensive view of their perfor-
mance. The smaller errors of the mean for RL-BES in most cases indicate that its runtime is
more consistent across multiple experiments.

Table 4. Statistical comparison of runtime for RL-BES and lanturn.

Statistic RL-BES Runtime (s) Lanturn Runtime (s)
Mean 28.3 (x1.8) 69.1 (+4.5)
Variance 15.3 86.4

As shown in the table, the mean runtime for RL-BES is 28.3 seconds, which is significantly
lower than the 69.1 seconds required by Lanturn on average. The variance in runtime for
RL-BES is much smaller (15.3 compared to 86.4 for Lanturn), indicating that RL-BES not
only converges faster but also exhibits more consistent performance across different blocks.
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Figure 8. Average runtime of MEV extraction.
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5.4.3. Sample efficiency and stability performance

To evaluate RL-BES’s performance in a small-sample setting, we conducted experiments on a
representative block with height of 14046466, which contains a limited number of complex
transactions. The experiments involved 50 independent trials which involve 20 iterations
and with different random initializations, focusing on the model’s ability to adaptively iterate
(sample efficiency) and maintain consistency in convergence behavior (stability).

The results are visualized in Figure 9, which shows the average iterations required for
convergence across all experiments. In all experiments, RL-BES achieved convergence in an
average of 8 iterations out of a total of 20 iterations. The tight distribution and fast process of
convergence reflects its ability to adaptively optimize within a small transaction dataset while
maintaining stability under varying initialization conditions.
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Figure 9. Average iterations for convergence.

6. Discussion

In this paper, we propose and implement a blockchain economic security system based on
reinforcement learning, called RL-BES, aimed at optimizing the Maximum Extractable Value
(MEYV) in blockchain. This section discusses the methodology and the experimental results,
analyzes the system’s performance advantages and limitations, and suggests potential future
improvements.

6.1. Methodology

RL-BES combines model-base and model-free reinforcement learning to optimize transaction
sequences and parameters. This choice reflects the strengths and limitations of standard
reinforcement learning approaches:
e Value-based methods: while effective in discrete action spaces, these methods struggle
with RL-BES’s continuous action requirements, such as parameter adjustments.

e Policy-based methods: though capable of handling continuous tasks, standalone policy
optimization methods suffer from high sample inefficiency and slow convergence in
complex environments.
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e Actor-critic methods: these methods strike a balance between value and policy optimiza-
tion but lack the planning capabilities needed for large-scale search tasks like transaction
reordering.

e Off-policy methods: off-policy learning, as employed in RL-BES, enables efficient
utilization of samples through experience replay, which is critical for MEV extraction
tasks that require optimizing over different data.

The hybrid approach in RL-BES leverages MCTS for effective exploration and plan-
ning, while policy networks dynamically adapt to blockchain’s volatile environments. This
integration balances exploration and exploitation, ensuring robust performance in the high-
dimensional and dynamic challenges of MEV optimization.

6.2. Effectiveness

The experimental results demonstrate the strong performance of the RL-BES system in MEV
extraction. Compared to traditional MEV extraction algorithms, RL-BES’s reinforcement
learning framework adapts strategies autonomously. Combined with Monte Carlo Tree Search
(MCTYS)), it efficiently compresses the search space for transaction sequences, reducing compu-
tational overhead, and quickly identifying hidden arbitrage opportunities. In complex on-chain
environments, our method captures interactions between multiple smart contracts with just
a simple contract semantics model. It continuously adjusts the transaction ordering strategy
to optimize MEV extraction. This versatility gives RL-BES an advantage over traditional
methods that rely on static or rule-based searches.

In terms of blockchain economic security, our model enables researchers to quantify
and analyze the frequency of MEV attacks and potential security vulnerabilities in various
protocols by optimizing MEV extraction and observing outcomes. Besides, our model provides
a valuable tool for blockchain security researchers, allowing them to simulate and optimize
various scenarios. It also enables the customization of network structures, encouraging
researchers to update and improve the model flexibly to further analyze the economic security
of blockchains and protocols. Furthermore, by studying improved MEV ordering strategies in
historical blocks, researchers can uncover new MEV extraction strategies and potential attack
methods.

6.3. Challenges

Despite RL-BES’s excellent performance, particularly in handling large-scale blockchain
transaction sequences, there are areas that need improvement.

First, the inference and backpropagation processes of the reinforcement learning model
demand substantial computational resources. The computational cost of MCTS is primarily
driven by the number of simulations and the branching factor of the search tree. RL-BES em-
ploys a policy network for leaf node evaluation, reducing the need for exhaustive simulations.
Additionally, UCB1-based action selection balances exploration and exploitation, improving
efficiency. Reinforcement learning networks also incur costs during training, particularly
with attention mechanisms and CNN-based architectures. By utilizing mini-batch training
and experience replay, RL-BES mitigate the computational burden while maintaining sample
efficiency.

However, as the number of transactions within a block increases, the depth and breadth
of the tree grow exponentially. In the face of highly complex transaction sequences, the
convergence speed of the model is limited. Therefore, hardware performance and network
structure are bottlenecks that must be addressed. Additionally, while MCTS compresses the
search space and can explore better transaction sequences, optimizing computational efficiency
remains a priority for future work.

The system’s scalability across different blockchains is also a significant challenge. Var-
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ious blockchains, such as Binance Smart Chain and Polygon, possess distinct technical
architectures, transaction rules, and smart contract standards. For instance, some blockchains
may adopt different consensus algorithms, which can impact the speed of transaction confir-
mation and the stability of transaction ordering, thus affecting the RL-BES system’s MEV
optimization strategies. The differences in smart contract functions and interfaces among
blockchains may necessitate readaptation during semantic modeling and parameter adjustment,
increasing the complexity of the system.

Besides, the process of modeling new DeFi protocols requires significant manual effort.
Specifically, for each protocol, we first gain a comprehensive understanding of the protocol’s
execution principles, key functions, and interaction methods. Additionally, we also need to
obtain relevant transaction data via API calls for the initial semantic modeling process. This
step typically takes around one week. Once the semantic model is built, the next step involves
replaying and simulating the transactions to verify the correctness of the model by checking
the normal execution of blocks, which takes approximately 1 to 2 days.

This dependence on manual modeling and verification impacts the scalability of RL-BES,
as the time required for both tasks increases with the addition of more protocols. As such, a
future direction of our research will focus on the development of automated tools for protocol
modeling and verification, which will improve efficiency and enable the system to scale
effectively.

6.4. Potential

The flexibility and scalability of the RL-BES system provide significant potential for its
application in real blockchain environments. As blockchain technology and decentralized
finance (DeFi) ecosystems continue to evolve, the complexity of on-chain arbitrage and
liquidation opportunities will increase. RL-BES offers a promising design approach that can
be extended to support more complex smart contracts and transaction logic for MEV detection
and extraction, addressing increasingly intricate MEV scenarios.

6.5. Future work

Our future improvements will focus on the following aspects:

e More efficient model architecture and algorithms: we plan to introduce more efficient
reinforcement learning networks, improving inference speed and feature analysis capa-
bilities by adjusting network architecture and adding new modules. Besides, we aim to
improve pruning algorithms and parallelized execution to reduce redundant computations
and increase efficiency.

e Hardware advancements: RL-BES’s runtime is significantly influenced by the perfor-
mance of computational devices. With advancements in multi-core CPUs and GPUs,
the system’s runtime can be further reduced. We will explore the integration of high-
performance hardware with RL-BES will be crucial for its practical application in
real-time environments.

e Adaptation to diverse DeFi applications: we aim to enhance RL-BES to support a
broader range of DeFi applications, enabling it to better address the challenges posed by
the rapidly evolving DeFi landscape.

e Expansion to multi-chain environments: while our experiments primarily focused on
the Ethereum blockchain, future efforts will extend the RL-BES system to support other
major blockchains such as Binance Smart Chain (BSC) and Polygon. Cross-chain MEV
extraction will be a key direction for future development.
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6.6. Ethical implications and risks

While RL-BES provides significant advancements in MEV extraction, its application raises
several ethical concerns that warrant careful consideration:

e Equity and accessibility: the complexity of RL-BES and its reliance on computational
resources may disproportionately benefit teams and institutions with advanced techno-
logical capabilities. This could exacerbate inequalities within the blockchain ecosystem,
limiting smaller participants’ access to the benefits of MEV optimization.

e Decentralization risks: large-scale adoption of RL-BES by dominant players may lead
to a concentration of MEV rewards, potentially undermining the decentralized ethos of
blockchain. Such a scenario risks shifting power dynamics toward a few well-resourced
actors, contradicting the principles of financial inclusion.

e Impact on Ethereum’s Proposer-Builder Separation (PBS): although PBS is designed
to mitigate centralization risks in MEV extraction, the effectiveness of this mechanism
could be challenged if advanced tools like RL-BES amplify disparities in technological
capacity among builders and validators.

7. Conclusion

In this paper, we present RL-BES, a reinforcement learning-based system for optimizing
Maximum Extractable Value (MEV) on blockchains, designed to improve blockchain eco-
nomic security. By combining deep reinforcement learning with Monte Carlo Tree Search, our
system adapts transaction ordering strategies across diverse blockchain transaction sequences,
significantly improving MEV extraction efficiency.

Experimental results show that RL-BES performs excellently in various DeFi transaction
scenarios, surpassing Flashbot baseline data and traditional MEV extraction methods.
Additionally, we developed a customized evaluation tool for the system, allowing us to
validate the effectiveness of our models and algorithms while providing support for future
research. Moving forward, we plan to continue optimizing the model architecture and
inference mechanisms, as well as enhancing its capability to model and adapt to various DeFi
applications.
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