
ELS Publishing Blockchain

Article | Received 26 December 2024; Accepted 12 March 2025; Published 26 March 2025
https://doi.org/10.55092/blockchain20250006

Faster dynamic asynchronous distributed random beacon
Hongjian Yang1, Yuan Lu1,*, Wu Chen2, Yang Zhang2, Rong Wei2 and Jieyu Li2

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
2 Beijing Institute of Satellite Information Engineering, Beijing, China

* Correspondence author; E-mail: luyuan@iscas.ac.cn

Highlights:

• Efficient asynchronous distributed key reconfiguration.

• Faster dynamic asynchronous distributed random beacon.

Abstract: random beacons are crucial components in blockchain consensus, secure multiparty
computation, and decentralized applications, providing high-quality randomness for these
applications. However, random beacon services operated by a single organization face
centralization issues and cannot be fully trusted by mission-critical applications due to possible
breaches and collusion. Asynchronous distributed random beacon protocols are proposed
as a promising alternative to such centralized services, since they can generate high-quality
randomnesses that are unbiased and unpredictable for critical applications in the adversarial
asynchronous Internet. However, they either suffer from expensive communication overhead or
lack accommodation for efficient dynamic participation. To address these issues, we propose a
practical asynchronous random beacon protocol that can be efficiently reconfigured to support
rotations of participating nodes, reducing the reconfiguration’s communication complexity
from O(λn3) to O(λκn2), where λ is the cryptography security parameter, n is the size of
nodes in the network, and κ is the small size of a any-trust sub-committee (which approximates
a constant number about several dozens). We also demonstrate the performance and security
of our scheme through thorough analysis and extensive experiments.

Keywords: distributed random beacon; asynchronous multi-party protocol; fault-tolerance
system; threshold cryptosystem reconfiguration

1. Introduction

Random beacon is a fundamental cryptographic primitive to provide high-quality unpredictable
randomness, which is essential for many blockchain applications, e.g., it is a key building block
for decentralized gambling and lotteries [1, 2], asynchronously secure consensus protocols
[3, 4, 5], secure multiparty computation protocols for privacy-preserving smart contracts
[6, 7], and more. Most random beacons in the wild are implemented through some centralized
web services, allowing users to obtain fresh random numbers via HTTP requests (e.g., NIST
[8], Random.org [9]). However, such random beacon services place too much trust in a
single organization. That said, in the worst case if the centralized service providers are
compromised, those random beacons would become fully predictable by the adversary, thus
completely violating the desired security and causing severe vulnerabilities in mission-critical
applications.

To address the overtrust issue of centralized random beacon services, researchers have

0 Copyright©2025 by the authors. Published by ELSP. This work is licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted use, distribution, and reproduction in any medium provided the original work is
properly cited

Yang L et al. Blockchain 2025(2):0006

https://elspublishing.com/papers/pj/1538893057218203648
https://elspublishing.com/papers/pj/1538893057218203648

Blockchain Article

proposed distributed random beacon protocols [10, 11, 12, 13, 14, 15, 16, 17], making a
set of distributed nodes to collectively generate high-quality randomness in a distributed
manner, such that the returned randomness would be unpredictable and unbiased, as long
as the number of corrupted nodes does not exceed a certain threshold. For mission-critical
blockchain applications, asynchronous distributed random beacons (ADRBs) are particularly
enticing, as they can thrive in the adversarial asynchronous Internet environment, despite
the network messages could be arbitrarily delayed by the adversary. However, as Table 1
illustrates, the existing asynchronous distributed random beacon protocols still suffer from the
following problems:

Practical ADRBs from threshold cryptosystems cannot accommodate dynamic changes
of participating node. It is fairly known that ADRBs can be efficiently constructed from
(non-interactive) threshold cryptosystems like BLS threshold signature [14, 18, 19]. For
example, the seminal study of Cachin et al. [18] presents the first practical asynchronous
random beacon protocol from Shamir secret share based non-interactive threshold
cryptosystem, conditioned on computational hardness assumptions like the intractability of
the Diffie-Hellman problem or the RSA problem, with a moderate communication complexity
of O(λn2) per generated randomness. Nevertheless, threshold cryptosystems require an
initialization setup phase via so-called Asynchronous Distributed Key Generation (ADKG)
[20, 21, 22, 23, 24, 25], which initially disperses the threshold private keys to a fixed set of
participating nodes in a distributed manner. Such setup assumption phase fixes the identities
of participating nodes, from which, each node has to obtain an exclusive threshold private key
as a Shamir secret share of the master private key, and subsequently use the key share during
the whole execution of ADRB protocols. Consequently, any change of participating nodes
after the initialization phase might require a re-configuration to refresh the threshold private
keys to accommodate the leaving nodes and the joining nodes, by executing another ADKG
protocol. Unfortunately, the ADKG based re-configuration could be very complicated and
extremely computationally costly (e.g. at least incurs cubic communication complexity), thus
introducing cumbersome overhead when participating nodes are dynamically changing.

Other dynamic-friendly ADRBs have hindersome complexities and questionable
practicability. Besides those efficient ADRBs built from pre-established threshold
cryptosystems, it is also known that one can construct ADRBs on the fly without the
setup assumption of threshold cryptosystems, relying on Asynchronous Verifiable Secret
Sharing (AVSS) [20, 26, 27, 28, 29, 21, 22] in combination of asynchronous Byzantine
agreement (ABA) modules. Here AVSS is a two-phase protocol that allows a dealer to
confidentially disperse a secret across n participating parties during a sharing phase, after
which a reconstructing phase can be invoke to let the honest parties collectively recover the
earlier committed secret. Then, the core idea becomes that each node executes an AVSS
protocol to verifiably share a randomly sampled secret, and then all nodes collectively execute
some ABA protocol(s) to decide a set of completed AVSS protocols, thus inducing an
unbiased randomness from those solicited AVSS protocols. However, the communication
overhead of such AVSS-based approach is typically very high, often reaching O(λn3). This is
because the communication lower bound of any AVSS protocol is quadratic due to the seminal
Dolev-Reischuk bound [30]1, so the overall communication complexity of n distinct AVSS
protocols naturally causes a cubic communication overhead, which is certainly asymptotically
worse than the common O(λn2) complexity of ADRBs built from threshold cryptosystems,
and significantly hurts the performance of such AVSS-based ADRBs. Moreover, most of these
protocols [20, 26, 27, 21, 22] only realize a weak variant of distributed random beacon, such
that with a non-negligible probability, their each output might be predictable by the adversary
in advance, or the honest participants might even return different output values.

1Note that Dolev-Reischuk bound [30] is originally about Byzantine broadcast instead of AVSS, but AVSS implies an asynchronous
reliable broadcast in a complexity-preserving manner, so the Dolev-Reischuk lower bound is also applied to AVSS.

2

Blockchain Article

Given the limitations of existing ADRB protocols, we ask the following question:
Can we design a practical asynchronous distributed random beacon protocol that

simultaneously supports efficient dynamic participation, e.g., both its randomness generation
and participant reconfiguration attain only (quasi-)quadratic communication overhead?

Table 1. Comparison with existing ADRB protocols and their reconfiguration approaches,
where λ is the cryptographic security parameter (e.g. several hundred bits) and κ is a statistic
security parameter with constant size.

Design
Paradigm

Randomness Generation
Protocols

Per-Randomness
Communication

Reconfiguration
Protocols

Reconfiguration
Communication

Threshold
crytosystem
+ ADKG

Cachin et al. [18]
O(λn2)

ADKG w/ private
key over field [23]

O(λn3)

[18] + Gurkan et al. [31]
ADKG w/ private
key over group [20]

Direclty from
AVSS without
pre-configured
threshold
crytosystem

Dolev et al. [29]

O(λn3) or more n.a. n.a.
Abraham et al. [21, 20]
Bandarupalli et al. [28]
Gao et al. [22]
Das et al. [32]

Threshold
crytosystem
+ more efficient
reconfiguration

This paper §4.2.
adapted from [18, 31, 33]

O(λn2)
This paper §4.3.
our new design

O(λκn2)

1.1. Our contribution

This paper answers the above question in the affirmative, by constructing a novel practical
reconfiguration-friendly asynchronous distributed random beacon protocol from Public
Verifiable Secret Sharing (PVSS) and Multi-valued Validated Byzantine Agreement (MVBA),
in order to support efficient change of participating nodes and simultaneously attain low
communication overhead. In greater details, our contributions can be summarized as follows:

• We design a novel and efficient asynchronous distributed random beacon protocol based
on a recent threshold non-interactive signature scheme (that is efficiently realized through
the variant of Shamir secret sharing over elements in the cyclic groups instead of fields).
The feature further empowers efficient and aggregatable PVSS construction on top of
such special kind of secret sharing, which later becomes a key factor of reducing the
reconfiguration overhead by taking advantage of PVSS aggregation.

• Moreover, we design an efficient reconfiguration protocol for the above asynchronous
distributed random beacon protocol, by utilizing (i) an aggregatable publicly
verifiable secret sharing mechanism specially tailored for group elements and (ii) an
communication-optimized asynchronous multi-valued Byzantine agreement protocol.
The resulting reconfiguration phase requires only O(λκn2), in contrast to the O(λn3)
communication cost of trivial reconfiguration from ADKG. Furthermore, as the
parameter κ is asymptotically constant (cf. §5.1. for the rigorous analysis of the
parameter choice), our result attains asymptotic improvement over the state-of-the-art
reconfiguration protocols.

• Furthermore, we prove the security properties and complexity metrics of our proposed
asynchronous distributed random beacon protocol and its corresponding reconfiguration
protocol. Thereby, we demonstrate the security assurance of our protocol against any
probabilistic polynomial-time bounded adversary that might corrupt up to t < n/3 nodes

3

Blockchain Article

in the system,2 and reveal the rationale of designs behind performance improvement.
• Finally, we implement the reconfiguration protocol for the proposed ADRB scheme,

with another dedicated optimization of reducing the number of needed PVSS for
aggregation (i.e. reducing n PVSS transcripts used during the reconfiguration phase
towards a constant number independent of n), and we conduct extensive evaluations
to experimentally compare with a baseline reconfiguration protocol optimized from
one of the state-of-the-art ADKG protocol from Das et al. [23]. 3 As by Table 2
highlights, when n≥ 16 nodes, our design achieves 36%-41% reduction in the critical
reconfiguration latency, demonstrating its superior practicality in the dynamic setting
with rotating participants.

Table 2. Experimental comparison between our reconfiguration protocol and a naive
reconfiguration protocol using an ADKG optimized from Das et al. [23] (cf. §6. for
implementation details and concrete experimental setup).

Protocols
Latency for varying scales

n = 4 n = 16 n = 31 n = 64

Das et al. [23] 0.69 sec 7.20 sec 26.47 sec 111.18 sec

This work 0.50 sec (↓26.7%) 4.58 sec (↓36.4%) 15.64 sec (↓40.9%) 69.63 sec (↓37.4%)

1.2. Structure of remaining sections

The rest of the paper is organized as follows: §2 introduces the cryptographic and distributed
computing primitives that are used by our designs; §3 formulates the problem of asynchronous
distributed random beacon with dynamic participation; §4 explains the details of our proposed
protocols, including the initialization protocol, the random beacon generation protocol, and the
reconfiguration protocol; §5 formally analyzes the security and performance of our protocol
design; §6 presents the experimental evaluations of our design to demonstrate its feasibility;
§7 takes a careful review of the pertinent relevant studies in the synchronous setting, and
discusses their limitations in contrast to this work; finally, §8 summarizes this work.

2. Preliminary

For completeness of our presentation, this section would provide a brief introduction to the
cryptographic primitives and distributed protocols that would be used in our protocol design.

2.1. Multi-valued validated byzantine agreement (MVBA)

The concept of Byzantine Agreement (BA) [34] was introduced by Lamport et al. in 1982.
BA ensures that all honest nodes achieve a common output in a distributed network, even in
the presence of Byzantine nodes, which may arbitrarily misbehave like sending equivocating
messages to different nodes or simply stay silent.

To introduce the advanced notion of multi-valued validated Byzantine agreement (MVBA)
[5, 35, 36, 4], we first briefly recall the classic definition of Asynchronous Binary Agreement
(ABA), which is a distributed multiparty protocol enabling all participating honest nodes
to reach a binary consensus (i.e., output 0 or 1) in an asynchronous network environment,
despite the presence of Byzantine nodes. MVBA, on the other hand, is a move advanced
consensus notion that allows all honest nodes to agree on one of the input values from all
nodes in an asynchronous network environment against t < n/3 colluding malicious nodes.

2Note that in a dynamic system, both the system scale n and the number of faulty nodes t can change dynamically. Nevertheless, we
generally use n and t to denote these varying parameters unless otherwise specified or when context eliminates ambiguity.

3For fair comparison, both implementations adopt the same underlying cryptographic primitives and use the same cryptographic libraries.
Hence, our experiments effectively demonstrate the efficiency gain from our protocol design (instead of else engineering optimizations).

4

Blockchain Article

Throughout this paper, we would adopt the state-of-the-art MVBA protocol Dumbo-MVBA as
the instantiation for asynchronous consensus component, which is known for its asymptotically
optimal communication complexity of only O(ℓn+λn2) (where ℓ represents the bit-length
of consensus input and λ is the bit-length of a cryptographic security parameter). In greater
details, any MVBA protocol, including Dumbo-MVBA, shall satisfy the following properties
except with negligible probability:

• Termination. If all honest parties receive value inputs to activate MVBA, each honest
party outputs a value.

• Agreement. If any two honest parties output v and v′, then v = v′.
• Valiaity. If any honest parties output a value v, then the value must be able to pass a

predefined assertion.

2.2. Publicly verifiable secret sharing (PVSS)

Secret Sharing is a widely-adopted technique that can divide a secret value into n fragments
called secret shares, requiring at least a threshold of shares to reconstruct the secret value. For
a distributed system with up to t malicious parties, the threshold is typically t + 1. Shamir
Secret Sharing [37] is the most classical construction of secret sharing, and it begins with
constructing a polynomial f (x) whose zero-point f (0) encodes the secret value s. As such,
the polynomial can be further evaluated at n distinct (and non-zero) points xi to obtain a set of
n different evaluations yi. These points (xi,yi) are then assigned to each node Pi, and yi is the
so-called Shamir’s secret share, and xi is simply a pre-specified index of Pi. Later, the secret
value s can be recovered using the Lagrange interpolation approach, once any t +1 evaluations
from distinct nodes have been collected.

Verifiable Secret Sharing (VSS) [38, 39, 40] adds a verifiability property to the Secret
Sharing scheme. In VSS, the dealer distributes the secret shares along with commitments to
the polynomial coefficients of the secret values. This allows participants to verify the validity
of the secret shares during the secret recovery phase using these commitments.

(Non-interactive) Public Verifiable Secret Sharing (PVSS) [41, 42, 43] further extends
each participant’s local verifiability in VSS to public verifiability, allowing anyone to verify that
the PVSS script indeed carries all participants’ valid secret shares (in some encrypted form). In
this paper, we can use a special aggregatable variant of Scrape PVSS [44] proposed by Gurkan
et al. [31], we refer the unfamiliar readers to literature [31, 22] for detailed description of
this aggregatable PVSS scheme. Informally speaking, a (non-interactive aggregatable) PVSS
scheme consists of four algorithms/protocols: PVSS.Deal, PVSS.Verify, PVSS.Aggregate,
and PVSS.Reconstruct, which executes as follows:

• The PVSS.Deal algorithm is used to generate the PVSS transcript, which consists of the
commitments and encryptions of all participants’ secret shares.

• The PVSS.Aggregate algorithm can be used to aggregate several different PVSS
transcripts into a single PVSS transcript, such that, the resulting secret shares (carried by
the aggregated PVSS) is also combined as the summation of previous shares.

• The PVSS.Verify algorithm allows each participant to verify the validity of the PVSS
transcript, such that a valid PVSS script would carry the ciphertext encrypting the valid
secret shares of all participants. Moreover, the verification function can also verify an
aggregated PVSS script, such that telling the identities of nodes contributing in this
aggregated PVSS.

• The PVSS.Reconstruct protocol is an interactive procedure executed by all (honest)
participants to collectively reconstruct the shared secret carried by a certain PVSS
transcript, despite the arbitrary influence of the malicious ones. Here the PVSS transcript
can also be an aggregated one.

In addition to the aggregatable PVSS scheme proposed by [31], we may consider
employing a PVSS scheme based on Paillier encryption combined with Pedersen/Feldman

5

Blockchain Article

polynomial commitments. This approach enhances efficiency and supports secret sharing over
fields, instead of being restricted to groups. However, the Paillier encryption based PVSS
lacks aggregatability. To address this, our dedicated implementation (cf. §6.1.) incorporates a
specialized aggregation technique that selects random PVSS transcripts from a sub-committee
with an honest majority. This ensures that even a straightforward concatenation of PVSS
transcripts, taken from half the participants in the honest-majority subcommittee, maintains an
asymptotically linear size in n.

2.3. Non-interactive unique threshold signature

(Non-interactive unique) threshold signature (TSG) [33, 45] is a representative scheme of
distributed cryptosystem, enabling a sufficiently large subset of multiple users to collaborate on
signing any given message (through a single step of communication). In a distributed network
with n users denoted as {Pi}i∈[n], the scheme ensures that a subset of n− t (honest) users
can cooperate to robustly generate the signature for any message m, but it is computationally
infeasible for t colluding (malicious) users to produce a valid signature for all messages
without the cooperation of other n− 2t honest users, which is known as unforgeability of
threshold signature. More detailedly, a threshold signature scheme consists of the following
algorithms:

• TSG.KeyGen: It generates the public key pk, a vector of individual public keys {pki}i∈[n],
and a vector of secret key shares {ski}i∈[n] of the private key sk. The public keys pk
and {pki}i∈[n] are published to all participants, and each secret key share ski is sent
exclusively to the participant Pi. Though this step can be performed by a centralized
algorithm through some trusted third-party (TTP) service, we do not assume such TTP
and would invoke a distributed protocol executed by all participants, called ADKG
[25, 20, 21, 22], to conduct the setup in a decentralized manner.

• TSG.PartialSign: Each participant Pi partially signs the given message using their secret
share of the private key ski, thus obtaining a share of signature σi (which is also called
the i-th “partial” signature).

• TSG.PartialVerify: Every participant Pi can verify that σ j is a valid partial signature
computed by Pj regarding the given message, using Pj’s individual public key pk j;

• TSG.Combine: Given a set of n− t valid partial signatures from distinct participants
regarding the given message, anyone can aggregate these n− t signature shares into
a valid “full” signature σ of the message, which is known as robustness of threshold
signature; Note that as we require the threshold signature scheme unique, namely, all
n− t subsets of valid signature shares would be combined into the unique σ .

• TSG.Verify: everyone can verify the validity of the aggregated signature σ using the
public key pk.

In the paper, we can adopt the non-interactive unique threshold signature scheme due to
Gurkan et al. [31] if we adopt the same authors’ proposal of aggregatable PVSS. However,
since we can also adopt Paillier encryption based PVSS to extend the secret key sharing over
standard prime fields, BLS threshold signature scheme can also be used (thanks to that our
implementation §6.1. adopts an aggregating technique to support Paillier encryption based
PVSS without hurting communication efficiency). According to data points reported in [31],
BLS threshold signature would outperform in both performance and size, and we stick with
this more efficient approach in our implementation.

2.4. Cryptographic hash function as random oracle

A hash function H : {0,1}∗←{0,1}λ can map arbitrary input strings to an output with fixed
length. Usually, a cryptographic hash function H is considered to be collision-resistance, i.e., it
is computationally infeasible for any P.P.T. adversary to find a pair of x ̸= x′ s.t. H(x) = H(x′)

6

Blockchain Article

with non-negligible probability. In this paper, we consider an ideal model of cryptographic
hash functions—random oracle [46]. Essentially, during our security analysis, we replace
H with an ideal black-box functionality (called random oracle). For each input that was not
queried before, the random oracle samples an output uniformly at random, and it also internally
maintains a table to record all queried inputs and their corresponding outputs, such that for
some already queried input, it can return what it earlier has outputted.

2.5. Erasure coding

A (k,n)-erasure code scheme [47] consists of two deterministic algorithms Enc and Dec. The
Enc algorithm maps any vector v = (v1, · · · ,vk) of k data fragments (called message word)
into an vector m = (m1, · · · ,mn) of n coded fragments (called code word), such that any k
elements in the code word m would be sufficient to reconstruct the message word v due to the
Dec algorithm. More formally, a (k,n)-erasure code scheme has the following syntax:

• Enc(v)→ m. On input a vector v ∈ Bk (message word), this deterministic encode
algorithm outputs a vector m ∈Bn (code word). Note that v contains k data fragments
and m contains n coded fragments, and B denotes the field of each fragment.

• Dec({(i,mi)}i∈S)→ v. On input a set {(i,mi)}i∈S where mi ∈B, and S⊂ [n] and |S|= k,
this deterministic decode algorithm outputs the message word v ∈Bk.

We require (k,n)-erasure code scheme is maximum distance separable, namely, the
original data fragments v can be recovered from any k-size subset of the coded fragments m,
which can be formally defined as:

• Correctness of erasure code. For any v ∈ Bk and any S ⊂ [n] that |S| = k,
Pr[Dec({(i,mi)}i∈S) = v | m := (m1, · · · ,mn)← Enc(v)] = 1. If a vector m ∈ Bn is
indeed the code word of some message word v ∈Bk, we say the m is well-formed;
otherwise, we say the m is ill-formed.

Through the paper, we consider a (t+1,n)-erasure code scheme where 3t+1= n. Besides,
we emphasize the erasure code scheme would implicitly choose a proper field B according to
the actual length of each element in v, such that the encoding causes only constant blow-up in
size, namely, the bits of m are larger than the bits of v by at most a constant factor. There are a
few well-known instantiations of such primitive like Rabin’s [48], Reed-Solomon [49] and
numerous their variants.

2.6. Position-binding vector commitment

For an established position-binding n-vector commitment (VC), there is a tuple of algorithms
(VCom,Open,VerifyOpen). On input a vector m of any n elements, the algorithm VCom
produces a commitment vc for the vector m. On input m and vc, the Open algorithm can
reveal the element mi committed in vc at the i-th position while producing a short proof πi,
which later can be verified by VerifyOpen.

Formally, a position-binding VC scheme (without hiding) is abstracted as:
• VC.Setup(λ ,n,M)→ pp. Given security parameter λ , the size n of the input vector,

and the message space M of each vector element, it outputs public parameters pp, which
are implicit inputs to all the following algorithms. We explicitly require M = {0,1}∗,
such that one VC scheme can commit any n-sized vectors.

• VCom(m)→ (vc;aux). On input a vector m = (m1, ...,mn), it outputs a commitment
string vc and an auxiliary advice string aux. We might omit aux for presentation simplicity.
Note we do not require the hiding property, and then let VCom to be a deterministic
algorithm.

• Open(vc,mi, i;aux)→ πi. On input mi ∈M , i ∈ [n], the commitment vc and advice aux,
it produces an opening string π to prove that mi is the i-th committed element. We might
omit aux for presentation simplicity.

7

Blockchain Article

• VerifyOpen(vc,mi, i,πi)→ 0/1. On input mi ∈M and i ∈ [n], the commitment vc, and
an opening proof π , the algorithm outputs 0 (accept) or 1 (reject).

An already established VC scheme shall satisfy correctness and position binding:
• Correctness of VC. An established VC scheme with public parameter pp is correct, if

for all m ∈M n and i ∈ [n], Pr[VC.VerifyOpen(vc,mi, i,VC.Open(vc,mi, i,aux)) = 1 |
(vc,aux)← VC.VCom(m)] = 1.

• Position binding. An established VC scheme with public parameter pp is said
position binding, if for any P.P.T. adversary A, Pr[VC.VerifyOpen(vc,m, i,π) =
VC.VerifyOpen(vc,m′, i,π ′) = 1 ∧ m ̸= m′ | (vc, i,m,m′,π,π ′) ← A(pp)] < negl(λ),
where negl(λ) is a negligible function in λ .

There are a few simple solutions [50, 51, 52] to achieve the above position-binding VC
notion without hiding. A simplistic example is hash Merkle tree [50], where vc is a O(λ)-bit
hash value committing a vector of messages organized as a binary hash tree, and the openness
π is O(λ logn)-bit as it carries .

3. Problem formulation

For rigorousness, this section would formulate the problem solved in the paper by introducing
our security modeling, including the considered system, threats, and security goals. Namely,
we will precisely define the admissible abilities of the adversary to reflect the realistic threats,
and provide the desired security goals that we aim at realizing against such the adversary.
Along the way, we will also present the complexity metrics that would be used to measure the
efficiency of asynchronous random beacon protocols.

3.1. System and threat modeling

We extend the standard model of reliable asynchronous fully-meshed message-passing network
with authenticated peer-to-peer connections [53, 4] into the setting of dynamic participation.
For the purpose, we consider the set of participating nodes is changing by consecutive
configurations C(0), C(1), C(2), · · · , where each configuration C(i) has n(i) participating nodes
with up to t(i) < n(i)/3 malicious corruptions, in the spirit of the standard practice of dynamic
fault-tolerance systems [54, 55, 56].

In greater details, our system and threat modeling can be formalized as follows:
• Public key infrastructure. We let the universe U denote the set of all potential

participating nodes in our dynamic ADRB system. Every node in U has its public
keys (which can be used for digital signature or public key encryption) known by the
whole universe. In practice, this can be facilitated through some bulletin board based
public key infrastructure (e.g., either some centralized certificate authority or some
decentralized alternative approach such as proof of stake [55, 56]).

• Initial configuration. Initially, there is a committee of n participating nodes
{P1,P2, ...,Pn}, denoted as C(0), which is a subset of the nodes in universe U . This initial
committee might execute some initialization protocol, and then continuously generate a
sequence of random number, distributedly, by executing the ADRB protocol, until the
committee of participating nodes are reconfigured.

• Dynamic participation by reconfiguration. To accommodate the desired join of
some newly spawning nodes and the planned departure of some current participating
nodes, we let the system “periodically” conduct reconfiguration to rotate the committee
of participating nodes. That said, once if the current committee C(i) has generated a
specific number of random beacons (e.g., K), the committee C(i) would stop generating
randomness, and a new committee C(i+1) (which is still a subset of nodes in universe
U but might probably consist of a list of participants very different from the previous
configuration C(i)’s participants) would be launched to replace the role of the committee

8

Blockchain Article

C(i) to distributedly generate the coming K random numbers, until the next committee
C(i+2) will be launched.

• Reliable authenticated asynchronous network. We consider that the communication
network is fully asynchronous without any form of network timing assumption, indicating
that all messages might suffer from an unpredictable delay of transmission, although they
would eventually deliver their destinations. Additionally, for any two nodes Pi and Pj in
the universe U , a secure authenticated channel can be established, such that all messages
sent between any two honest nodes couldn’t be tampered, although they can be arbitrarily
delayed or reordered.

• Computationally bounded adversary controlling up to n/3 Byzantine corruptions.
We assume there is a probabilistic polynomial-time (P.P.T.) bounded static adversary A in
the network capable of corrupting up to t(i) < n(i)/3 nodes for each configuration C(i).
Here “static” means that the adversary would choose the set of corrupted parties before
the protocol starts. The adversary can coordinate the attacks of all corrupted nodes and
also schedule the delay of all network messages, as long as its attacking strategies are
P.P.T. computable.

REMARK ON RECONFIGURATION. During the reconfiguration phase, when the new
committee C(i+1) just launches, the old committee C(i) might still stay online to execute some
auxiliary protocol to help the new committee efficiently complete some necessary setup of
threshold cryptosystem, thus empowering the new committee to efficiently generate random
beacons after the execution of such reconfiguration phase.

3.2. Security goals

Informally speaking, a (dynamic) asynchronous distributed random beacon protocol is said
secure, if it realizes the following properties with all but negligible probability w.r.t. the
security model described in Section 3.1.:

• Liveness. The protocol would continuously generate a sequence of random values
(with bounded per-randomness communication complexity), despite the influence of
reconfiguration, malicious corruptions, and purely asynchronous network.

• Consistency. For any two honest nodes, their generated random value (at any index of
their output sequence) is same.

• Unbiasability and unpredictability. The adversary A cannot manipulate the distribution
of the output random values, i.e., it is infeasible for A to make the distribution
(computationally) distinguishable from the uniform distribution. Moreover, we require
an even stronger security assurance that A also cannot predict any generated random
value better than guessing, before the first honest node releases its exclusive secret share
of this generated randomness.

3.3. Quantitative efficiency metrics

Besides security, we are also interested in constructing efficient ADBR protocols. For the
purpose, we consider the following standard quantitative metrics as performance indicators of
asynchronous fault-tolerant protocols:

• Communication complexity. We consider the standard notion of bit communication
complexity, which characterizes the expected number of bits sent by the honest parties
during the protocol.

• Round complexity. We follow the standard approach due to Canetti and Rabin [53]
to measure the running time of protocols by asynchronous rounds. Essentially, this
measurement counts the number of communication “steps”, when the protocol is
embedded into a lock-step timing model.

9

Blockchain Article

4. Protocols for dynamic asynchronous random beacon

Now we are ready to elaborate on the detailed construction of our dynamic ADRB protocol,
which can achieve all desired security properties including liveness, unbiasability and
unpredictability, in a dynamic fully asynchronous network with resilience against arbitrary
P.P.T. attacks, as long as the computationally bounded adversary controlling less than n(i)/3
malicious nodes for each configuration C(i).

Overview. As briefly shown in Figure 1, our dynamic ADRB construction consists of three
asynchronous fault-tolerant protocols, which are responsible for initialization, reconfiguration,
and random beacon generation, respectively. The initialization protocol is essentially an
asynchronous distributed key generation (ADKG) protocol, such that the participants of the
initial configuration can distributedly set up a threshold cryptosystem proposed by Gurkan
et al. [31] for threshold signature. Furthermore, the beacon protocol can leverage the
resulting threshold signature to efficiently generate a beacon of randomness in a distributed
manner, assuming the random oracle model. Moreover, when the configuration is rotating,
i.e., the members of C(i) stop generating beacon and the participants of C(i+1) start, the
reconfiguration protocol is invoked to help the new configuration efficiently set up a new
threshold cryptosystem for threshold signature (in the assistance of the old configuration),
which would be asymptotically more efficient than merely executing another ADKG.

The detailed execution flows of our initialization, reconfiguration and beacon protocols
can be respectively described as follows.

Initial Setup
- or -

Reconfiguration
Aggregate

Derive randomness
from threshold

signature
r	

Threshold Signature

Random Beacon

),,(1 SIDskpk

),,(2 SIDskpk

),,(3 SIDskpk

),,(4 SIDskpk

1

2

3

4

iapvss

Sub-Committee

r	

Dumbo-MVBA

1pvss

2pvss

3pvss

4pvss

Random beacon

Reconfiguration phase

japvss

japvss

kapvss

iapvss

japvss

finalapvss

finalapvss

finalapvss

finalapvss

Compute
new

threshold
keys

）（ 414 ,,, pkpkpksk pk

）（ 413 ,,, pkpkpksk pk

）（ 412 ,,, pkpkpksk pk

）（ 411 ,,, pkpkpksk pk

Figure 1. The execution flow of our re-configurable ADRB protocol (exemplified by the
case of no joining or leaving node).

4.1. Initialization

Before the initial configuration’s participants can collectively generate the random values,
we first let them set up the threshold cryptosystem due to Gurkan .et al. [31], which later
can be used for threshold signature. For the purpose, we can leverage the state-of-the-art
ADKG protocols [21, 22] for Gurkan .et al.’s threshold cryptosystem. For the completeness of
presentation, we would re-introduce the high-level rationales behind these designs hereunder,

10

Blockchain Article

but refrain from repeating their tedious security analysis, and recommend readers interested in
more details refer to the original publications [21, 22].

4.1.1. Private-setup free MVBA in the absence of established threshold cryptosystem

Recall two facts that (i) the celebrated FLP “impossibility” [57] states that no deterministic
protocols can ever exist to solve the problem of asynchronous agreement against even a single
crash corruption and (ii) ADKG implies asynchronous Byzantine agreement and therefore
is also subject to the FLP “impossibility”. Therefore, we necessarily rely on a randomized
asynchronous Byzantine agreement protocol as a core building block to facilitate the procedure
of ADKG, which is quite non-trivial, since we face a circular problem: (i) to efficiently
implement ADKG for threshold cryptosystem, we might require an efficient asynchronous
Byzantine agreement protocol, and (ii) to realize some asymptotically efficient asynchronous
Byzantine agreement, an established threshold cryptosystem (for coin flipping [4, 18]) is
usually desired in practice.4

That said, we have to overcome the challenge to realize some efficient asynchronous
Byzantine agreement in the absence of any threshold cryptosystem. For the purpose, we
adopt the state-of-the-art private-setup free coin flipping protocol in asynchrony [22], which
can be plugged into any existing MVBA protocols [5, 3, 35, 36, 4] to replace their coin
flipping component requiring the private setup of established threshold cryptosystem. The
resulting private-setup free MVBA protocols attain expected O(ℓn2 +λn3) communication
complexity and expected O(1) round complexity, where ℓ is the bit-length of MVBA input
and λ represents the length of cryptographic security parameter. Here we can also adopt other
common-coin based private-setup free asynchronous consensus protocols [32, 21].

4.1.2. Expected constant-round ADKG for Gurkan .et al.’s threshold cryptosystem

Given the efficient private-setup free MVBA, we are readily to implement an efficient ADKG
protocol for Gurkan et al.’s threshold cryptosystem that can terminate in expected O(1) round
with O(λn3) communication complexity. Such ADKG simulates a trusted functionality that
(i) generates a public key pk, a vector of individual public keys {pki}i∈[n], and a vector of
secret key shares {ski}i∈[n] of some private key sk corresponding to the public key pk, and
also (ii) publishes pk and {pki}i∈[n] to the whole network, and privately distributes each secret
key share ski to the corresponding node Pi.

Specially, the ADKG based initialization protocol is executed by all initial participants in
C(0), and can be straightforwardly constructed as follows:

• Each participating node Pi samples a private secret si, computes an aggregatable
non-interactive PVSS script pvssi sharing the secret, and then multicasts pvssi to all
participating nodes. Note that the implementation of aggregatable non-interactive PVSS
is also from Gurkan et al. as an extension of SCRAP PVSS.

• Then, everyone node Pi waits for n− f PVSS scripts sent from distinct nodes, combines
them to obtain an aggregated PVSS script apvssi, and then takes apvssi as input to one
MVBA protocol (with external validity specified to check the input is indeed an PVSS
script aggregating n− f distinct nodes’ PVSS).

• Finally, each node can get the common aggregated PVSS script returned by the MVBA
protocol, which carries the desired public keys pk and {pki}i∈[n], and more importantly,
every node Pi can decrypt the returned PVSS script to get its own secret key share ski.

4We remark that there is another approach using local coins (instead of common coins from threshold cryptography) to realize randomized
asynchronous Byzantine agreement protocols [58]. However, such local-coin protocols suffer from a prohibitively large round complexity
that is exponentially large in the number of participating nodes. Moreover, the exponential round complexity is not just an efficiency issue,
it is also illed in our computationally-bounded setting (though these protocols are fine in the information-theoretic setting), because the
computing ability of the adversary is at least linear in round complexity. That means, an exponential round complexity enables an adversary
to have an exponentially-bounded time to break any computationally-secure cryptographic primitives (e.g., the standard signatures and
polynomial commitments). This corresponds to another reason that we focus on common-coin based protocols.

11

Blockchain Article

4.2. Random beacon generation

Once Gurkan et al.’s threshold cryptosystem has been established among the participating
nodes (i.e. every node receives all the public keys and its own exclusive private key share),
these distributed nodes can collectively compute randomness values, in an efficient manner
with a single round of communication and quadratic communicated bits per randomness.

In particular, the random beacon generation protocol during each configuration C(i) is
executed by all its participating nodes as described in Algorithm 1:

• Every node Pi invokes the TSG.PartialSign function using its own secret key share ski
to compute a partial signature σi, on input a common message denoted as C(i)||k, where
C(i) represents the current number of configuration and k = {1,2, · · · ,K} are consecutive
numbers repressing the k-th random value generated during the course of the current
configuration C(i).

• Then every Pi multicasts σi, and waits for sufficient valid partial signatures sent from a
set S of t +1 distinct participating nodes, so it can invoke the TSG.Combine function
to aggregate {σ j} j∈S as the final full signature σ . Finally, everyone can obtain a public
common random value H(σ), where H is a cryptographic hash function modeled as
random oracle.

The above process of generating randomness would be sequentially iterated with the
increment of variable k, until k > K. After that, the current configuration C(i) would hand
over the duty of beacon generation to the new configuration C(i+1), which would involve our
reconfiguration protocol in order to efficiently set up the threshold cryptosystem among the
new configuration, as described in the next subsection.

REMARK ON SUPPORTING CONCURRENT APPLICATIONS USING DIFFERENT LABEL
STRINGS. As illustrated in Algorithm 1, we can easily leverage the same setup among the
participants to launch multiple random beacons for various applications, by specifying a unique
string of identifier prefix (denoted as LABEL) to each application. The security intuition behind
the approach is straightforward: due to the threshold version EUF-CMA unforgeability of
threshold signature, even if the adversary already queries many valid signatures on messages
with a valid prefix LABEL, it still cannot forge a valid threshold signature for another unqueried
message with prefix LABEL′. That said, the other concurrently executing beacon protocols
with different application prefixes would not mutually influence their unpredictability.

Algorithm 1 Random Beacon Generation with an application identifier LABEL

// Code for each node Pi in the configuration C(i)

// Note that every Pi has obtained (pk, pk1, · · · , pkn(i) ,ski) from ADKG (4.1) or reconfiguration (4.3)
1: for k ∈ {1,2, · · · ,K} do
2: σi← TSG.PartialSign(ski,LABEL||C(i)||k)
3: multicast the message (C(i),k,σi) to all nodes in the universe U
4: enter the reconfiguration protocol

// Code for every node in the universe
5: wait for valid {σ j} j∈S sent from a set S of t +1 distinct nodes s.t.

TSG.PartialVerify(pk j,LABEL||C(i)||k,σi) = 1
6: σ ← TSG.Combine({σ j} j∈S)

7: return r = H(σ) as the k-th random value during configuration C(i)

Note: we can use multiple different LABELs to instantiate several independent random beacon protocols from
the same setup, such that these independent instantiations can be dedicatedly used for varying applications.

4.3. Reductive reconfiguration

Careful readers might note that the protocol for beacon generation (4.2) necessarily requires
a pre-established setup of Gurkan et al.’s threshold cryptosystem, but we only earlier

12

Blockchain Article

Algorithm 2 Reconfiguration (code for each node Pi in the configuration C(i) or C(i+1) where i≥ 0)

// Code for each node Pi in the new configuration C(i+1)

1: send message (Election,C(i+1)) to all nodes in the old configuration C(i)

2: wait for receiving valid {σ j} j∈S sent from t(i) + 1 distinct nodes in the old configuration C(i), s.t.
TSG.PartialVerify(pk j,C(i)||“Elect ′′,σi) = 1

3: σ ← TSG.Combine({σ j} j∈S)
4: compute relect = H(σ)
5: use relect to randomly permute the identities of nodes in the new configuration C(i+1), and select the first κ

nodes to form a sub-committee SC(i+1)

6: each Pi samples a private randomness si, invokes PVSS.Deal to compute a PVSS transcript pvssi sharing si,
and multicast pvssi to all nodes in the recently selected sub-committee SC(i+1)

7: if Pi is in the sub-committee SC(i+1) then
8: wait for t(i+1)+1 valid {pvssj}j∈S sent from distinct nodes in C(i+1)

9: combine {pvssj}j∈S to form an aggregated PVSS script apvssi

10: send the aggregated PVSS script apvssi to all nodes in the old configuration C(i)

11: wait for receiving the same m j codeword from at least t(i)+1 distinct nodes in the old configuration C(i)

12: send m j to all nodes in the new configuration C(i)

13: wait for receiving codewords {m j} from at least 2t(i+1)+1 distinct nodes in the new configuration C(i+1)

14: try to decode apvssfinal from the received 2t(i+1)+1 codewords
15: if decoding fails:
16: while for receiving more codeword from a different node in the new configuration
17: try to decode until apvssfinal can be successfully decoded
18: decrypt the exclusive secret key share ski from the ciphertext carried by apvssfinal
19: compute the public keys pk, pk1, · · · , pkn from the commitment carried by apvssfinal
20: finish reconfiguration and start beacon generation (4.2) using key materials of the established threshold

cryptosystem (i.e., ski, pk, pk1, · · · , pkn)

// Code for each node Pi in the old configuration C(i)

21: wait for n(i+1)− t(i+1) (Election,C(i+1)) messages sent from distinct nodes in the new configuration C(i+1)

22: σi← TSG.PartialSign(ski,C(i)||“Elect ′′)
23: send σi to all nodes in the old configuration C(i) and the new configuration C(i+1)

24: wait for receiving valid {σ j} j∈S sent from t(i)+1 distinct nodes S which is a subset of the old configuration
C(i), s.t. TSG.PartialVerify(pk j,C(i)||“Elect ′′,σi) = 1

25: σ ← TSG.Combine({σ j} j∈S)
26: compute relect = H(σ)
27: use relect to randomly permute the identities of nodes in the new configuration C(i+1), and select the first κ

nodes to form a sub-committee SC(i+1)

28: wait for the first valid apvssj (which aggregates t(i+1) + 1 pvss scripts from different nodes in the new
configuration C(i+1)) from any node sub-committee SC(i+1)

29: start an MVBA protocol running among the old configuration C(i) using apvssj as input (where the external
validity of MVBA is specified to validate the input is indeed a PVSS script aggregating t +1 pvss scripts
from different nodes in the new configuration C(i+1), and all common randomnesses required by MVBA are
generated using Algorithm 1 from the existing random beacon setup with letting the application identifier
LABEL to be “MV BA”)

30: wait for MVBA outputs an aggregated PVSS script apvssfinal
31: chunk apvssfinal into t(i+1)+1 fragments represented as (m1, · · · ,mt(i+1))

32: run Cauchy Reed-Solomon algorithm [59] to encode (m1, · · · ,mt(i+1)) into n(i+1) Reed-Solomon codewords
represented as (m1, · · · ,mn(i+1))

33: for each Pj in the new committee C(i+1): send Reed-Solomon codeword m j to it
34: terminate

describe how to implement such setup for the initial configuration C(0) through ADKG (4.1)
and haven’t yet presented how to realize such setups for all the following configurations
including C(1), C(2), · · · etc. In this subsection, we will complete this remaining crucial part
by presenting our reconfiguration protocol, which would be reductively executed by two
consecutive configurations C(i) and C(i+1), such that the previous configuration C(i) with

13

Blockchain Article

already-established threshold cryptosystem can help the new configuration C(i+1) set up
Gurkan et al.’s threshold cryptosystem as well.

As Algorithm 2 describes, our reconfiguration phase executes as follows:
• Electing a sub-committee (lines 1-5, lines 21-27). The new configuration participants

would send the old configuration members a message of (Election,C(i+1)), such that if a
participant Pi of the old configuration receives n(i+1)− t(i+1) such messages, Pi would
compute a partial threshold signature σi and multicast it to all nodes of the two consecutive
configurations, which means all nodes can expect to receive t(i)+1 such partial signatures
and derive a common randomness relect = H(σ) from the aggregate signature σ . So a
κ-sized sub-committee SC(i+1) can be elected out of the new configuration, as all nodes
can locally compute the identities of SC(i+1) using the common randomness relect as seed.
Note that κ is a statistical security parameter (for electing a small κ-sized any-trust group
from a large set with 2/3-super honest majority), which typically is merely a couple of
dozens due to earlier cryptographic practice that now has been quit standard.

• Sub-committee members aggregate PVSS (lines 6-10). Once the sub-committee is
publicly elected according to the common randomness generated by the old configuration,
all new configuration participants would compute a PVSS script sharing a uniformly
sampled random value and then send the PVSS script to all nodes in the sub-committee.
As such, each honest node in the sub-committee would eventually receive at least
t(i+1)+ 1 valid PVSS scripts sent from distinct nodes, thus aggregating them. If the
aggregation of PVSS scripts is completed, the sub-committee members would multicast
the aggregated PVSS to all nodes in the old configuration.

• Old committee decides a unique aggregate PVSS (lines 29-30). With all but negligible
probability, the nodes in the old configuration can eventually receive a valid aggregated
PVSS script from some node in the elected sub-committee (which also combines at least
t(i+1)+ 1 different nodes’ PVSS scripts). As such, the old configuration participants
would start an MVBA protocol using the received aggregated PVSS as input, and then,
the MVBA protocol would enable the old configuration participants to decide a common
and valid aggregated PVSS script.
We remark that the MVBA protocol requires unpredictable common randomnesses
(a.k.a. common coins) to realize expected constant-round termination against a fully
asynchronous adversary. It is fortunate that the old committee members have a sufficient
setup to generate such common coins. More specifically, for the k-th invocation to
common coins within MVBA, the old committee members just follow Algorithm 1 to
exchange their partial signatures on “MV BA”||C(i)||k, then form the unique threshold
signature on “MV BA”||C(i)||k, and finally hash the threshold signature to obtain the k−th
common coin used within this MVBA.

• Old committee transfers the finalized PVSS to new committee (lines 31-34, lines
11-17). Note that the old configuration members do not necessarily need the aggregated
PVSS decided by MVBA, and they have to transfer the PVSS script to the new committee
members. The trivial idea of letting the old configuration members simply broadcast the
PVSS script would incur cubic communication, thus failing to attain our desired quadratic
complexity. To this end, we use the technique of online Reed-Solomon decoding [49, 59]
used in [60], which enables the old committee reliably transfer the PVSS script to the
new committee, yet still preserves the desired quadratic communication complexity.
In greater detail, every old committee member encodes the PVSS script according to
the size of the new committee (line 31-32), such that each new committee member is
corresponding to a particular code fragement of the PVSS script. Then, each new
participant can receive its corresponding code fragement from at least t(i) + 1 old
members, where t(i)+ 1 is greater than 1/3 of the old committee size (line 11). Note
that this code fragement sent from t(i)+1 old members must be the correctly computed

14

Blockchain Article

code fragement of the true PVSS script agreed by MVBA (because there are only t(i)

malicious members in the old committee), so the new committee members can further
exchange their correct code fragements, thus finally decoding the correct PVSS script.

• Key derivation from decided PVSS (lines 18-20). Finally, all nodes in the new
configuration can receive a sufficient number of honest codewords encoding the final
PVSS script and thus decode it, enabling them obtain all necessary key materials
(including all public keys and the private key share) necessary for the new epoch of
ADRB execution.

REMARK ON COMMUNICATION-EFFICIENT IMPLEMENTATION. In the above protocol,
MVBA protocol must be extension protocols that can accommodate large input. The suggested
choice is Dumbo-MVBA [3] that uses vector commitment (VC) and erasure code to realize
optimal communication, otherwise, careless choice of instantiation (e.g., using the designs
from Cachin et al.’s [4], Abraham et al.’s [5] or Guo et al.’s [36] MVBA protocols) might cause
cubic communication cost. Noticeably, Dumbo-MVBA requires its participants to have an
already-established threshold signature scheme for functionality and efficiency, which is why
we choose the old committee instead of the new committee to execute MVBA (because the
new committee does not yet establish threshold signature).

Our reconfiguration phase may be of independent interest, as it efficiently realizes
an asynchronous distributed key reconfiguration (ADKR) protocol, which enables an
asynchronous fault-tolerant system with an existing threshold cryptosystem to efficiently
generate a new threshold cryptosystem for a reconfigured set of participants. Informally,
ADKR can be viewed as a simplified version of ADKG, where an already-established
threshold cryptosystem among a set of current participants is leveraged to distributedly
generate a new threshold cryptosystem for a reconfigured participant set. Compared to
the previous ADKR protocol [61], which relies on an honest-majority sub-committee of
at least several hundred nodes to achieve quadratic communication complexity, our design
significantly improves efficiency. As we will show in the following analysis, our approach
requires only an any-trust sub-committee consisting of a few dozen nodes while maintaining
the desired security and performance guarantees.

5. Analysis

This section will analyze the security of our proposed asynchronous distributed random beacon
protocol by proving that it satisfies unbiasability, unpredictability, and liveness. Then, we
analyze the performance of the protocol to give the communication complexity of the protocol.
Note that in this section, without loss of generality, we let each epoch’s committee has the
same number n of participants for presentation simplicity.

5.1. Analysis for sub-committee size

In this section, we will analyze in a quantitative way that the number of committee nodes tends
to a constant value as the number of nodes increases.
Lemma 1 Assuming the security of non-interactive unique threshold signature scheme and
cryptographic hash function as random oracle, there is at least one honest node in the randomly
elected sub-committee, with all but negligible probability in the sub-committee size κ .
Proof 1 Recall that there are 3t +1 nodes in the network, of which 2t +1 are honest and t are
malicious. Let κ be the number of sub-committee nodes and K represent the number of honest
nodes in the sub-committee. Then the probability that K ≥ 1, i.e. the chance of selecting at
least one honest party in the sub-committee, is thereby:

Pr(K ≥ 1) = 1− (
t

3t +1
)κ ≥ 1− (

1
3
)κ (1)

15

Blockchain Article

if cryptographic hash function is random oracle and non-interactive unique threshold signature
scheme cannot be predicted by the adversary. This is because if an adversary can efficiently
predict the threshold signature (which is the only computationally feasible way to guess the
output of random oracle), then we can construct an efficient adversary to forge threshold
signature, which violates the security properties of the threshold signature scheme.

This completes the proof as (1
3)

κ is a negligible function in κ .
Given the above statement, we can further have the following simple corollary to decide

the concrete size of sub-committee SC(i+1) as a constant number independent to the system
scale n, for any desired statistic security level.
Corollary 1 To ensure that the selected sub-committee SC(i+1) contains at least one honest
node (i.e. indeed an any-trust sub-committee) with probability of at least 1− p, the (minimal)
size κ of sub-committee SC(i+1) is asymptotically constant in n.
Proof 2 First, a trivial lower bound of κ is:

κ = t +1 (2)

which is because t + 1 nodes contain at least one honest node (since there are at most t
malicious nodes).

Second, another constraint of sub-committee size κ is (1
3)

κ ≤ p, which renders another
non-trivial lower bound:

κ = ⌈log3(
1
p
)⌉ (3)

Therefore, the tight lower bound of κ is min(t +1,⌈log3(
1
p)⌉) = min(⌊n−1

3 ⌋+1,⌈log3(
1
p)⌉).

For a given p, the term ⌈log3(
1
p)⌉ is independent to n and thus asymptotically smaller than the

term ⌊n−1
3 ⌋, resulting in an asymptotic (tight) lower bound κ ≥ ⌈log3(

1
p)⌉.

This completes the proof of the asymptotic behavior of sub-committee size κ .

As an exemplary example to justify the size of any-trust sub-committee is indeed
very small, we can parameterize p = 10−10, which intuitively means a failure of any-trust
sub-committee selection happens after expected 1010 reconfigurations. If ADRB is
reconfigured after every hour, then this translates into a sub-committee failure after more
than 1,140,795 years in expectation, which clearly is a sufficiently conservative choice of
statistic security level. Given such an overly conservative failure probability p = 10−10, we
still can use a very small any-trust sub-committee size κ = ⌈log3(

1
p)⌉ = 21. In practice, if

we use a less conservative failure probability such as p = 10−8 (which is a widely adopted
statistic secure parameter in many sharding blockchains [62, 63], and still corresponds to
expected one million years to encounter a single failure of any-trust sub-committee selection,
if ADRB is reconfigured for about every 5 days), then sub-committee size κ can be even
smaller ⌈log3(108)⌉= 17. Clearly, any-trust sub-committee is very small in practice.

5.2. Security proof for ADRB

Proof for liveness. We first prove the liveness of our dynamic ADRB protocol, by showing
its randomness generation phase (Algorithm 1) and reconfiguration phase (Algorithm 2) can
terminate, according to Lemma 2 and Lemma 3, respectively.
Lemma 2 If all honest nodes enter the random beacon generation protocol, then all honest
nodes terminate from the protocol, with all but negligible probability.
Proof 3 Recall that we consider an optimal asynchronous adversary that can corrupt up to t
nodes in the network where t < n

3 . During the random beacon generation phase, the adversary
can prevent at most t malicious nodes from sending any messages, while all other n− t honest
nodes would sign and broadcast the SID||epoch using their private keys ski. That means, every

16

Blockchain Article

honest node can eventually collect a sufficient number (at least n− t) valid threshold signature
shares {σ j} j∈S. This enables them to successfully aggregate the set of signature shares with
all but negligible probability, and subsequently derive the random beacon r, otherwise, either
the correctness or robustness of the threshold signature scheme is violated.

While if the correctness or robustness of the threshold signature scheme can be breached
with non-negligible probability, a contradiction arises, as we adopt secure threshold signature
scheme. This completes the proof.
Lemma 3 If all honest nodes enter the reconfiguration protocol, then all honest nodes
terminate from the termination protocol, with all but negligible probability.
Proof 4 In the reconfiguration phase, the adversary controls t nodes to either refrain from
sending messages or delay messages sent by honest nodes. Since the number of committee
nodes is less than t+1, there are still more than t+1 nodes in the network capable of executing
PVSS and MVBA. Additionally, according to Lemma 1, our sub-committee is an any-trust
group with at least one honest party with all but negligible probability. This ensures that
non-sub-committee nodes eventually receive at least one correctly aggregated PVSS transcript,
allowing all honest nodes to enter MVBA protocol and thus terminate the reconfiguration
phase (otherwise MVBA’s termination is violated).

However, since we adopt secure MVBA and PVSS, the lemma must hold, otherwise, there
is a contradiction that the computationally-bounded adversary breaks the security properties
of secure MVBA or PVSS, or it can break Lemma 1 (indicating that it can forge threshold
signature). This completes the proof.
Theorem 1 The dynamic ADRB protocol proposed in this paper ensures liveness, in the
presence of a computationally bounded fully asynchronous adversary corrupting up to t(i) <
|C(i)|/3 nodes for each committee C(i).
Proof 5 Following Lemmas 2 and 3, our proposed protocol guarantees termination in all
phases, even when the adversary statistically corrupts up to t nodes (in each committee) and
can arbitrarily delay message transmission in the fully asynchronous network. Therefore, our
proposed asynchronous distributed random beacon protocol ensures liveness.

Proof for consistency. Then we demonstrate that the honest nodes generate the common
random values. The crux of proving the statement is showing that the reconfiguration protocol
can set up a threshold cryptosystem that is consistent among all honest nodes. Namely, they
return the same public keys pk, pk1, · · · , pkn to all honest nodes in C(i+1) and return a secret key
share ski to each node Pi ∈C(i+1) s.t. pki = gski , and more importantly, {ski} are evaluations
at the same polynomial.
Lemma 4 If all honest nodes enter the reconfiguration protocol, then with all but negligible
probability, each honest node Pi ∈ C(i+1) terminates from the protocol with obtaining its
exclusive private key {ski} and the common public keys pk, pk1, · · · , pkn, s.t. (i) pki = gski

and (ii) any n− t group elements from pk1, · · · , pkn can interpolate pk.
Proof 6 The lemma is reducible to the agreement and external validity properties of MVBA:
(I) the agreement property ensures that any two honest nodes obtain the same aggregated PVSS
script from MVBA; and (ii) the external validity property ensures the returned aggregated
PVSS script must be valid, s.t. it contains a polynomial commitment that is consistent with the
common pk, pk1, · · · , pkn and it carries a ciphertext that can be decrypted by each Pi to obtain
the correct secret key ski.
Lemma 5 If Lemma 4 holds, then the honest nodes in C(i+1) can collectively generate
common random values.
Proof 7 This is reducible the uniqueness of threshold signature scheme: if a consistent
threshold cryptosystem is established according to Lemma 4, then the honest nodes can
collectively produce the unique threshold signature, from which, the common random value
can be derived (as hash function is deterministic).

17

Blockchain Article

Theorem 2 The dynamic ADRB protocol proposed in this paper ensures consistency, in
the presence of a computationally bounded fully asynchronous adversary corrupting up to
t(i) < |C(i)|/3 nodes for each committee C(i).
Proof 8 The statement is true by following Lemma 4 and Lemma 5. Particularly, Lemma 4
ensures that the reconfiguration protocol can setup a consistent threshold cryptosystem, and
Lemma 5 further guarantees that, from such consistently generated threshold cryptosystem,
consistent random values can be continuously produced.

Proof for unbiasability and unpredictability. Then we are ready to prove the unbiasability
and unpredictability of our proposed ADRB protocol. To do so, we first show the
reconfiguration scheme does not leak the honest nodes’ private keys to the adversary, and
then argue the unforgeability of threshold signature, which implies the unbiasability and
unpredictability of generated randomness in the random oracle model.
Lemma 6 It is computationally infeasible for the adversary to guess the private key share of
any honest node that is obtained from the reconfiguration protocol.
Proof 9 This is reducible to the secrecy of PVSS scheme. Given that the private key share of
each honest node is an aggregation of t +1 secret shares containing at least one share from
some honest node, each node’s private key share is uniformly sampled. Therefore, if the
adversary predicts the secret key share, it literally breaks the hardness problem of discrete
logarithm, i.e. it can efficiently computes r from public key gr where r is randomly sampled.
Theorem 3 The asynchronous distributed random beacon protocol proposed in this paper
satisfies unbiasability and unpredictability.
Proof 10 Conditioned on the correctness of Lemma 6, this theorem is reducible to the
unforgeability of threshold signature scheme in the random oracle model. Considering that the
random value r = H(σ) where H is a cryptographic hash function model as random oracle
and σ is a threshold signature for a fresh new message C(i)||k, if the adversary can predict or
bias the distribution of r with a non-negligible probability, then the adversary can query either
bias the distribution of random oracle’s output (which arises a contradiction to the definition of
random oracle), or it can have non-negligible probability to predict σ , which can be translated
into a non-negligible to forge a valid threshold signature.

5.3. Complexity analysis of ADRB

First, we analyze the complexity of the reconfiguration phase. Non-committee nodes must
send PVSS transcripts to committee nodes. After aggregation by the committee nodes, the
PVSS transcript is broadcast to all non-committee nodes. The communication complexity
of this stage is O(λκn2), where κ is the number of nodes in any-trust sub-committee. As
already analyzed in §5.1., κ is asymptotically a small constant about 20 or even less. Then,
each node takes the aggregated PVSS transcript as input to a Dumbo-MVBA protocol. The
communication complexity in this phase is O(λn2). Finally, the old committee members
encode the Dumbo-MVBA and send the codeword to new committe members, such that
the new committee can reconstruct the same Dumbo-MVBA output and thus finish the
reconfiguration. This step also costs O(λn2). By summing the communication complexity
of the above three major phases, the total communication complexity of our reconfiguration
protocol is O(κλn2).

Then we analyze the communication complexity of randomness generation. There is only
one step of communication: each node multicast a threshold signature share, resulting in
an overall communication complexity of O(λn2). The remaining steps of random beacon
generation are executed locally without incurring additional communication overhead.
Therefore, the collective communication cost of each generate random value is O(λn2).

18

Blockchain Article

6. Performance optimization, implementation, and experiments

6.1. Reducing PVSS needed for aggregation towards better performance

Every participant computes a PVSS transcript and broadcasts it, which unfortunately is very
expensive as PVSS is computationally intensive. Later, these PVSS transcripts seem to be
necessary as they are needed to aggregate, and we require there are at least one PVSS sent
from honest node used for the aggregation, which is critical to ensure the secrecy of private
key shares generated from the reconfiguration protocol.

Careful readers might quickly identify a straightforward optimization: it is unnecessary
for all parties to broadcast a PVSS. Instead, it suffices for only 2t +1 nodes to do so, ensuring
that everyone eventually receives t + 1 PVSS transcripts (which will include at least one
honest PVSS) for aggregation. To implement this improvement, we simply modify line 6 in
Algorithm 2 as follows: each Pi, if it is one of the 2t +1 participants with smallest indices,
samples a private randomness si, invokes PVSS.Deal to compute a PVSS transcript pvssi
sharing si, and multicast pvssi to all nodes in the recently selected sub-committee SC(i+1).

Nevertheless, despite the above straight optimization, the number of PVSS is still 2t +1 =
O(n), which is not satisfied, as when instantiating our ADRB design, we attempt to further
reduce the number of needed PVSS towards constant instead of 2t +1 which is still linear in
n. Our key observation towards realizing a constant number of PVSS needed for aggregation
is that we only need an honest majority sub-group SC′(i+1) of participants to compute and
multicast PVSS transcripts, and we actually can use the established randomness beacon to
sample such honest-majority sub-group (which has n/2 nodes to be honest) from the super
honest-majority set of all participants (which has n/3 nodes to be honest).

To realize the above idea, we can update line 6 in Algorithm alg:reconfig as follows:
all participants invoke the random beacon established among the old committee to get a
randomness r, use r to randomly permute the set of C(i+1) and select the first η nodes (after
random permutation) as another sub-committee SC′(i+1) (which is different from SC(i+1)); then
for each Pi ∈ SC′(i+1), it samples a private randomness si, invokes PVSS.Deal to compute a
PVSS transcript pvssi sharing si, and multicast pvssi to all nodes in SC(i+1). Subsequently, we
also need to replace line 8 in Algorithm 2 with the following execution, to reflect that there are
only a sub-committee SC′(i+1) that are still sending PVSS scripts to nodes in the sub-committee
SC(i+1): wait for ⌈SC′(i+1)+1

2 ⌉ valid {pvssj}j∈S sent from distinct nodes in SC′(i+1) ⊂C(i+1).
The security of the above optimization is still guaranteed by the following lemma, which

states that the sub-committee SC(i+1) has an honest majority.
Lemma 7 Given a super honest-majority committee C consisting n nodes with 2n/3 honest
nodes, then its random η-size sub-committee SC′ is honest-majority, with all but negligible
probability in η ; and asymptotically, the minimal choice of η is constant and independent to n
when n becomes large, for any fixed failure probability p of selecting malicious-majority SC′.
Proof 11 Recall that there are 3t + 1 nodes in the network, of which 2t + 1 are honest and
t are malicious. Let η be the number of sub-committee nodes and K represent the statistic
representing the number of honest nodes in the sub-committee. Clearly, statistic K is a binomial
random variable following distribution K ∼ Bin(η , p), where p = 2/3 when n approaches
infinite (as p has an asymptotic behavior approximating limt→∞

2t+1
3t+1).

According to the lower-tail Chernoff bound, we have the following inequality:

Pr(K ≤ (1−δ)E(K))≤ exp(−δ 2E(X)

2
) (4)

where E(K) = 2η

3 is the expectation of binomial statistic K, and δ ∈ (0,1) to ensure that the
above inequality holds.

Then, if we parameterize δ = 1
4 , the probability of failed sub-committee selection SC′

19

Blockchain Article

with K ≤ η

2 (i.e. the chance of selecting a malicious-majority sub-committee) can thereby be
expressed as follows, using the inequality from the lower tail of Chernoff bound:

Pr(K ≤ η/2) = Pr(K ≤ (1− (1/4))E(K))≤ exp(−(1/4)2E(X)

2
) = exp(− η

48
) (5)

which is clearly a negligible probability decreasing exponentially in η . This completes the
proof of the first part of the lemma.

Then we prove the second part of the lemma as a simple corollary of the above proof. For
any desired failure probability Pr(K ≤ η/2) = p, we can have the minimal size of η :

η ≥ ⌈−48ln(p)⌉ (6)

whose lower bound clearly is a constant number asymptotically irrelevant to n. This complete
the proof.

Therefore, we can leverage the above fact to randomly select another honest-majority
sub-committee SC′ to compute and multicast PVSS transcripts, which in combination with
another any-trust committee SC that receive and aggregate PVSS transcripts, significantly
reduce the overall overhead caused by the expensive PVSS operations.

6.2. Implementation details and setup of experiments

Our protocol is implemented in the programming language of Python 3. We use existing
and widely-adopted libraries for cryptographic operations, such as pypairing, betterpairing,
hashlib, phe, etc. For handling concurrent asynchronous tasks, we use gevent library to start
multiple micro-threads. Communication between each pair of nodes Pi and Pj is performed
over two TCP sockets—one from Pi to Pj and the other from Pj to Pi. Each node consists of
there separated processes: one process for handling our ADRB protocol, one process to handle
message sending, and another process to handle message receiving. For fair comparison, we
use the same programming language, same cryptographic libraries, and same communication
layer to implement a baseline benchmark, which is an optimized variant of Das et al.’s ADKG
protocol [23] by replacing its overly complex MVBA component with the state-of-the-art
Dumbo-MVBA protocol. For PVSS scheme used in both implementations, we adopt the
Paillier encryption based approach. We also use BLS12-381 (Barreto-Lynn-Scott family with
an embedding degree of 12) as the underlying elliptic curve instantiation, which is a pairing
friendly elliptic curve implementation widely adopted in numerous real-world applications
like the implementations of KZG polynomial commitments and Groth16 zk-SNARK. For VC
scheme, we adopt the paradigm of hash tree from Merkle [64].

Finally, we evaluate the baseline protocol and our ADRB protocol by deploying their
implementations in a high-performance server that installs Ubuntu 20.04 TLS and is equipped
with a 2.7 GHz Intel Xeon Platinum 8280 CPU having 224 cores and 1 TB main memory.
We conducted experiments of both implementations under varying number of nodes for n =
4, 16, 31, and 64.5 We measure two empirical metrics for reconfiguration: latency and
communication overhead. Here latency represents the time spent by the honest nodes to obtain
for the public keys and exclusive private key of the threshold cryptosystem for the new epoch,
and communication overhead (per node) represents how many bytes sent by each node during
the reconfiguration phase. For beacon generation, we measure the (average) latency spent
by the honest nodes to collectively generate each random value. We execute the experiment
under each scale for at least twice, in order to obtain each data point averaged over different
executions and all participating nodes.

5For our choices of system scales that are relatively small (e.g. not greater than 64), the sizes of sub-committees SC and SC′ are t +1
and 2t +1 respectively (instead of asymptotic constant for larger system scales). As aforementioned, such choices of committee sizes are
necessary in small systems to ensure SC and SC′ to be any-trust group and honest-majority group, respectively.

20

Blockchain Article

6.3. Evaluation results: efficiency of beacon generation and reconfiguration

Performance of the reconfiguration protocol. In Figures 2 and 3, we compare our
reconfiguration protocol with a baseline benchmark optimized from the state-of-the-art ADKG
protocol of Das et al. [23] from the aspects of execution latency and communication cost,
respectively.

4 16 31 64
Node

0

20

40

60

80

100

La
te

nc
y

(S
ec

on
d)

Baseline
Ours

Figure 2. Our reconfiguration vs. the baseline based on ADKG: execution latency.

4 16 31 64
Node

103

104

105

Co
m

m
un

ica
tio

n
Co

st
 (K

By
te

)

Baseline
Ours

Figure 3. Our reconfiguration vs. the baseline based on ADKG: per-node communication.

Regarding the execution latency, as the number of nodes increases, the performance
gain of our scheme becomes increasingly evident compared to the baseline scheme. This is
because, in our scheme, only a small honest-majority subset of nodes is required to compute
and broadcast PVSS to another even smaller any-trust sub-committee, whereas in the baseline

21

Blockchain Article

scheme, all honest nodes must broadcast PVSS to all other nodes. Consequently, as the number
of nodes grows, the efficiency gain of our scheme becomes more pronounced, as it saves an
increasing number of PVSS operations, which are computationally expensive.

Regarding communication overhead, our scheme demonstrates significantly better
performance compared to the baseline scheme. This improvement arises because, in our
scheme, only a small honest-majority subset of nodes needs to compute and broadcast PVSS
transcripts to an even smaller any-trust sub-committee, greatly reducing the number of
transferred PVSS transcripts. Furthermore, a deeper analysis of the data points plotted in
Figure 3 reveals that our proposed scheme exhibits a higher standard deviation compared to
the baseline. This is due to our usage of random sub-committees for sending and receiving
PVSS transcripts, causing nodes within the sub-committees to send more bytes than nodes
outside the sub-committees. Nevertheless, even the most communication-intensive node in
our scheme is significantly more efficient than in the baseline scheme.

Performance of distributed generation of random value. To demonstrate the efficiency
of asynchronous distributed randomness generation, we implemented two different existing
approaches for distributedly generating randomness beacon: one from threshold BLS
signature [19, 33] (denoted by BLS-Beacon in Figure 4) and the other one from the standard
Σ-protocol for zero-knowledge (zk) proof-of-knowledge (PoK) of Diffie-Hellman (DH)
tuple [18, 65] (denoted by DH-Beacon in Figure 4). Noticeably, we refrain from using
the VUF scheme from Gurkan [31] et al. for efficiency consideration. From Figure 4, we
can tell that DH-Beacon is much faster than BLS-Beacon, which is very understandable
since DH-Beacon avoid the computationally heavy operations of cryptographic pairing.
Nevertheless, BLS-Beacon has an additional property of public verifiability, which means
every party across the globe can verify the random value that is indeed generated from the
current epoch’s committee. Therefore, there could be a meaningful property-performance
trade-off between the two approaches of BLS-Beacon and DH-Beacon, and we suggest
practitioners to choose one out of them according to the demands of their application setting.

4 16 31 64
Node

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(S
ec

on
d)

DH-Beacon
BLS-Beacon

Figure 4. Latency of per-randomness generation: the approach based on BLS signature
(BLS-Beacon) vs. the approach based on zk-PoK for DH tuple (DH-Beacon).

22

Blockchain Article

7. Additional related work

Besides the closely related studies about asynchronous distributed random beacon that we
have already discussed in the introduction, there are also a line of studies on the topic of
distributed random beacon in the fundamentally different synchronous setting. This section
will briefly introduce their techniques and limitations.

Choi et al. [66] provide a comprehensive framework for constructing distributed random
beacons, introducing commonly used construction blocks. They analyze and compare the
security aspects (unbiasedness and unpredictability) of previous research works. Additionally,
they identify corresponding attack vectors and propose countermeasures. A careful analysis of
the performance and applicability of these previous works is also conducted.

RandShare [11], an asynchronous random beacon protocol designed by Syta et al., uses
VSS with BA, resulting in a communication complexity of O(λn3), which is not suitable
for large-scale node deployment. To address this, they proposed the RandHound protocol,
which can be deployed on a large scale. RandHound reduces communication complexity from
O(λn3) to O(λnc2) by grouping servers and performing secret sharing within each group,
where c is the group size. Furthermore, they introduced the RandHerd protocol, which further
reduces communication overhead to O(λc2 logn). RandHerd divides the participating nodes
into subgroups through a one-time setup phase and utilizes aggregation with a communication
tree to generate random values, achieving significant communication overhead reduction.

Schindler et al. constructed Hydrand [12], a distributed random beacon protocol that
does not use Distributed Key Generation (DKG) and does not require a trusted setup. Using
PVSS with a variant of repeated BA, and assuming synchronous networks, Hydrand achieves
a communication complexity of O(λn2).

Bhat et al. constructed the random beacon protocols of GRandPiper (Good Pipelined
Random Beacon) and BRandPiper (Better RandPiper) [67] under the synchronous network
model, using a state machine replication protocol with (publicly) verifiable secret sharing.
GRandPiper utilizes PVSS with a communication complexity of O(λn2). BRandPiper, on
the other hand, attains adaptive security by using VSS with a communication complexity
of O(λ f n2), where f is the actual number of faulty nodes and f ≤ t if t is the upper bound
of fault tolerance. Additionally, they designed a synchronous reconfiguration mechanism
with a communication overhead of O(λn2). Bhat et al. [16] also constructed a linear-sized
Aggregatable PVSS with an optimistically responsive synchronous SMR protocol. Based
on this, they developed a random beacon protocol, OptRand, which has a communication
complexity of O(λn2) and is O(t) rounds faster than RandPiper regarding reconfiguration.

Das et al. used PVSS with a state machine replication protocol under a semi-synchronous
network model to construct a distributed stochastic beacon protocol called SPURT [10],
with a communication complexity of O(λn2). SPURT optimizes the aggregation phase of
PVSS by allowing each node to calculate the future leader node in advance and send the
share for subsequent rounds. The future leader node starts aggregation upon receiving the
share, decentralizing communication and computation across various phases. This approach
reduces the communication overhead of the leader nodes in the aggregation phase. In terms
of computation, the scheme enhances computational efficiency by using a multi-exponential
operation technique to further improve performance.

However, all above results rely on some form of network synchrony for ensuring security,
and unavoidably, they fail to guarantee the basic securities in a fully asynchronous network
considered by us. While in the asynchronous setting, as discussed in the introduction, most
distributed key reconfiguration protocols adapted from ADKG exhibit cubic communication
complexity. While an earlier distributed key reconfiguration protocol [61] achieves quadratic
communication complexity, it necessitates a committee consisting of several hundred nodes,
making its effectiveness questionable in typical system scales. Notably, a very recent follow-up

23

Blockchain Article

work by Feng et al. [68], as inspired by this study, further reduces the required committee size
to several dozen nodes while simultaneously ensuring the critical adaptive security.

8. Discussions and conclusion

Limitations and applications. We note that our reconfiguration protocol achieves only static
security. However, this limitation is mitigated by the fact that the system undergoes periodic
reconfiguration. In particularly, in many sharding blockchain systems, periodic reconfiguration
is also considered sufficient to defend against mildly adaptive adversaries—those that can
adaptively corrupt selected committees but only after a delay longer than the reconfiguration
period. Another limitation of our approach is its reliance on non-interactive PVSS with
aggregability, which currently supports only group-element secret shares and is therefore
incompatible with popular discrete logarithm (DLog)-based cryptosystems that require secret
shares over prime fields. Developing an adaptively secure and DLog-compatible distributed
reconfiguration protocol while maintaining low complexity remains an interesting problem,
which is only answered very recently in a follow-up work [68] inspired by this study.

Despite these limitations, our design in this paper still enables broader applications in the
asynchronous distributed computing systems. In particular, it facilitates dynamic participation
in proof-of-stake blockchains that rely on asynchronous fault-tolerant consensus, as the key
challenge in such settings is efficiently re-configuring the asynchronous random beacon when
the set of participants are periodically rotating due to the change of stakes.

Concluding remark. We introduce a dynamic asynchronous practical random beacon
protocol that leverages Dumbo-MVBA to achieve more efficient consensus on aggregated
PVSS, significantly reducing communication overhead during the reconfiguration phase. The
protocol guarantees agreement, liveness, and unpredictability and unbiasness. Our theoretical
analysis shows that the overall communication complexity for each reconfiguration is O(κλn2),
where λ is the cryptographic security parameter (e.g., the bit length of an element in the group
over an elliptic curve) and κ is a small statistical security parameter (typically 20 or less).
Compared to the existing reconfiguration approach optimized from ADKG, our reconfiguration
protocol is significantly more efficient, achieving a greatly reduced latency—approximately
only 60% of the previous result—when the system scale n≥ 16 nodes.

Acknowledgments

This work is partially supported by National Key R&D Project of China (No. 2022YFB2701600),
NSFC (No. 62102404), CAS Project for Young Scientists in Basic Research (No. YSBR-035),
and the Youth Innovation Promotion Association CAS.

Conflicts of Interests

The authors declared that they have no conflicts of interests.

Authors’ contribution

Conceptualization, Y.H.J., L.Y.; Investigation, Y.H.J., L.Y.; Writing - original draft, Y.H.J.,
L.Y., C.W., Z.Y., W.R., L.J.Y; Writing - review & editing, Y.H.J., L.Y.; Project administration,
L.Y., Y.H.J.; Supervision, L.Y.; All authors have read and agreed to the published version of
the manuscript.

24

Blockchain Article

References

[1] Bentov I, Kumaresan R, Miller A. Instantaneous Decentralized Poker. In Advances
in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December 3–7,
2017, pp. 410–440.

[2] Kumaresan R, Moran T, Bentov I. How to Use Bitcoin to Play Decentralized Poker. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12–16, 2015, pp. 195–206.

[3] Lu Y, Lu Z, Tang Q, Wang G. Dumbo-MVBA: Optimal Multi-valued Validated
Asynchronous Byzantine Agreement, Revisited. In Proceedings of the 39th Symposium
on Principles of Distributed Computing, Virtual Event, Italy, August 3–7, 2020, pp.
129–138.

[4] Cachin C, Kursawe K, Petzold F, Shoup V. Secure and Efficient Asynchronous Broadcast
Protocols. In Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19–23, 2001, pp.
524–541.

[5] Abraham I, Malkhi D, Spiegelman A. Validated Asynchronous Byzantine Agreement
with Optimal Resilience and Asymptotically Optimal Time and Word Communication.
arXiv 2018, arXiv:1811.01332.

[6] Lu D, Yurek T, Kulshreshtha S, Govind R, Kate A, et al. HoneyBadgerMPC and
AsynchroMix: Practical Asynchronous MPC and its Application to Anonymous
Communication. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, London, UK, November 11–15, 2019, pp. 887–903.

[7] Zyskind G, Nathan O, Pentland A. Enigma: Decentralized Computation Platform with
Guaranteed Privacy. arXiv 2015, arXiv:1506.03471.

[8] Information Technology Laboratory Computer Security Division. Interoperable
Randomness Beacons: CSRC, 2021. Available: https://csrc.nist.gov/projects/int
eroperable-randomness-beacons (Accessed on 16 Sep. 2024).

[9] Mads Haahr. True Random Number Service, 2021. Available: https://www.random.org/
(Accessed on 16 Sep. 2024).

[10] Das S, Krishnan V, Isaac IM, Ren L. Spurt: Scalable Distributed Randomness Beacon
with Transparent Setup. In 2022 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, May 22–26, 2022, pp. 2502–2517.

[11] Syta E, Jovanovic P, Kogias EK, Gailly N, Gasser L, et al. Scalable Bias-Resistant
Distributed Randomness. In 2017 IEEE Symposium on Security and Privacy (SP), San
Jose, CA, USA, May 22–24, 2017, pp. 444–460.

[12] Schindler P, Judmayer A, Stifter N, Weippl E. Hydrand: Efficient Continuous Distributed
Randomness. In 2020 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, May 18–20, 2020, pp. 73–89.

[13] Schindler P, Judmayer A, Hittmeir M, Stifter N, Weippl E. RandRunner: Distributed
Randomness from Trapdoor VDFs with Strong Uniqueness. In 28th Annual Network
and Distributed System Security Symposium (NDSS), virtually, February 21–25, 2021 .

[14] Hanke T, Movahedi M, Williams D. Dfinity Technology Overview Series, Consensus
System. arXiv preprint arXiv:1805.04548 2018 .

[15] Han R, Yu J, Lin H. RandChain: Decentralised Randomness Beacon from Sequential
Proof-of-Work. IACR Cryptol. ePrint Arch. 2020 2020:1033.

[16] Bhat A, Shrestha N, Kate A, Nayak K. OptRand: Optimistically Responsive
Reconfigurable Distributed Randomness. In 30th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, California, USA, February 27–March 3,
2023 .

25

https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://www.random.org/

Blockchain Article

[17] Cherniaeva A, Shirobokov I, Shlomovits O. Homomorphic Encryption Random Beacon.
Cryptology ePrint Archive, Paper 2019/1320, 2019.

[18] Cachin C, Kursawe K, Shoup V. Random Oracles in Constantipole: Practical
Asynchronous Byzantine Agreement Using Cryptography (extended abstract). In
Proceedings of the nineteenth annual ACM symposium on Principles of distributed
computing, Portland, Oregon, USA, July 16–19, 2000, pp. 123–132.

[19] Boneh D, Lynn B, Shacham H. Short Signatures from the Weil Pairing. In Advances
in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory and
Application of Cryptology and Information Security, Gold Coast, Australia, December
9–13, 2001, pp. 514–532.

[20] Abraham I, Jovanovic P, Maller M, Meiklejohn S, Stern G. Bingo: Adaptivity and
Asynchrony in Verifiable Secret Sharing and Distributed Key Generation. In Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20–24, 2023, pp.
39–70.

[21] Abraham I, Jovanovic P, Maller M, Meiklejohn S, Stern G, et al. Reaching Consensus for
Asynchronous Distributed Key Generation. In Proceedings of the 2021 ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, July 26–30, 2021, pp.
363–373.

[22] Gao Y, Lu Y, Lu Z, Tang Q, Xu J, et al. Efficient Asynchronous Byzantine Agreement
without Private Setups. In 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), Bologna, Italy, July 10–13, 2022, pp. 246–257.

[23] Das S, Yurek T, Xiang Z, Miller A, Kokoris-Kogias L, et al. Practical Asynchronous
Distributed Key Generation. In 2022 IEEE Symposium on Security and Privacy (SP),
San Francisco, CA, USA, May 23–25, 2022, pp. 2518–2534.

[24] Kokoris Kogias E, Malkhi D, Spiegelman A. Asynchronous Distributed Key Generation
for Computationally-Secure Randomness, Consensus, and Threshold Signatures. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9–13, 2020 pp. 1751–1767.

[25] Das S, Xiang Z, Kokoris-Kogias L, Ren L. Practical Asynchronous High-threshold
Distributed Key Generation and Distributed Polynomial Sampling. In 32nd USENIX
Security Symposium (USENIX Security 23), Anaheim, CA, USA, August 9–11, 2023, pp.
5359–5376.

[26] Cachin C, Kursawe K, Lysyanskaya A, Strobl R. Asynchronous Verifiable Secret Sharing
and Proactive Cryptosystems. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, Washington, DC, USA, November 18–22, 2002, pp.
88–97.

[27] Choudhury A, Patra A. Brief Announcement: Efficient Optimally Resilient Statistical
AVSS and its Applications. In Proceedings of the 2012 ACM symposium on Principles of
distributed computing, Madeira, Portugal, July 16–18, 2012, pp. 103–104.

[28] Bandarupalli A, Bhat A, Bagchi S, Kate A, Reiter MK. Random Beacons in Monte
Carlo: Efficient Asynchronous Random Beacon without Threshold Cryptography. In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security, Salt Lake, Utah, USA, October 14–18, 2024, pp. 2621–2635.

[29] Dolev S, Wang Z. SodsBC/SodsBC++ & SodsMPC: Post-quantum Asynchronous
Blockchain Suite for Consensus and Smart Contracts. In International Symposium on
Stabilizing, Safety, and Security of Distributed Systems, Virtual Event, November 17–20,
2021, pp. 510–515.

[30] Dolev D, Reischuk R. Bounds on Information Exchange for Byzantine Agreement. J.
ACM (JACM) 1985 32(1):191–204.

[31] Gurkan K, Jovanovic P, Maller M, Meiklejohn S, Stern G, et al. Aggregatable Distributed
Key Generation. In Annual International Conference on the Theory and Applications of

26

Blockchain Article

Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, pp. 147–176.
[32] Das S, Duan S, Liu S, Momose A, Ren L, et al. Asynchronous Consensus without

Trusted Setup or Public-Key Cryptography. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, Salt Lake, UT, USA, October
14–18, 2024, pp. 3242–3256.

[33] Boldyreva A. Threshold Signatures, Multisignatures and Blind Signatures Based on the
Gap-Diffie-Hellman-Group Signature Scheme. In International Workshop on Public Key
Cryptography, Miami, FL, USA, January 6–8, 2003, pp. 31–46.

[34] Lamport L, Shostak R, Pease M. The Byzantine Generals Problem. ACM Trans. Program.
Lang. Syst. 1982 4(3):382–401.

[35] Duan S, Wang X, Zhang H. FIN: Practical Signature-Free Asynchronous Common
Subset in Constant Time. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, Copenhagen, Denmark, November 26–30,
2023, pp. 815–829.

[36] Guo B, Lu Y, Lu Z, Tang Q, Xu J, et al. Speeding Dumbo: Pushing Asynchronous BFT
Closer to Practice. In 29th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, California, USA, April 24–28, 2022 .

[37] Shamir A. How to Share a Secret. Commun. ACM 1979 22(11):612–613.
[38] Choc B, Goldwasser S, Micali S, Awerbuch B. Verifiable Secret Sharing and Achieving

Simultaneity in the Presence of Faults. In 26th Annual Symposium on Foundations of
Computer Science, Portland, Oregon, USA, October 21–23, 1985, pp. 383–395.

[39] Feldman P. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In
28th Annual Symposium on Foundations of Computer Science, Los Angeles, California,
USA, October 27–29, 1987, pp. 427–438.

[40] Pedersen TP. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11–15, 1991, pp. 129–140.

[41] Stadler M. Publicly Verifiable Secret Sharing. In Advances in Cryptology - EUROCRYPT
’96, International Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12–16, 1996, pp. 190–199.

[42] Fujisaki E, Okamoto T. A Practical and Provably Secure Scheme for Publicly Verifiable
Secret Sharing and Its Applications. In Advances in Cryptology - EUROCRYPT ’98,
International Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31–June 4, 1998, pp. 32–46.

[43] Schoenmakers B. A Simple Publicly Verifiable Secret Sharing Scheme and Its
Application to Electronic Voting. In Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA, August
15–19, 1999, pp. 148–164.

[44] Cascudo I, David B. SCRAPE: Scalable Randomness Attested by Public Entities. In
Applied Cryptography and Network Security - 15th International Conference, ACNS
2017, Kanazawa, Japan, July 10–12, 2017, pp. 537–556.

[45] Shoup V. Practical Threshold Signatures. In Advances in Cryptology - EUROCRYPT 2000,
International Conference on the Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14–18, 2000, pp. 207–220.

[46] Bellare M, Rogaway P. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, Fairfax, Virginia, USA, November 3–5, 1993, pp. 62–73.

[47] Blahut RE. Theory and Practice of Error Control Codes, Addison-Wesley1983.
[48] Rabin MO. Efficient Dispersal of Information for Security, Load Balancing, and Fault

Tolerance. JACM 1989 36(2):335–348.
[49] Reed IS, Solomon G. Polynomial Codes Over Certain Finite Fields. J. Soc. Ind. Appl.

27

Blockchain Article

Math. 1960 8(2):300–304.
[50] Merkle RC. A Digital Signature Based on a Conventional Encryption Function. In

Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications
of Cryptographic Techniques, Santa Barbara, California, USA, August 16–20, 1987, pp.
369–378.

[51] Catalano D, Fiore D. Vector Commitments and Their Applications. In Public-Key
Cryptography - PKC 2013 - 16th International Conference on Practice and Theory in
Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013, pp. 55–72.

[52] Libert B, Yung M. Concise Mercurial Vector Commitments and Independent
Zero-Knowledge Sets with Short Proofs. In 7th Theory of Cryptography Conference,
Zurich, Switzerland, February 9–11, 2010, pp. 499–517.

[53] Canetti R, Rabin T. Fast Asynchronous Byzantine Agreement with Optimal Resilience.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
San Diego, CA, USA, May 16–18, 1993, pp. 42–51.

[54] Yurek T, Xiang Z, Xia Y, Miller A. Long Live The Honey Badger: Robust Asynchronous
DPSS and its Applications. In 32nd USENIX Security Symposium (USENIX Security 23),
Anaheim, CA, USA, August 9–11, 2023, pp. 5413–5430.

[55] Kiayias A, Russell A, David B, Oliynykov R. Ouroboros: A Provably Secure
Proof-of-Stake Blockchain Protocol. In Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20–24, 2017, pp. 357–388.

[56] Daian P, Pass R, Shi E. Snow White: Robustly Reconfigurable Consensus and
Applications to Provably Secure Proof of Stake. In Financial Cryptography and Data
Security: 23rd International Conference, Frigate Bay, St. Kitts and Nevis, February
18–22, 2019, pp. 23–41.

[57] Fischer MJ, Lynch NA, Paterson MS. Impossibility of Distributed Consensus with One
Faulty Process. J. ACM 1985 32(2):374–382.

[58] Ben-Or M. Another Advantage of Free Choice: Completely Asynchronous Agreement
Protocols (Extended Abstract). In Proceedings of the second annual ACM symposium on
Principles of distributed computing, Montreal Quebec, Canada, August 17–19, 1983, pp.
27–30.

[59] Plank JS, Xu L. Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Network
Storage Applications. In Fifth IEEE International Symposium on Network Computing
and Applications (NCA’06), Cambridge, Massachusetts, USA, July 24–26, 2006, pp.
173–180.

[60] Das S, Xiang Z, Ren L. Asynchronous Data Dissemination and its Applications. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15–19, 2021, pp. 2705–2721.

[61] Günther CU, Das S, Kokoris-Kogias L. Practical Asynchronous Proactive Secret Sharing
and Key Refresh. Cryptology ePrint Archive, Paper 2022/1586, 2022.

[62] Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, et al. OmniLedger: A Secure,
Scale-Out, Decentralized Ledger via Sharding. In 2018 IEEE symposium on security and
privacy (SP), San Francisco, California, USA, May 21–23, 2018, pp. 583–598.

[63] Zamani M, Movahedi M, Raykova M. RapidChain: Scaling Blockchain via Full Sharding.
In Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security, Toronto, ON, Canada, October 15–19, 2018, pp. 931–948.

[64] Merkle RC. Method of Providing Digital Signatures, 1982. US Patent 4,309,569.
[65] Hazay C, Lindell Y, Hazay C, Lindell Y. Sigma protocols and efficient zero-knowledge.

Efficient Secure Two-Party Protocols: Techniques and Constructions 2010 pp. 147–175.
[66] Choi K, Manoj A, Bonneau J. SoK: Distributed Randomness Beacons. In 2023 IEEE

Symposium on Security and Privacy (SP), San Francisco, CA, USA, May 21–25, 2023,

28

Blockchain Article

pp. 75–92.
[67] Bhat A, Shrestha N, Luo Z, Kate A, Nayak K. RandPiper - Reconfiguration-Friendly

Random Beacons with Quadratic Communication. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. November 15–19,
2021, pp. 3502–3524.

[68] Feng H, Gao Y, Lu Y, Tang Q, Xu J. Practical Asynchronous Distributed Key
Reconfiguration and Its Applications. Cryptology ePrint Archive, Paper 2025/149,
2025.

29

	Introduction
	Our contribution
	Structure of remaining sections

	Preliminary
	Multi-valued validated byzantine agreement (MVBA)
	Publicly verifiable secret sharing (PVSS)
	Non-interactive unique threshold signature
	Cryptographic hash function as random oracle
	Erasure coding
	Position-binding vector commitment

	Problem formulation
	System and threat modeling
	Security goals
	Quantitative efficiency metrics

	Protocols for dynamic asynchronous random beacon
	Initialization
	Private-setup free MVBA in the absence of established threshold cryptosystem
	Expected constant-round ADKG for Gurkan .et al.'s threshold cryptosystem

	Random beacon generation
	Reductive reconfiguration

	Analysis
	Analysis for sub-committee size
	Security proof for ADRB
	Complexity analysis of ADRB

	Performance optimization, implementation, and experiments
	Reducing PVSS needed for aggregation towards better performance
	Implementation details and setup of experiments
	Evaluation results: efficiency of beacon generation and reconfiguration

	Additional related work
	Discussions and conclusion

