
ELSP Blockchain

Zhang J, et al. Blockchain 2025(2):0008

 Copyright©2025 by the authors. Published by ELSP. This work is licensed under Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction

in any medium provided the original work is properly cited.

Article │ Received 5 February 2025; Accepted 14 April 2025; Published 27 April 2025
https://doi.org/10.55092/blockchain20250008

Agent-based modeling of Ethereum consensus short-range

reorganization attacks

Junhuan Zhang*, Zhengyong Zhao and Ran Ji

School of Economics and Management, Beihang University, China

* Correspondence author; E-mail: junhuan_zhang@buaa.edu.cn.

Highlights:

 Simulation of ex-ante, ex-post and fine-grained reorganization attack agents’ decision-making

dynamics.

 The impact of blockchain network scale and structure on short-range reorganization attacks.

Abstract: Blockchain technology establishes trust among participants through technical means.

However, some malicious nodes may compromise this trust through short-range reorganization attacks

for their interest. This paper develops an agent-based model to systematically analyze Proof-of-Stake

short-range reorganization attacks, where three types of agents interact through distributed consensus

mechanisms with ex-ante, fine-grained, and ex-post reorganization attack strategies. Through rigorous

simulation of agent decision-making dynamics, we identify that: (1) Compared with ex-ante

reorganization, the ratio of malicious nodes required for ex-post reorganization is much larger. (2)

Increasing the node number increases the difficulty of ex-ante and ex-post reorganization. (3) The

number of nodes affects ex-post reorganization attacks more significantly than ex-ante attacks. (4) Fine-

grained reorganization significantly reduces attack difficulty.

Keywords: blockchain; proof of stake; abnormal behavior; short-range reorganization attacks

1. Introduction

Since the notion of blockchain was introduced in 2008, it has gone through a long development period.

Today, it creates the blockchain industry and attracts investments from geeks, scholars, and

institutions, who jointly build a prosperous blockchain ecosystem. However, as the blockchain

industry develops, its security concerns become more pronounced. According to statistics from

blockchain security research institutions, in 2023 alone, 464 security incidents occurred, causing losses

of up to 2.486 billion US dollars [1].

As the core of blockchain technology, the consensus algorithm plays a key role in ensuring the

blockchain’s decentralized, secure, and stable operation. There are currently three mainstream

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:junhuan_zhang@buaa.edu.cn

Blockchain Article

 2

blockchain consensus algorithms: Proof-of-Work (PoW), represented by Bitcoin; Proof-of-Stake (PoS),

represented by Ethereum; and Byzantine Fault Tolerance (BFT), represented by HyperLedger Fabric.

Among them, the PoW algorithm is one of the earliest consensus algorithms applied to blockchain. Its

essence lies in nodes competing to generate blocks through computing power, thereby earning block

rewards while ensuring the network operates normally. However, the increase in computing power

depends on high-energy-consuming chips and the electrical energy to drive the chips. According to

estimates by mainstream energy-tracking research institutions, in 2021, the energy consumption of the

Bitcoin network is equivalent to that of countries such as Sweden and Thailand [2]. Therefore, the

PoW algorithm has a serious energy waste problem. BFT-like consensus algorithms are mainly

applicable to consortium blockchains. Due to their decentralized nature, this consensus algorithm can

only be applied to small-scale consortium blockchains. In summary, the PoS algorithm is very suitable

for public large-scale blockchain infrastructure from energy consumption and decentralization

perspectives. The Ethereum blockchain represents the broadest user base and the highest market value.

Its consensus algorithm successfully switched from PoW to PoS in September 2022, marking that the

PoS algorithm, as an alternative technology to the PoW algorithm and representing the future direction

of blockchain consensus, has officially entered the mainstream vision. According to CoinMarketCap

statistics, as of March 9, 2024, Ethereum’s market value has surged to $473.2 billion, constituting 18.2%

of the total cryptocurrency market capitalization. Consequently, delving into the anomalies within the POS

algorithm assumes paramount significance for ensuring the seamless functionality of the blockchain. In

the following elaboration, the Ethereum consensus algorithm refers to the Ethereum PoS algorithm.

Short-range reorganization attacks are more well-known among the many attack methods targeting

the Ethereum consensus algorithm. They are relatively easy to implement but yield deleterious

consequences such as double spending and front-running attacks. As a result, it is of great significance

to model and analyze this attack method. This paper studies the Ethereum PoS algorithm and known attack

models, which includes establishing a relatively comprehensive short-range reorganization attacks model

based on PoS consensus by integrating the characteristics and attack mode of the consensus algorithm.

The structure of this paper is shown below: Chapter 1 is an introduction to Ethereum and PoS.

Chapter 2 is the literature review on the PoS consensus algorithm and attack methods. Chapter 3

introduces the basic settings of the Ethereum consensus. Chapter 4 introduces the known attack methods,

including short-range reorganization attacks, and constructs a comprehensive attack model. Chapter 5

analyzes the effectiveness of these attack strategies through simulation experiments, considering factors

like malicious node ratio and honest node forking degree. Chapter 6 summarises the findings and

highlights the potential for improving Ethereum’s PoS algorithm.

The main contributions of this paper are in the following aspects: (1) After a comprehensive analysis

of the various factors that contribute to the success of short-range reorganization attacks, this paper

successfully establishes a relatively complete attack model based on the multi-agent concept. (2) Based

on this model, the impact of malicious node ratio, honest node forking degree, and short-range

reorganization block length on attack results are analyzed for the first time.

Blockchain Article

 3

2. Related literature

2.1. Proof of stake consensus algorithm

The consensus algorithm is the cornerstone of blockchain technology, ensuring that the node ledgers

participating in the blockchain network reach a consensus. In open, large-scale networks, blockchain

typically utilizes two primary consensus algorithms: the PoW and the PoS algorithms. The PoW

algorithm requires nodes to compete for block generation through computing power. The greater the

computing power, the higher the probability of creating new blocks. Meanwhile, PoS demands that

nodes compete for block generation based on their stake. The larger the stake, the higher the likelihood

of producing blocks.

The PoS algorithm can be traced back to 2012. Given the high energy consumption and security

issues related to the vulnerability of the Bitcoin network to 51% attacks [3], King et al. study a

blockchain based on PoS, referred to as PeerCoin [4]. PeerCoin utilizes the PoS to replace Bitcoin's

PoW algorithm. Its PoS algorithm integrates the concepts of coin age and PoW, adopting a chained

consensus algorithm to enhance the sustainability and security of the chain. Subsequently, many PoS

algorithms have been proposed [5]. Considering the energy consumption issues of PoW blockchain

and its vulnerability to the ‘nothing at stake’ attack [6], Kwon proposes the Tendermint consensus

algorithm [7], which is the first algorithm to combine PoS with Byzantine fault tolerance (BFT) [8]. To

address the energy consumption issue, Gilad et al. [9] suggest an Algorand consensus algorithm based

on a Verifiable Random Function (VRF) [10]. This algorithm employs a two-layer consensus

architecture that balances scalability and decentralization in the blockchain, providing a reliable

foundation for distributed applications and achieving significant breakthroughs in security and

efficiency. Ethereum's transition from PoW to PoS consensus was initiated by Buterin and Griffith [11]

through the Casper Finality Friendly Gadget (Casper FFG), which introduced a BFT-style finality layer

over Ethereum’s PoW chain. Building on this hybrid framework, Buterin et al. analyzed incentive

structures, proposing a dynamic staking reward model that inversely correlated validator returns with

total network participation to optimize security [12]. To resolve latency in finality and eliminate PoW

dependency, Buterin et al. [13] further enhance Ethereum PoS by combining the LMD GHOST

algorithm [14] and Casper FFG, resulting in the Gasper consensus algorithm. A systematic comparison

highlights that while PoW offers the strongest formal security guarantees, PoS systems like Gasper can

achieve similar security via checkpoint finality and dynamic availability layers [15].

2.2. Proof of stake consensus attack methods

Ethereum, the world’s second-largest public blockchain by market cap, is often compared to a “dark

forest” from “The Three-Body Problem,” where visibility frequently leads to destruction [16]. Its PoS

algorithm, which is relatively new and complex compared to PoW, has been the focus of various studies

proposing different attack methods, including short-range reorganization attacks, finality delay attacks,

and balance attacks.

Neuder et al. [17] propose two methods for launching attacks that require less than one-third of the

total stake value. One method involves short-range reorganizations of the underlying chain to initiate

double-spending and front-running attacks. The paper constructs models to simulate and calculate the

Blockchain Article

 4

probability of success in reorganizing blocks of varying lengths. The other method involves attackers

using malicious nodes to delay block finality. They also built models to simulate and calculate the

probability of successful attacks under different block delays. Schwarz-Schilling et al. optimize these

two attack methods through adversarial networks, achieving successful attacks with fewer controlled

nodes [18]. They combine these two improved attack techniques to develop a third type of attack. This

attack allows attackers with less stake, who cannot control network message propagation, to cause

blockchain reorganizations through remote attacks. Honest and rational malicious parties can exploit

this attack to increase their gains or delay block confirmation times, thereby threatening the security of

Ethereum’s PoS consensus. Additionally, this attack may lead to voting processing congestion and

consensus instability. Kai et al. study a new type of attack called saving attacks, which prevents nodes

from reaching consensus [19]. In saving attacks, attackers retain their block-producing power during

temporary consensus failures and later use it to induce another consensus failure, increasing the delay in

block finality. The authors investigate the impact of saving attacks on various fork choice algorithms,

including the one used by Ethereum’s PoS. They simulate saving attacks on the longest chain rule,

GHOST, and LMD GHOST, finding that saving attacks had a significant negative impact on consensus.

When the blockchain network operates under a partially synchronous adversarial environment [20],

attackers know when honest nodes execute fork choice algorithms and can relay messages to these nodes

before a certain time, while honest nodes cannot immediately update each other’s messages. Neu et al.

propose a balancing attack method in which attackers divide the honest node set into distinct groups

while ambiguously proposing blocks, sending two different blocks to various parts of the honest node

set, thereby splitting the chain into two forked chains [21]. Attackers influence the network’s fork choice

algorithm by selectively releasing proof messages that favor one fork, making it appear to have the most

validator support. They prevent block finality by maintaining a balanced distribution of validators between

the two forks. The probability of success for the attack correlates with the total stake value controlled by

the attacker; even controlling just 1% of the total stake can provide an opportunity for the attack.

Buterin proposed a method to enhance proposer weight in response to balancing attacks [22]. When

honest nodes promptly receive the block corresponding to the latest time slot, the weight of that block is

increased to a specific percentage of the overall weight of the committee for that time slot. Subsequently,

Ethereum’s PoS fork choice algorithm adopted the LMD GHOST protocol from the Casper CBC

consensus algorithm [23]. This algorithm only accepts the most recent voting messages when nodes send

multiple votes for a block. Neu et al. then improved the balancing attack strategy against Ethereum’s

consensus, utilizing the characteristic of LMD GHOST that only accepts the latest messages as voting

for attacks [24]. This attack requires only a constant number of ambiguous votes to surpass the

proposer’s elevated weight. The cost of this attack is limited, and a single execution can lead to a

permanent split among honest nodes.

In response to the aforementioned variants of balancing attacks, some scholars proposed removing

LMD from the LMD GHOST fork choice algorithm and only using the GHOST mechanism, but this could

lead to more serious problems. Neu et al. propose an avalanche attack method against the GHOST

mechanism in PoS [24], which combines selfish mining [25] and balancing attacks. This attack exploits

specific weaknesses in the ambiguity of GHOST rules and PoS, allowing attackers to reuse uncle blocks

in GHOST, thus contributing ambiguous blocks to multiple ancestor blocks' weight. Ultimately, Ethereum

core developers updated the fork choice algorithm to defend against this attack on LMD GHOST,

Blockchain Article

 5

completely excluding ambiguous validators. The new fork choice algorithm also downgraded the future

voting weight of ambiguous validators. This improvement effectively prevented the aforementioned

balancing attacks while maintaining defense against avalanche attacks.

In the Ethereum PoS algorithm, the probability of short-range reorganization attacks is relatively

high, and related literature has extensively explored this issue. The primary harms caused by such attacks

include double-spending and front-running incidents. Concerning double-spending attacks, Rosenfeld

details the specific process: the attacker first broadcasts a transaction across the blockchain network to

pay digital currency to a merchant [26]. After the merchant receives the digital currency, they release

the goods, after which the double-spending attacker initiates a new transaction that conflicts with the

initial transaction to return the digital currency to themselves. They utilize a majority of the blockchain

network’s computing power or stake to publish a forked chain block, thus reversing the old transaction

and confirming the new one. Ultimately, the merchant loses both the digital currency and the goods,

while the attacker gains both. Eskandari et al. describe front-running as an entity profiting by obtaining

privileged market information about upcoming transactions in advance [27]. With the development of

blockchain technology, front-running has re-emerged in new forms. Daian et al. study front-running

behavior in blockchain DEXs, finding that attackers use bots to probe the Ethereum network for

transactions with captureable value [28]. Once such transactions are identified, they issue a transaction

that can replace the attacked transaction by increasing the transaction fee to profit.

3. Ethereum consensus basic settings

The overall architecture of the Ethereum consensus algorithm can be roughly divided into two layers [13].

The first layer involves the node staking process, where regular nodes stake a certain amount of ETH to

become validating nodes. Validating nodes have the authority to propose blocks and vote, and they can

receive corresponding rewards after participating in consensus correctly. Unlike PoW chains and other

chain-based PoS algorithms, nodes must stake before participating in consensus, which helps prevent

malicious behavior. When a node is found to engage in malicious activity, the consensus algorithm

punishes it by reducing its staked ETH. The second layer is the node voting process. Once a regular node

becomes a validating node, it must solve two consensus problems: the fork selection problem and the

block confirmation problem. Ethereum consensus employs the GHOST algorithm to address the fork

selection problem. This algorithm is based on the heaviest-weight chain rule, selecting the chain with

the most node support as the canonical chain. After determining the canonical chain, the proposer links

the new blockchain to the head of this chain. Additionally, the consensus mechanism utilizes the Casper

FFG algorithm to finalize the block. Once the block is finalized, it cannot be rolled back unless the

attacker is willing to risk incurring a significant fine of ETH. The Casper FFG algorithm is inspired by

the Byzantine fault tolerance algorithm. Once most nodes cast their votes twice, the block is confirmed.

The vast majority of nodes refers to at least 2/3 of the total number of nodes. This ratio ensures that the

system can tolerate several node failures without compromising overall reliability and security.

In the consensus algorithm, commonly used terms and their explanations are shown in Table 1:

Blockchain Article

 6

Table 1. Definition of consensus basic terms.

Terms Definition

Canonical Chain The heaviest chain branch.

Regular Node

Participant in the network, responsible for receiving and

broadcasting transactions but not directly participating in the

consensus process.

Validating Node
A node with sufficient stake, participating in the consensus process,

is responsible for verifying transactions and packaging blocks.

Epoch
A period of time on the chain, which is used to divide the rounds of

validating nodes. Each epoch contains multiple slots.

Slot

A small period within an epoch, which is used to perform consensus

activities of the validating node, including proposing blocks and

voting.

Committee
A group of validating nodes responsible for reaching consensus and

generating blocks within a specific slot.

Proposer
A special validating node in the committee is responsible for

proposing new block proposals within the slot.

Attestation

The attitude of the validating nodes toward the block proposal

during the consensus process, reaching consensus and determining

the final block through voting.

3.1. Node staking process

There are many ways to stake Ethereum: solo staking, staking as a service, and pooled staking. Solo

staking directly locks the held ETH in the network, requiring self-management of node operation and

staking processes. Staking as a service involves entrusting a professional staking service provider to

manage nodes and staking, saving time and energy. Pooled staking, on the other hand, involves multiple

coin holders collaborating in staking, sharing risks and rewards. This article discusses the most

influential and safest method, solo staking.

Figure 1 shows the solo staking method process, which is divided into three stages: preparation,

application, and activation stage. The first stage is the preparation stage, which involves several key

steps. First, according to the requirements of the Ethereum mainnet, the staker should have at least 32

ETH and a dedicated computer connected to the internet ~24/7. Next, the staker must run a full node on

their hardware to synchronize Ethereum’s historical block data, allowing them to propose and verify

blocks during the consensus process. Subsequently, the staker generates a public-private key pair for

node validation based on the aggregate signature cryptographic algorithm, where the private key signs

messages during consensus, and the public key represents the staker’s identity within the Ethereum

network. Additionally, the staker generates another public-private key pair for withdrawals, which is

necessary for creating a withdrawal certificate. This procedure serves as a cryptographic guarantee to

ensure that the staked funds can be withdrawn safely. It’s important to configure the private key used

Blockchain Article

 7

for signing on a dedicated computer so that the Ethereum node program can sign consensus messages

whenever needed. Therefore, for security reasons, the private key for signing and the private key for

withdrawals should remain separate.

Figure 1. Ethereum PoS staking process.

The second stage is the application stage. Once the staker has completed the preliminary

preparations, it can start submitting the staking application to the staking contract. First, the staker

packages the prepared validator public key, withdrawal voucher, and the amount of ETH into fixed data.

This data is set as an input parameter to the Ethereum transaction. Then, the staker signs the Ethereum

staking transaction and sends it to the Ethereum network, which enters the transaction verification pool

through broadcasting. When the new block time arrives, the transaction is packaged into the new block

by the validating node already in the validating node set. Subsequently, the staking contract receives the

staker’s ETH, executes the staking transaction, and determines the validity of the data in the staking

transaction. If the data is valid and the amount of ETH exceeds the minimum staking amount, a number

is assigned to the validating node and add it to the validating node set.

The third stage is the activation stage. Under normal circumstances, a validating node is activated

when it is added to the validating node set. Since it takes at least two epochs for Ethereum’s blocks to

be finally confirmed, for safety reasons, the node must wait at least approximately 12.8 minutes before

verifying the block. After completing the staking process, a regular node can become a validating node

and participate in the consensus process. Typically, the staker stakes the minimum amount (32 ETH) to

maximize benefits. If the staker possesses a large amount of ETH, they may apply for as many validating

nodes as possible. Therefore, in the subsequent discussion, scenarios involving stake value or node count

are consistent- the greater the number of nodes, the higher the total stake value.

3.2. Epoch and slot

Currently, the number of nodes participating in the Ethereum mainnet is about 500,000. The consensus

based on the Byzantine fault-tolerant algorithm requires nodes to participate in voting. However, if all

nodes must verify and vote for each block, the efficiency of consensus’s network transmission and block

verification will be significantly reduced. Therefore, the Ethereum consensus introduces the concepts of

epoch and slot [13]. Epoch is a period on the chain used to divide the rounds of validating nodes. Each

epoch is divided into several slots. The slot is used to execute the consensus activities of the validating

node. Each slot is evenly allocated a part of the validating nodes. These validating nodes form the

Blockchain Article

 8

committee of the slot and are responsible for proposing blocks and voting. The consensus that introduces

the design of epoch and slot can be called the slot-based PoS algorithm.

Figure 2 shows the differences between the slot-based PoS chain and the traditional PoW chain. In

Figure 2, all nodes in the Bitcoin chain participate in the block generation process, and 12 blocks have

been generated. The Ethereum chain consists of 16 validating nodes. Each epoch contains 4 slots, and

each slot is assigned 4 validating nodes. The consensus has run for 3 epochs, or 12 slots, and has also

generated 12 blocks. The number of committees 𝐶𝑖 in the 𝑖-th slot is shown in Equation 3.1:

 𝐶𝑖 =
𝑁

𝑆
+ {

1 𝑖𝑓 𝑖 ≤ 𝑁 𝑚𝑜𝑑 𝑆
 0 𝑖𝑓 𝑖 > 𝑁 𝑚𝑜𝑑 𝑆

 (3.1)

Where 𝑁 is the total number of validating nodes; 𝑆 is the number of slots in a single epoch.

Figure 2. Difference between PoW chain and slot-based PoS chain.

According to Buterin et al. [13], the committee and proposers are randomly selected, and the

generation process is shown in Equation 3.2:

 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑒 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒(𝑠𝑒𝑒𝑑, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠, 𝑠𝑙𝑜𝑡) (3.2)

Where 𝑠𝑒𝑒𝑑 is the random seed, which is determined 2 epochs in advance to prevent grinding

attacks; 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠 is the set of validating nodes.

The proposer of the slot is the key role of the slot committee and is responsible for the packaging of

the block, which generation process is shown in Equation 3.3:

 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑠𝑒𝑒𝑑, 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑒) (3.3)

3.3. Fork selection algorithm

The fork selection algorithm of Ethereum is based on the GHOST algorithm. In the following discussion,

GHOST specifically refers to Ethereum’s fork selection algorithm. The GHOST fork selection algorithm

is designed to select the block with the greatest weight in the blockchain. Its fundamental concept is to

choose the block with the highest observation weight in a greedy fashion, relying on the latest message

from the validator, thus creating a secure and highly consistent blockchain [14].

Blockchain Article

 9

Figure 3 illustrates the GHOST fork selection algorithm. In Figure 3, the root of the tree represents

the genesis block. The weight of each node is equal to the sum of the weights of all its descendant

nodes. The fork selection algorithm starts from the genesis block, and by searching the tree, the child

node with the largest weight value is selected as the parent node for the next search round in each step.

This process is repeated until the leaf node is reached. The weight calculation of the node in the chain

is shown in Equation 3.4:

 𝑤𝑏 = ∑ 𝑤𝑐𝑐∈𝐶(𝑏) + ∑ 𝑆(𝑣)𝑣∈𝑉(𝑏) (3.4)

Where 𝑤𝑏 represents the weight of block 𝑏, 𝐶(𝑏) represents the set of all subblocks of block 𝑏; 𝑤𝑐

represents the weight of block 𝑐; 𝑉(𝑏) represents all the validating nodes of block 𝑏; 𝑆(𝑣) represents

the weight of block 𝑣.

Figure 3. GHOST fork selection algorithm.

Figure 4. Ethereum forking chain.

Figure 4 shows the forking chain view of Ethereum forks combined with the slot design. It is divided

into three parts from top to bottom. First, the top shows the slot number, and the Ethereum consensus is

completed within 8 slots. Second, the middle part shows the block voting situation. The votes for the 𝑛-

th slot reached 8 votes. Starting from the 𝑛-th slot, two forked chains 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5) and 𝐶ℎ𝑎𝑖𝑛(𝑛 + 7)

appeared. These two forked chains represent the chains with the blocks of the (𝑛 + 5)-th slot and the

(𝑛 + 7)-th slot as the chain ends. The chain is composed of blocks, as shown in Equation 3.5:

Blockchain Article

 10

 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5) = 𝐵𝑛, 𝐵𝑛+3, 𝐵𝑛+4, 𝐵𝑛+5 (3.5)

Where 𝐵𝑛+5 represents the block generated by slot 𝑛 + 5, and the forked chain 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5) is

composed of 4 blockchains.

Finally, the bottom shows the cumulative number of votes, and the number of votes for the root

block reaches 32, representing the total number of votes for the entire epoch. Based on the GHOST

algorithm, starting from the block in slot 𝑛, the next block selects the block 𝐵𝑛+3 generated by the

(𝑛 + 3)-th slot, and the final block of the fork is the block generated by the (𝑛 + 5)-th slot. Therefore,

from the view of this node, the green part represents the canonical chain. The weight calculation method

of this chain is shown in Equation 3.6:

 𝑊𝑛+5 = 𝑊𝑆𝑛 + ∑ 𝑊𝑆𝑛+𝑖
5
𝑖=3 (3.6)

Where 𝑊𝑛+5 represents the weight of 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5), which traces back from the block of the

(𝑛 + 5)-th slot to the justified block 𝐵𝑛 calculated by the Ethereum consensus, and accumulates the

weights of these blocks.

Therefore, if the node is the proposer of the (𝑛 + 8)-th slot, the next block points to the block

generated by the (𝑛 + 5)-th slot, not the (𝑛 + 7)-th slot, because 𝑊𝑛+5 = 21, which is greater than

𝑊𝑛+7 = 19.

To defend against short-range reorganization attacks, the Ethereum main net has implemented the

algorithm of proposer weight enhancement and cross-slot voting weight reduction. The enhanced

proposer weight 𝑊𝑛̃ is calculated in Equation 3.7:

 𝑊𝑛̃ = {
𝑊𝑛 + 𝑊𝑐𝑒 ∗ ∆𝑤, 𝑖𝑓 0 ≤ 𝑡𝐵 <

𝑇

3

𝑊𝑛 , 𝑖𝑓
𝑇

3
 ≤ 𝑡𝐵 ≤ 𝑇

 (3.7)

Where 𝑇 is the duration of the time slot. 𝑡𝐵 represents the time at which the block is received,

starting from this time slot. 𝑊𝑐𝑒 is the weight of the committee for this time slot, which is the sum of the

weights of all validating nodes in the committee. ∆𝑤 is the ratio of weight enhancement. 𝑊𝑛 is the

weight of 𝐶ℎ𝑎𝑖𝑛(𝑛).

The reduced cross-slot voting weight 𝑊𝐴 is calculated in Equation 3.8:

 𝑊𝐴 = {
1, 𝑖𝑓 𝑚 = 𝑛
∆𝑤𝑎, 𝑖𝑓 𝑚 > 𝑛

 (3.8)

Where 𝑚 refers to the 𝑚-th slot when committee 𝑁𝑚 votes, and 𝑛 refers to the n-th slot when the

voted 𝐵𝑛 is generated. 𝑊𝐴 means that if a committee votes for a block prematurely, its voting weight

should be reduced by ∆𝑤𝑎.

3.4. Finality algorithm

Casper FFG is a block finality algorithm introduced by Ethereum consensus. The algorithm is based on

the two-phase commit model of Byzantine fault tolerance [11]. Its first phase is justification. Validators

stake a certain amount of ether and then participate in block verification. If the vast majority of validators

agree that a block is valid, the block is called justified, marking the initial stage of consensus. In the

finalization phase, validators continue to verify and add additional votes. If the vast majority of

validators agree on a block and all blocks before the block have been justified, the block is confirmed as

Blockchain Article

 11

final and finality is achieved. Through this design, Casper FFG ensures the reliability and security of

consensus in the network and provides a more efficient and scalable consensus mechanism for Ethereum.

Figure 5 shows the finality algorithm, in which the number of Validating Nodes is 60, and a single

epoch is divided into 32 slots. After 3 epochs, the consensus state is divided into 3 states: Finalized,

Justified, and None. The block numbers from 1 to 32 of the first epoch have been confirmed twice, so

they are in the finalized state, and these 32 blocks cannot be rolled back at will. The block numbers from

33 to 64 of the second epoch have been voted by the majority of Validating Nodes once, so they are in

the justified state, which can be rolled back. The third epoch is currently voting, and it cannot be

determined whether it is one of the two states. However, when the number of votes reaches or exists 40,

the third epoch is upgraded to the justified state, and the second is upgraded to the finalized state. The

calculation method of the block state is shown in Equation 3.9:

 𝑆(𝑏) = {
𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑, 𝑖𝑓 𝑆(𝑎) = 𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑜𝑟 𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑛𝑑 𝑠𝑚(𝑎 → 𝑏)

𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑, 𝑖𝑓 𝑆(𝑏) = 𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑛𝑑 𝑠𝑚(𝑏 → 𝑐) 𝑎𝑛𝑑 ℎ(𝑏) = ℎ(𝑐) + 1
 (3.9)

Where 𝑆(𝑏) represents the state function of block 𝑏, 𝑠𝑚(𝑎 → 𝑏) represents the number of votes for

block 𝑎 to 𝑏 has reached the majority, that is, the number of votes is greater than or equal to 2/3 of the

total votes, and ℎ(𝑏) represents the height of block 𝑏. If block (𝑎 → 𝑏) is voted by most validators and

block a has been finalized or reasonable, then block 𝑏 is confirmed as reasonable, and the genesis block

defaults to the finalized state. If block (𝑏 → 𝑐) is voted by most validators, block 𝑏 has been confirmed

as reasonable, and the height of block 𝑏 is equal to the height of block 𝑐 plus 1, then block 𝑏 is confirmed

as finalized.

Figure 5. Casper FFG finality algorithm.

4. Short-range reorganization attack model

The Ethereum consensus protocol implements finality assurance through the Casper FFG framework,

which imposes a security threshold requiring attackers to control over 1/3 of the staked ETH to execute

long-range reorganization attacks against finalized blocks. Short-range reorganization attacks against

non-finalized blocks are easier to implement without the 1/3 stake threshold. For non-finalized blocks,

the consensus process follows the GHOST fork choice algorithm, which emphasizes recent attestations.

This section formalizes a comprehensive short-range reorganization attack model based on multi-agents

and systematically elaborates how attackers initiate short-range reorganizations by hiding blocks and

Blockchain Article

 12

publishing them at the right time, taking advantage of network delays or the proposer's advantage (such as

controlling the number of validators). This section first defines the roles of nodes, then explains how to

precisely control the message-sending time and its promoting effect on the attack, and finally elaborates

in detail how to conduct ex-ante reorganization, refined reorganization, and ex-post reorganization.

4.1. Node agent definition

Five main agents are involved in launching short-range reorganization attacks: proposer node, validator,

attacker, honest node and malicious node. Different entities may assume multiple roles simultaneously,

and malicious nodes may have various behaviors, some of which are punished. First, let us introduce the

different roles:

(1) Proposer node P: In the slot, a unique node is pre-selected from the committee through a random

algorithm as the proposer node P, responsible for proposing blocks.

(2) Validator V: In the slot, nodes other than the proposer node are pre-selected from the committee

through a random algorithm as validators, responsible for voting on the blocks proposed by the

proposer node P.

(3) Attacker A: The entity that initiates the attack can control any abnormal behavior of one or

more nodes to achieve the purpose of short-range reorganization attacks.

(4) Honest node H: The node that proposes or votes for blocks according to the GHOST fork

selection algorithm during the consensus process.

(5) Malicious node M: During the consensus process, the node that proposes or votes according to

the attacker's instructions.

When malicious nodes act as proposers, they can choose to issue conflicting blocks, but such

behavior will be punished. On the other hand, as proposers, they can also choose not to generate blocks,

or keep blocks and release them when needed, and this behavior will not be punished. When malicious

nodes act as validators and vote, if they violate the GHOST rule and vote for conflicting blocks, they

will be punished; however, if they vote for a chain with a lower weight, this behavior will not be

punished. In addition, when malicious nodes vote, the voting message can be broadcast to specific target

nodes when necessary to influence consensus behavior, and such behavior will not be punished. The

relationship between the validating node and the committee is shown in Equation 4.1:

 𝑁 = 𝐶1, 𝐶2, 𝐶3, ⋯ (4.1)

Where the set of validating nodes is defined as 𝑁; 𝐶1, 𝐶2, 𝐶3 are different members of committee.

The relationship between the committee and each node is shown in Equation 4.2:

 𝐶 = 𝑃 ∪ {𝑉} ∩ 𝐻 ∪ 𝑀 (4.2)

Where 𝐶 is the committee, 𝑃 is the Proposer node, 𝑉 is the validator, 𝐻 is the honest node, 𝑀 is the

malicious node.

When the malicious node is a key node in short-range reorganization attacks and in slot 𝑖, the

definition of malicious node is as shown in Equation 4.3:

 𝑀(𝑎, 𝑅𝑖 , 𝑆𝑖 , 𝐷𝑖) (4.3)

Blockchain Article

 13

Where 𝑎 represents the malicious node address, which is the unique identifier in the network; 𝑅𝑖 is

the role of the malicious node in slot 𝑖 , including proposer and validator; 𝑆𝑖 represents the attack

behavior of the malicious node in the consensus process of slot 𝑖. If it is a proposer, it means withholding

blocks or issuing two conflicting blocks. If it is a validator, it indicates the way of voting; 𝐷𝑖 represents

a specific target node to which the malicious node broadcasts.

4.2. Node attack model

When an attacker is able to control some nodes, it can use the vulnerability of the consensus algorithm

to launch short-range reorganization attacks. The attack behavior is mainly to coordinate malicious nodes

to make appropriate operations at the right time. There are three main attack modes: ex-ante

reorganization, fine-grained reorganization, and ex-post reorganization. Before explaining the node

attack mode, Table 2 defines the relevant parameters in the consensus process.

Table 2. Definition of relevant parameters in the consensus process.

Parameters Definition

𝐻𝐴 Honest node 𝐴

𝑀𝐵 Malicious node 𝐵

𝐹 Forking degree

𝑁 Consensus node set

𝐸𝑛 The 𝑛-th epoch

𝑆𝑛 The 𝑛-th slot

𝑃𝑛 Proposer of 𝑛-th slot

𝐵𝑛 The block proposed by the proposer of 𝑛-th slot

𝐴𝐴,𝑛 Node 𝐴 attest the block in 𝑛-th slot

𝐶ℎ𝑎𝑖𝑛(𝑛)
The forked chain with the block in 𝑛-th slot as the end of the chain, which

contains this block and all the blocks traced back to the root

𝐶ℎ𝑎𝑖𝑛𝐴 Forked chain 𝐴

𝑊𝑆𝑛 Total number of attestations with 𝐵𝑛 as the root of the block tree

𝑊𝑛 Total number of attestations for the blocks contained in 𝐶ℎ𝑎𝑖𝑛(𝑛)

𝑊𝐵𝑛 The number of all attestations for 𝐵𝑛

𝐶𝑛 The committee of the n-th slot, which contains all nodes assigned to this slot

𝑐𝑛 The number of nodes in the committee of the 𝑛-th slot

𝑡𝑛
At 𝑛-th slot, the moment of broadcasting a block or authentication

information

∆𝑤 Percentage of proposer weight increase

∆𝑤𝑎 Percentage of validator voting weight reduction

Ex-ante reorganization attack means that the attacker builds 𝑚 consecutive blocks in the network to

form a forked chain 𝐶ℎ𝑎𝑖𝑛𝐴 in advance, and keeps it from being broadcast to the network. Only the

attacker knows the existence of this reserved private chain. Then, the attacker waits for a while and

Blockchain Article

 14

suddenly broadcasts the private chain to the network. Since the previous 𝑚 blocks are unknown to the

honest node, during this period, the honest node forms a public chain 𝐶ℎ𝑎𝑖𝑛𝐵 that is different from the

malicious node, and its length is 𝑛 blocks. After the malicious node broadcasts the private chain, other

nodes make fork selections according to the consensus rules. Since the weight of 𝐶ℎ𝑎𝑖𝑛𝐴 built by the

malicious node is greater than the weight of 𝐶ℎ𝑎𝑖𝑛𝐵 built by the honest node, 𝐶ℎ𝑎𝑖𝑛𝐵 is discarded, and

the attacker achieves the purpose of ex-ante short-range reorganization. By building blocks on the private

chain and voting, the attacker can quickly push the private chain to surpass the public chain, thereby

achieving control over the blockchain. This kind of pre-prepared short-range reorganization attacks may

lead to security issues such as double spending, which undermines the trust mechanism of the blockchain.

An ex-post reorganization attack means that the attacker attempts to reorganize the public chain

generated before the time of the attack in order to achieve a rollback of the public chain. The attacker

usually needs to control the majority of nodes in the entire network, and it selects the number of blocks

that need to be rolled back. After that, the attacker quickly generates a forked chain 𝐶ℎ𝑎𝑖𝑛𝐴 and votes

for it. This can make the weight of the forked chain 𝐶ℎ𝑎𝑖𝑛𝐴 greater than the public forked chain 𝐶ℎ𝑎𝑖𝑛𝐵.

Once the weight of 𝐶ℎ𝑎𝑖𝑛𝐴 is greater than 𝐶ℎ𝑎𝑖𝑛𝐵 , according to the consensus rules, regardless of

whether subsequent nodes are honest, new blocks are appended to 𝐶ℎ𝑎𝑖𝑛𝐴. Therefore, the 𝐶ℎ𝑎𝑖𝑛𝐵 fork

chain is discarded, and the ex-post reorganization attack succeed. Ex-post reorganization attacks may

also lead to a decrease in consensus security. Comparing ex-ante reorganization and ex-post

reorganization, there are the following differences:

(1) The time attributes of the chain are different: the ex-ante reorganization reorganizes chains in

the future, while the ex-post reorganization reorganizes chains in the past.

(2) The difficulty of the attack is different: the stake required for ex-ante reorganization is smaller

than that of ex-post reorganization, and ex-post reorganization is more complicated.

(3) The fundamental attack methods are different: despite the less difficulty of the ex-ante

reorganization attack, its attack methods are more varied, and its means of attack are more

complex. The complexity of ex-post reorganization is relatively smaller, but it mainly depends

on the stake value it controls.

Whether ex-ante or ex-post reorganization attack, the attacker must control many malicious nodes

to launch the attack successfully. A balance attack can increase the success rate and reduce the number

of malicious nodes required. This method is implemented by precisely controlling the time the node

sends the voting message. Since the message needs to be broadcast on the network before covering all

honest nodes, the time the voting message arrives at each honest node may be inconsistent. This

inconsistency causes a specific time when the weight of each forked chain observed by half of the honest

nodes differs from that of the other half. By taking advantage of this inconsistency, different parts of the

honest nodes vote for different forked chains, which is called forking. The forking degree of honest

nodes is defined in Equation 4.4:

 𝐹 = 𝐻𝑚/𝐻ℎ (4.4)

Where 𝐻𝑚 represents the number of malicious chains supported by the honest node after forking;

𝐻ℎ represents the number of honest chains supported by the honest node. When 𝐹 equals 0, it means that

the attacker has not forked any honest node, and all honest nodes support the chain generated by the

Blockchain Article

 15

honest node. This situation is equivalent to the attacker not considering the precise control mode, and it

is easiest to create a condition with no forking degree. When 𝐹 equals 1, it means that the attacker divides

the honest node set equally, half of which supports the chain generated by the malicious node, and the

other half supports the chain generated by the honest node. The attacker precisely controls the time to

fork honest nodes as much as possible, which means maximizing 𝐹, so that it can reorganize the chain

with less controlled nodes, reducing the difficulty of the attack. Compared with the ex-ante

reorganization attack, this method requires the forked blocks to be exposed in advance.

4.3. Ex-ante reorganization

This section introduces the specific process of ex-ante reorganization in detail. Assuming that the total

number of nodes is 32, the number of malicious nodes controlled by the attacker is 8, and one epoch is

divided into 8 slots. First, the attacker’s process of reorganizing one block and two blocks is explained,

and then the general process of reorganizing k blocks is derived. Through these processes, we can deeply

understand how the attacker uses malicious nodes to implement ex-ante reorganization attacks.

Figure 6. Specific process of one-block ex-ante reorganization.

Figure 6 shows the schematic diagram of one-block ex-ante reorganization. In Figure 6, the square

represents the block generated by the slot, the gray circle is the malicious node, and the blue circle is the

honest node. The specific steps of the attack include: (1) The first step, the malicious node, as the

proposer of the 𝑛 + 1 slot 𝑆𝑛+1, does not broadcast the generated block immediately. (2) The second

step, since the proposer 𝑃𝑛+2 of slot 𝑛 + 2 has not received the block of the 𝑛 + 1 slot 𝑆𝑛+1, it generates

block 𝐵𝑛+2 and appends it to the block 𝐵𝑛 of the 𝑛 + 2 slot. (3) The third step, after the block 𝐵𝑛+2 is

broadcasted, the malicious node releases the 𝑛 + 1 block 𝐵𝑛+1 , with the voting message

{𝐴𝐴,𝑛+1, 𝐴𝐵,𝑛+1, 𝐴𝐶,𝑛+1} of the malicious node in 𝐵𝑛+2. In addition, the honest nodes 𝐻𝐷 and 𝐻𝐸 vote

for 𝐵𝑛+2. Finally, the proposer 𝑃𝑛+3 of slot 𝑛 + 3 calculates that 𝑊𝑆𝑛+1 is 3 and the weight of 𝑊𝑆𝑛+2

is 2. Therefore, according to the GHOST algorithm, 𝑊𝑆𝑛+1 > 𝑊𝑆𝑛+2. It appends the new block 𝐵𝑛+3

to 𝐵𝑛+1, so 𝐵𝑛+2 is discarded and the consensus is reorganized.

Blockchain Article

 16

Figure 7. Specific process of two-block ex-ante reorganization.

Figure 8. Specific process ex-ante reorganization of 𝑘 blocks.

Figure 7 shows the process of two-block ex-ante reorganization. It is found that the number of

malicious nodes required to reorganize two blocks successfully is 2 more than the case of reorganizing

only one block. In this case, the number of malicious nodes required to launch the attack successfully is

5, while the number required to reorganize only one block under the same conditions is 3. The steps of

the attack include: (1) The first step, the malicious node becomes 𝑃𝑛+1 of the (𝑛 + 1)th slot, and does

not broadcast immediately after generating the block. (2) The second step, since 𝑃𝑛+2 does not receive

𝐵𝑛+2, it appends block 𝐵𝑛+2 to 𝐵𝑛. Similarly, 𝐵𝑛+3 is appended to 𝐵𝑛+2. (3) In the third step, after 𝐵𝑛+3

is broadcast, the malicious node releases 𝐵𝑛+1 with the malicious node's voting message

{𝐴𝐴,𝑛+1, 𝐴𝐵,𝑛+1, 𝐴𝐶,𝑛+1, 𝐴𝐷,𝑛+1, 𝐴𝐸,𝑛+1}. Finally, 𝑃𝑛+3 calculates that 𝑊𝑆𝑛+1 is 5 at this time, and the

weight of 𝑊𝑆𝑛+2 is 4. Therefore, according to the GHOST rule, the new block 𝐵𝑛+4 is appended to

𝐵𝑛+1, so 𝐵𝑛+2 and 𝐵𝑛+3 are reorganized.

Figure 8 shows the process of 𝑘-blocks ex-ante reorganization. The specific steps of the attack include:

(1) The first step, the malicious node acts as 𝑃𝑛+1 of the 𝑛 + 1 slot, and does not broadcast the block

immediately after generating it. (2) The second step, since 𝑃𝑛+2 did not receive 𝐵𝑛+1, it appends the new

block 𝐵𝑛+2 to 𝐵𝑛. The blocks from 𝐵𝑛+3 to 𝐵𝑛+𝑘+1 are appended in sequence as usual. (3) In the third

step, after 𝐵𝑛+𝑘+1 is broadcasted, the malicious node releases the reserved block 𝐵𝑛+1, and the malicious

nodes from 𝑛 + 2 to 𝑛 + 𝑘 + 1 also send out voting messages 𝐴𝐴,𝑛+1, 𝐴𝐵,𝑛+1, 𝐴𝐶,𝑛+1, 𝐴𝐷,𝑛+1, 𝐴𝐸,𝑛+1, ⋯

at this time. Finally, 𝑃𝑛+𝑘+2 calculates that 𝑊𝑆𝑛+1 is 2𝑘 + 1 at this time, which is greater than the weight

Blockchain Article

 17

of 𝑊𝑆𝑛+2 2𝑘. Therefore, according to the GHOST algorithm, it appends the new block 𝐵𝑛+𝑘+2 to 𝐵𝑛+1,

so the 𝑘 blocks from 𝑛 + 2 to 𝑛 + 𝑘 + 1 are reorganized.

4.4. Fine-grained reorganization

Fine-grained reorganization refers to an attacker who precisely controls the voting behavior of malicious

nodes to influence the honest node's judgment of the current forked chain, thereby reducing the difficulty

of the attack [18]. The key to this strategy is to control the sending time of the voting message. Using

this strategy, the attacker can release the malicious node's voting message at a critical moment, thereby

affecting the decision of the honest node during the consensus process, causing the network to reorganize

or the node to choose a different forked chain, achieving the purpose of the attack. Through fine-grained

reorganization, the attacker can flexibly manipulate the network's consensus process and increase the

attack's success rate.

Figure 9. Precisely control the voting message.

Figure 9 shows the precise control of voting message time. The upper part of Figure 9 shows the

state of chain bifurcation at 𝑇1, and the chain is divided into bifurcation chain 𝛼 and bifurcation chain 𝛽.

When the slot progresses to 𝑛 + 2, bifurcation chain 𝛼 is currently composed of 2 blocks, namely 𝐵𝑛,

𝐵𝑛+2, with a weight of 2, and bifurcation chain 𝛽 is currently composed of 2 blocks, namely 𝐵𝑛, 𝐵𝑛+1,

with a weight of 1. When the slot progresses to 𝑛 + 3, there are 4 nodes participating in the consensus of

the 𝑛 + 3 slot, 𝐴 and 𝐵 are honest nodes, and 𝐶 and 𝐷 are malicious nodes. In the lower part of Figure 11,

it is assumed that the attacker can control the voting time of 𝐶 and 𝐷, so that 𝐴 and 𝐵 split and vote in

different bifurcation chains respectively. First, determine that the malicious node's voting message is

sent at the voting time of the 𝑛 + 3 slot, 𝑇2 − 𝑇 , which is 𝑇1 . 𝐶 and 𝐷 vote for 𝐵𝑛+1 . After the

broadcast of time 𝑇, the honest node 𝐵 receives the vote of the malicious node. B determines that the

weight of the forked chain 𝛽 is 3, which is greater than the forked chain 𝛼, so 𝐵 votes for the forked

Blockchain Article

 18

chain 𝛽. At this time, 𝐴 has not received the voting message from the malicious node and still believes

that the weight of the forked chain 𝛽 is less than the forked chain 𝛼, so it votes for the forked chain 𝛼.

Figure 10. Chain views of precise control of the honest node.

Figure 11. Specific process of fine-grained reorganization.

Figure 10 shows the chain views of honest nodes 𝐴 and 𝐵 during the voting process. The upper part

of Figure 10 shows the chain view of node 𝐵 after time 𝑇. At this time, it observes that fork chain 𝛼 has

two honest nodes voting for 𝐵𝑛+2, and fork chain 𝛽 has three nodes voting for 𝐵𝑛+1, so 𝐵 decides to vote

for fork chain 𝛽. The lower part of Figure 10 shows the chain view of node 𝐴 after time 𝑇. At this time, it

observes that fork chain α has two honest nodes voting for 𝐵𝑛+2, and fork chain 𝛽 has only one node voting

for 𝐵𝑛+1, so 𝐴 decides to vote for fork chain 𝛼. In the second half of the time of the (𝑛 + 3)-th slot, after

the message is fully broadcast, the chain views of 𝐴 and 𝐵 tend to be consistent. At this time, the weights

of fork chain α and fork chain 𝛽 are close to the same. If the attacker wants to increase the length of the

reorganized block, it can continue to use this method to attack.

Figure 11 introduces the specific process of fine-grained reorganization in detail. The total number of

nodes is 64, the number of malicious nodes controlled by the attacker is 8, one epoch is divided into 8

slots, and the length of the reorganized block is 𝑘. The specific steps of the attack include: (1) In the first

step, malicious node 𝑃𝑛+1, as the proposer of slot 𝑆𝑛+1, generates block 𝐵𝑛+1 but does not broadcast the

Blockchain Article

 19

block immediately. Implement refined control message strategy and wait for the generation and voting of

block 𝑆𝑛+2. (2) In the second step, when the voting time of 𝑆𝑛+2 comes, 𝑃𝑛+1 broadcasts the block to the

network and attaches a vote 𝐴𝑝,𝑛+1 for 𝑛 + 1. After that, the honest nodes 𝐻𝐶 and 𝐻𝐷 in the committee of

𝑆𝑛+2 receive the voting message 𝐴𝑃,𝑛+1 and judge that the weight 𝑊𝑛+1 of the 𝑛 + 1 branch is greater

than the weight 𝑊𝑛+2 of the 𝑛 + 2 branch (since the current slot is in 𝑆𝑛+2, the block of this slot does not

accumulate weight). At this time, the two nodes generate voting messages 𝐴𝐶,𝑛+1 and 𝐴𝐷,𝑛+1 and

broadcast them. The other four honest nodes 𝐻𝐸 , 𝐻𝐹 , 𝐻𝐺 , and 𝐻𝐻 did not receive the block 𝐵𝑛+1 and

voting message of 𝑛 + 1 in time, so they generated votes for 𝑛 + 2 𝐴𝐸,𝑛+2, 𝐴𝐹,𝑛+2, 𝐴𝐺,𝑛+2, 𝑎𝑛𝑑𝐴𝐻,𝑛+2.

(3) In the third step, the two malicious nodes 𝑀𝐴 and 𝑀𝐵 in slot 𝑆𝑛+2 wait for the voting opportunity 𝑡𝑛+2

after the generation of block 𝐵𝑛+3 of 𝑛 + 3. When the opportunity comes, 𝑀𝐴 and 𝑀𝐵 send votes 𝐴𝐴,𝑛+1

and 𝐴𝐵,𝑛+1for 𝑛 + 1 to the network. After a period of time, the two nodes 𝐻𝐼 and 𝐻𝐽 in slot 𝑛 + 3 receive

𝐴𝐴,𝑛+1 and 𝐴𝐵,𝑛+1, and determine that the branch weight 𝑊𝑛+1 of 𝑛 + 1 is greater than the weight 𝑊𝑛+3

of 𝑛 + 3. At this time, 𝐻𝐼 and 𝐻𝐽 vote 𝐴𝐼,𝑛+1 and 𝐴𝐽,𝑛+1 for 𝑛 + 1. The other four honest nodes 𝐻𝐾, 𝐻𝐿,

𝐻𝑀, 𝐻𝑁 did not receive 𝐵𝑛+1 and its voting message in time, so they voted 𝐴𝐾,𝑛+3, 𝐴𝐿,𝑛+3, 𝐴𝑀,𝑛+3, 𝐴𝑁,𝑛+3

for 𝐵𝑛+3. (4) Finally, when it comes to slot 𝑆𝑛+𝑘, the attacker finds that there is only one block left, so it

directly releases the malicious node vote of 𝑛 + 𝑘 in advance. After that, all the honest nodes of 𝑆𝑛+𝑘+1

calculate 𝑊𝑛+𝑘 and 𝑊𝑛+1, see Equation 4.5 and Equation 4.6.

 𝑊𝑛+𝑘 = 𝑊𝐵𝑛 + ∑ 𝑊𝐵𝑛+𝑖
𝑘
𝑖=2 = 4𝑘 + 3 (4.5)

 𝑊𝑛+1 = 𝑊𝐵𝑛 + 𝑊𝐵𝑛+1 = 4𝑘 + 4 (4.6)

Through calculation, it is found that 𝑊𝑛+1 is greater than 𝑊𝑛+𝑘, so all committee nodes 𝑊𝑛+𝑘+1 in

slot 𝑛 + 𝑘 + 1 vote for 𝐵𝑛+1, and the attack is completed. In the best case, only 2𝑘 − 1 malicious nodes

are needed to complete this attack.

Figure 12. Specific process of one-block ex-post reorganization.

Blockchain Article

 20

Figure 13. Specific process of k-blocks ex-post reorganization

4.5. Ex-post reorganization

This paper designs an ex-post reorganization attack method and introduces the specific process of ex-

post reorganization in detail. The environment parameters of the attack are set to be consistent with ex-

ante reorganization. The total number of nodes is 32, the number of malicious nodes controlled by the

attacker is 8, and one epoch is divided into 8 slots. First, the process of the attacker reorganizing 1 block

is explained, and then the general process of reorganizing 𝑘 blocks is derived. Through these processes,

we can deeply understand how the attacker uses malicious nodes to implement ex-post reorganization

attacks. After that, this paper simulates the attack strategy and calculate the success probability of the

attack through experimental simulation.

Figure 12 shows the specific process of one-block ex-post reorganization. The square blocks in the

figure are blocks generated by the slot, the gray circles are malicious nodes, and the blue circles are

honest nodes. The attack steps include: (1) The first step, malicious node as the proposer 𝑃𝑛+2 of slot

𝑆𝑛+2, violates the weight priority principle of the fork selection algorithm, and decides to append to 𝐵𝑛

and generate block 𝐵𝑛+2.(2) The second step, in slot 𝑆𝑛+2, according to the GHOST algorithm, the

voting count starts from the block of the previous slot, so in this slot, the honest node only votes for

𝐵𝑛+1, and 𝐵𝑛+2 only has malicious nodes voting. (3) The third step, in slot 𝑆𝑛+3, since the weight of

𝑊𝑛+2 is 4, which is the same as 𝑊𝑛+1, the proposer of 𝑆𝑛+3 must also be a malicious node for the attack

to succeed. At this time, the proposer appends the block to 𝐵𝑛+2. After the 𝐵𝑛+3 block is broadcast,

assuming that the other honest nodes of 𝑆𝑛+3 The node votes for 𝐵𝑛+3; finally, in slot 𝑆𝑛+4, the proposer

of this slot calculates the weight 𝑊𝑛+3 to be 7, which is greater than the weight of 𝑊𝑛+1, which is 5.

Therefore, according to the GHOST algorithm, the proposer appends the new block to 𝐵𝑛+3, so 𝐵𝑛+1 is

discarded and the consensus is reorganized.

Figure 13 shows the specific process of k-blocks ex-post reorganization. The specific steps for a

successful attack include: (1) The first step, the malicious node, as the proposer 𝑃𝑛+𝑘+1 of slot 𝑆𝑛+𝑘+1,

decides to append the block to 𝐵𝑛 and broadcast it. (2) The second step, in slot 𝑆𝑛+𝑘+1, according to

the GHOST algorithm, the voting count starts from the block of the previous slot, so 𝑆𝑛+𝑘+1 only has

malicious nodes voting. (3) The third step, in slot 𝑆𝑛+2𝑘+2, since the weight 𝑊𝑛+2𝑘+1 calculated by

the committee of this slot is consistent with 𝑊𝑛+𝑘, 𝑃𝑛+2𝑘+2 must also be a malicious node, and the

proposer appends the block to 𝐵𝑛+2𝑘+1. Assume that after the block 𝐵𝑛+2𝑘+2 is broadcasted, there are

two other malicious nodes in slot 𝑆𝑛+2𝑘+2 that vote for the block generated by this slot. Finally, in

slot𝑆𝑛+2𝑘+3, the proposer 𝑃𝑛+2𝑘+3 of this slot calculates that the weight of 𝑊𝑛+2𝑘+2 is 2𝑘 + 3, which

Blockchain Article

 21

is greater than the weight of 𝑊𝑛+𝑘 2𝑘 + 1. Therefore, according to the GHOST algorithm, it appends

the new block to 𝐵𝑛+2𝑘+2, so blocks 𝐵𝑛+1, ⋯ , 𝐵𝑛 + 𝑘 are discarded, and the consensus undergoes a

𝑘-block reorganization.

5. Experiments

By analyzing short-range reorganization attacks, we can extract the key parameters that affect the attack

results. After setting the key parameters, we can simulate the attack method and launch the attack. This

paper designs an algorithm for experimental simulation and calculate the probability of success in an

epoch. The key parameters are shown in Table 3:

Table 3. Key parameters of the short-range reorganization model.

Parameter Symbol Definition

Number of nodes 𝑁
Integer type. The total number of nodes participating in the consensus. The

default value is 4096.

Malicious node ratio 𝑚
Floating point type, value range is 0 to 1. The ratio of malicious nodes

controlled by the attacker to the total number of nodes. The default value is 0.3.

Slot number 𝑆
Integer type. The number of slots in a single epoch in the consensus algorithm.

Currently, the value of Ethereum mainnet is 32, so the default value is 32.

Reorganization

model
𝑅

Enumeration type. Includes three modes: ex-ante reorg, fine-grained reorg, and

ex-post reorg. The default value is ex-ante reorg.

Degree of honest

nodes forking
𝐹

Floating point type, ranging from 0 to 1. The degree of honest node forking

when fine-grained reorganization is implemented. If the honest node set is

forked into two, the value is 1. The default value is 0

Voting weight

enhancement
𝛥𝑤

Floating point type, value range is 0 to 1. Enhance the proposer weight. If it is

0, it means that this method is not enabled. The default value is 0.

Cross-slot voting

weight reduction
𝛥𝑤𝑎

Floating point type, value range is 0 to 1. Degrade the cross-slot voting weight.

If it is 1, it means that this method is not enabled. The default value is 1.

Blockchain

reorganization length
𝐵

Integer type. The number of short-range reorganization blocks. The minimum

value is 1 and the maximum value is 𝑆 − 1. The default value is 1.

Simulations count 𝑐
Integer type. The number of experimental simulations, that is, the number of

simulation epochs. The default value is 10,000.

Probability of success 𝑃 Floating point type. Short-range reorganization attacks success probability.

According to the short-range reorganization model, the definition of key parameters is shown in

Equation 5.1:

 𝑃 = 𝑓(𝑁, 𝑚, 𝑆, 𝑅, 𝐹, 𝛥𝑤, 𝛥𝑤𝑎, 𝐵, 𝑐) (5.1)

Where 𝑓 is the short-range reorganization attacks model. Other terms that are not listed in the key

parameter table but have been mentioned in the Ethereum basic settings include: the number of malicious

nodes 𝑀 = 𝑁 ∙ 𝑚, the number of committee nodes 𝐶 = 𝑁/𝑆. Regarding the weight value calculated in

Blockchain Article

 22

the fork selection algorithm, the weight of 1 node is defined as 1, and the weight of the proposer after

the power is raised is 𝑊 = 𝐶 ∙ 𝛥𝑤. The function 𝑓 is computed through different algorithms depending

on the value of parameter 𝑅. Specifically: when 𝑅 = ex-ante_reorg, 𝑓 is calculated using Algorithm 1;

when 𝑅 = ex-post_reorg , Algorithm 2 is employed; and when 𝑅 = fine_grained_reorg , the

computation follows Algorithm 3.

Algorithm 1: Simulating ex-ante short-range reorganization attack

Input: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡: malicious node ratio, 𝑟𝑜𝑔𝑛:reorganization length, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡:

simulation rounds, 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡: total nodes, 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟: slot number

Output: attack success probability

1: Initialize parameters:

2: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 × 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡

3: 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡/𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟

4: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 0

5: for 𝑖𝑑 ← 1 to 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 do

6: Shuffle nodes 𝑥 randomly

7: Initialize 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[], 𝑛𝑜𝑟𝑚𝑎𝑙[], 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[]

8: for 𝑖 ← 1 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 do

9: Assign 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 nodes to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑡

10: Record leader status

11: Count 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖] and 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖]

12: for 𝑖2 ← 1 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 do

13: if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖2] == 1 then

14: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 0, 𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 ← 0

15: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒_0 ← 0

16: for 𝑖3 ← 𝑖2 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 do

17: if in initial adversary leader phase then

18: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 + 𝑓𝑎𝑢𝑙𝑡[𝑖3]

19: else

20: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 + 𝑓𝑎𝑢𝑙𝑡[𝑖3]

21: 𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 ← 𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 + 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖3]

22: if 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒_0 ≥ 𝑟𝑜𝑔𝑛 and

23: (𝑖𝑡𝑒𝑚_𝑓𝑎𝑢𝑙𝑡 + 𝑡𝑒𝑚𝑝_𝑓𝑎𝑢𝑙𝑡) > (𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 + 𝑡𝑒𝑚𝑝_𝑛𝑜𝑟𝑚𝑎𝑙) then

24: a𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 + 1

25: terminate outer loop

26: return 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐/𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡

Blockchain Article

 23

Algorithm 2: Simulating ex-post short-range reorganization attack

Input: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡: malicious node ratio, 𝑟𝑜𝑔𝑛: reorganization length, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡:

simulation rounds, 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡: total nodes, 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟: time slot number

Output: attack success probability

1: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 × 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡

2: 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡/𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟

3: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 0

4: for 𝑖𝑑 ← 1 to 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 do

5: Shuffle nodes 𝑥 randomly

6: Initialize 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[], 𝑛𝑜𝑟𝑚𝑎𝑙[], 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[]

7: for 𝑖 ← 0 to 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 − 1 do

8: 𝑠𝑙𝑜𝑡𝑖 ← 𝑖/𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡

9: if 𝑖 𝑚𝑜𝑑 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 == 0 then

10: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑠𝑙𝑜𝑡𝑖] ← (𝑥[𝑖] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑐𝑜𝑢𝑛𝑡)? 1 ∶ 0

11: if 𝑥[𝑖] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 then

12: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] + 1

13: else

14: 𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] ← 𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] + 1

15: for 𝑖2 ← 𝑟𝑜𝑔𝑛 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do

16: if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖2] == 1 then

17: for 𝑖4 ← (𝑖2 − 𝑟𝑜𝑔𝑛) to 𝑖2 − 1 do

18: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠+= 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖4]

19: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0

20: for 𝑖3 ← 𝑖2 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do

21: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖3]

22: if 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 > 𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 then

23: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 + 1

24: terminate outer loop

25: return 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐/𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡

Next, this paper conducts attack simulation experiment in 3 ways: First, we analyze the impact of

the malicious node ratio on success. Attackers can achieve success by controlling more malicious nodes.

Then, we analyze whether the increase in the number of nodes affects success. Finally, we analyze the

impact of the degree of honest node forking on success when fine-grained reorganization is implemented.

Blockchain Article

 24

Algorithm 3: Simulating fine-grained short-range reorganization attack

Input:𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒: honest node forking degree, 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡: malicious node ratio, 𝑟𝑜𝑔𝑛:

reorganization length, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡:simulation rounds, 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡: total nodes,

𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟: time slot number

Output: attack success probability

1: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 × 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡

2: 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡/𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟

3: 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟 ← 𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒/(1 + 𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒)

4: 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟 ← 1/(1 + 𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒)

5: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 0

6: for 𝑖𝑑 ← 0 to 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 − 1 do

7: Shuffle node 𝑥 randomly

8: Initialize 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[], 𝑛𝑜𝑟𝑚𝑎𝑙[], 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[]

9: for 𝑖1 ← 1 to 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 − 1 do

10: 𝑠𝑙𝑜𝑡𝑖 ← 𝑖1/𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡

11: if 𝑖1 𝑚𝑜𝑑 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 == 0 then

12: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑠𝑙𝑜𝑡𝑖] ← (𝑥[𝑖1] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑐𝑜𝑢𝑛𝑡)

13: if 𝑥[𝑖1] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 then

14: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] + 1

15: else

16: 𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] ← 𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] + 1

17: for 𝑖2 ←0 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do

18: if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖2] == 1 then

19: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖2]

20: 𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 ← 1, 𝑠𝑡𝑎𝑟𝑡_0 ← −1

21: for 𝑖3 ← 𝑖2 + 1 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do

22: if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖3] == 0 and 𝑠𝑡𝑎𝑟𝑡_0 < 0 then

23: s𝑡𝑎𝑟𝑡_0 ← 𝑖3

24: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖3]

25: 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟 × 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖3]

26: 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 ← 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖3] − 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

27: if 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 ≥ 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 + 1 then

28: 𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

29: else if 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 == 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 then

30: 𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 2

31: else

32: break

33: if 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ≥ 𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 then

34: 𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 ← 𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 + 1

35: 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 − 𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

36: else

37: break

38: if 𝑠𝑡𝑎𝑟𝑡_0 ≥ 0 and 𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 > 𝑟𝑜𝑔𝑛 then

39: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 + 1

40: break

41: return 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐/𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡

Blockchain Article

 25

5.1. Impact of malicious node ratio on success

In order to increase the probability of a short-range reorganization, the obvious way for an attacker is to

control more malicious nodes. This section analyzes the impact of malicious node ratio on ex-ante

reorganization and ex-post reorganization. The key parameters are malicious node ratio 𝑚 ,

reorganization mode 𝑅 and reorganization block length 𝐵. Other parameters are default values. We

analyze how changes in these parameters affect the success rate. The number of experiments is calculated

based on the length of one year. That is to say, if a reorganization does not occur in a year, the probability

of its occurrence can be ignored in this paper. If calculated according to the parameters of the Ethereum

mainnet, the duration of each slot is 12 seconds, and the number of epochs in a year is 82125. The key

parameters are shown in Equation 5.2:

 𝑃 = 𝑓(4096, 𝑚, 32, 𝑅, 0,0,1, 𝐵, 82125) (5.2)

Figure 14. Impact of malicious node ratio on ex-ante reorganization attack success rate.

Figure 14 shows the effect of different malicious node ratios on ex-ante reorganization attack

success from 1 block to 8 blocks. From Figure 14(a), we can conclude that: (1) The attack success rate

is low when the malicious node ratio is low. When the malicious ratio is less than 0.11, the attack success

Blockchain Article

 26

rate is nearly 0, which shows that ex-ante short-range reorg attacks fail in most cases. (2) The attack

success rate gradually increases as the malicious node ratio increases. At a malicious node ratio of about

0.33, the attack success rate is close to 50%. (3) When the malicious node ratio exceeds 0.4, the attack

success rate quickly reaches 100%. This shows that ex-ante short-range reorg attacks almost always

succeed at high ratios. From Figure 14(b), only when the malicious node ratio exceeds 0.24 can the

attacker launch a 2-block ex-ante short-range reorg attack within 1 year. When the malicious node ratio

exceeds 0.35, ex-ante short-range reorg attacks always succeed. From Figure 14(c), only when the

malicious node ratio exceeds 0.24 can the attacker launch a 4-block ex-ante short-range reorg attack

within 1 year. When the malicious node ratio exceeds 0.40, ex-ante short-range reorg attacks always

succeed. From Figure 14(d), the corresponding thresholds are 31% and 50% when reorganizing 8 blocks.

Figure 15. Impact of malicious node ratio on ex-post reorganization results.

Figure 15 shows the impact of different malicious node ratios on ex-post reorganization success

from 1 block to 8 blocks. From Figure 15(a), when reorganizing one block, we can conclude that: (1)

When the malicious node ratio is lower than 0.47, the attack success rate is 0. That is, the system is

relatively safe and has not been attacked significantly. (2) Starting from 0.48, the attack success rate

gradually increases but is still low. When it is around 0.5, the attack success rate rises rapidly to about

26%. (3) When the malicious node ratio exceeds 0.5, the attack success rate quickly approaches 100%,

Blockchain Article

 27

and the system’s security drops sharply. From Figure 15(b), only when the malicious node ratio exceeds

0.50 can the attacker launch a 2-block ex-post short-range reorg attack within 1 year. When the malicious

node ratio exceeds 0.52, ex-post short-range reorg attacks always succeed. From Figure 15(c), the

corresponding thresholds are 0.53 and 0.54 when reorganizing 4 blocks. From Figure 15(d), the

corresponding thresholds are 0.57 and 0.58 when reorganizing 8 blocks. Therefore, compared with an

ex-ante reorg attack, the ratio of malicious nodes required for an ex-post reorg attack is much larger, and

regardless of the number of blocks reorganized, the success rate is very low.

5.2. Impact of node number on success

In actual blockchain networks, the number of nodes participating in the consensus often changes

dynamically. As blockchains based on the PoS algorithm become more and more popular, the number

of participants is expected to increase significantly. This section analyzes whether the attack success rate

remains unchanged as the number of consensus nodes increases while the malicious node ratio remains

unchanged. From the perspective of network security, that is, whether the increase in the number of

nodes brings additional difficulty to short-range reorganization attacks. The key parameters are the node

number 𝑁, and the reorganization mode 𝑅. The other parameters are the default values. This section

analyzes how changes in these parameters affect the success rate. The range of the total number of nodes

is set from 960 to 19200. The key parameters are shown in Equation 5.3:

 𝑃 = 𝑓(𝑁, 𝑚, 32, 𝑅, 0,0,1, 𝐵, 82125) (5.3)

Figure 16 shows the impact of adjusting the node number on ex-ante and ex-post reorg attacks.

Figure 16(a) shows the impact of the increase in the node number on success when the malicious node

ratio is 0.3. The result shows that as the node number increases, the attack success rate gradually

decreases, stabilizing around 90%. Figure 16(b) shows the impact of the increase in the node number on

success when the malicious node ratio is 0.5. The result shows that the attack success rate decreases

exponentially as the node number increases, and the trend does not slow down. Therefore, from the

experimental results, the increase in the node number increases the difficulty of ex-ante reorganization and

ex-post reorganization. The node number has a greater impact on ex-post reorganization in comparison.

Figure 16. Impact of node number on attack results.

Blockchain Article

 28

5.3. Impact of honest node forking degree on success

To further reduce the number of nodes required for short-range reorganization attacks to succeed, the

honest node can be forked by precisely controlling the sending time, with one part supporting the chain

generated by the honest node and the other part supporting the chain generated by the malicious node.

The degree of forking depends on the accuracy of the estimation of sending time. Attackers usually test

the average sending time by sending messages in advance and then estimate the sending time. However,

the network latency is dynamic, so this section analyzes the impact of different node forking degrees on

the attack's success rate. As is defined in Equation 4.4, forking degree 𝐹 = 𝐻𝑚/𝐻ℎ , where 𝐻𝑚

represents the number of malicious chains supported by the honest node after forking; 𝐻ℎ represents the

number of honest chains supported by the honest node. When 𝐹 equals 0, it means that the attacker has

not forked any honest node, and all honest nodes support the chain generated by the honest node. This

situation is equivalent to the attacker not considering the precise control mode, and it is easiest to create

a condition with no forking degree. When 𝐹 equals 1, it means that the attacker divides the honest node

set equally, half of which supports the chain generated by the malicious node, and the other half supports

the chain generated by the honest node. This situation is the best condition for implementing this attack.

The key parameters of this experiment are the honest node forking degree 𝐹 and the reorganized

block length 𝐵. According to the analysis of the impact of malicious node ratio on the attack, the attacker

only needs to control more than 10% of the nodes to launch an attack successfully. In contrast, this

strategy theoretically only needs less to launch an attack. So, in this section's experiment, the malicious

node ratio is set to 10%, and other parameters are the default values. We analyze how changing the

forking degree parameter affects the success rate. The key parameters are shown in Equation 5.5:

 𝑃 = 𝑓(4096,0.1,32, 𝑓𝑖𝑛𝑒_𝑔𝑟𝑎𝑖𝑛𝑒𝑑_𝑟𝑒𝑜𝑟𝑔, 𝐹, 0,1, 𝐵, 82125) (5.4)

Figure 17 shows the impact of the honest node forking degree on the success of the reorg attacks

from 2 to 16 blocks. As the forking degree increases, the probability of successful attack increases, and

the probability stabilizes after reaching a certain level. The minimum forking degrees required for

reorganizing 2, 4, 8, and 16 blocks are 0.04, 0.36, 0.5, and 0.58, as shown in Figures 17(a), 17(b), 17(c),

and 17(d) respectively. The highest degree reached by the reorganization of different numbers of blocks

decreases as the length of the reorganized block increases. The highest success rate of reorganizing 2

blocks can reach 96% in Figure 17(a), while the success rate of reorganizing 16 blocks can only reach

82% in Figure 17(d).

Through this experiment, we can see that the honest node forking strategy can greatly reduce the

difficulty of attack. An attacker who controls a small number of nodes can also initiate the reorganization

of long blocks. Compared with the strategy without honest node forking, its weakness is that the attacker

needs to expose the block in advance, and its malicious characteristics are relatively obvious.

Blockchain Article

 29

Figure 17. Impact of the honest node forking degree on attack result.

The experiments are conducted on a system running Windows 11 as the operating system, equipped

with a 12th Gen Intel® Core™ i7-1260P processor operating at 2.10 GHz and 16.0 GB of RAM. The

development environment is configured using Visual Studio Code (VSCode) as the primary code editor, with

all implementations being executed through a hybrid programming approach combining C++ and Python.

6. Conclusion

This paper systematically investigates Ethereum’s consensus algorithm and known attack methods,

developing a comprehensive model for short-range reorganization attacks in Proof-of-Stake (PoS)

systems. We categorize attack strategies into three distinct modes: ex-ante reorganization, fine-grained

reorganization, and ex-post reorganization. Through systematic experimentation, the study

quantitatively analyzes how key factors, including malicious node ratio, honest node forking degree, and

reorganization block length, influence attack outcomes.

The experimental findings offer critical insights for enhancing blockchain security against short-

range reorganization attacks. The ratio of malicious nodes required for ex-post reorganization is much

larger than for ex-ante reorganization. Increasing the node number increases the difficulty of ex-ante and

ex-post reorganization. The node number has a greater impact on ex-post reorganization in comparison.

Blockchain Article

 30

Adopting a fine-grained reorganization strategy can greatly reduce the difficulty of a reorganization

attack. Honest node forking strategy can greatly reduce the difficulty of attack.

While the research highlights three specific types of short-range reorganization attacks, it does not

address the practical implementation challenges of the described attacks in live Ethereum environments

or evaluate how Ethereum’s existing safeguards might mitigate their impact. Although real-world

Ethereum cases were not analyzed, the quantified non-linear relationships between network scale, honest

node forking degree, and attack results provide a mathematical modeling foundation for optimizing

consensus parameters and designing defense strategies. These results enable developers to strategically

strengthen systems by raising economic and technical barriers to short-range reorganization attacks,

ensuring defenses align with evolving threat models.

Acknowledgments

We highly appreciate financial support from the National Natural Science Foundation of China (grant

number 72271013), and Beihang University (grant number JKF-20240623).

Conflicts of interests

The authors declare no conflict of interest.

Authors’ contribution

Conceptualization, Z.Z.Y., Z.J.H.; methodology, Z.Z.Y., Z.J.H.; software, Z.Z.Y.; validation, Z.J.H.,

Z.Z.Y., J.R.; formal analysis, Z.Z.Y.; investigation, Z.Z.Y.; resources, Z.Z.Y.; data curation, Z.Z.Y.;

writing—original draft preparation, Z.Z.Y.; writing—review and editing, Z.J.H., J.R.; visualization,

Z.Z.Y.; supervision Z.J.H.; project administration, Z.J.H.; funding acquisition, Z.J.H. All authors have

read and agreed to the published version of the manuscript.

References

[1] Slowmist. 2023 Blockchain Security and Anti-Money Laundering Annual Report[EB/OL].

Available: https://slowmist.medium.com/2023-blockchain-security-and-anti-money-laundering-

annual-report-0d556e879fbb (accessed on 1 January 2024).

[2] Kohli V, Chakravarty S, Chamola V, Sangwan KS, Zeadally S. An analysis of energy consumption

and carbon footprints of cryptocurrencies and possible solutions. Digital Commun. Networks 2023,

9(1):79–89.

[3] Nakamoto, Satoshi. Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008.

[4] King S, Scott N. PPcoin: peer-to-peer crypto-currency with proof-of-stake. Self-published paper,

August 2012, 19(1).

[5] Sayeed S, Marco-Gisbert H. Assessing blockchain consensus and security mechanisms against the

51% attack. Appl. Sci. 2019, 9(9):1788.

[6] Li W, Andreina S, Bohli J-M, Karame G. Securing Proof-of-Stake Blockchain Protocols. In Data

Privacy Management, Cryptocurrencies and Blockchain Technology, Oslo, Norway, September

14–15, 2017, pp. 297–315.

[7] Kwon, J. Tendermint: Consensus without Mining. 2014. Available:

Blockchain Article

 31

https://www.weusecoins.com/assets/pdf/library/Tendermint%20Consensus%20without%20Minin

g.pdf (accessed on 22 April 2025)

[8] Buchman E. Tendermint: Byzantine fault tolerance in the age of blockchains. Diss. University of

Guelph, 2016.

[9] Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N. Algorand: scaling byzantine agreements for

cryptocurrencies. In Proceedings of the 26th symposium on operating systems principles, Shanghai,

China, October 28–31, 2017, pp. 51–68.

[10] Micali S, Michael R, Salil V. Verifiable random functions. In 40th annual symposium on

foundations of computer science (cat. No. 99CB37039), New York, USA, October 17–19, 1999, pp.

120–130.

[11] Buterin V, Virgil G. Casper the friendly finality gadget. arXiv 2017, arXiv:1710.09437.

[12] Buterin V, Reijsbergen D, Leonardos S, Piliouras G. Incentives in Ethereum's hybrid Casper

protocol. Int. J. Network Manage. 2020, 30(5):e2098.

[13] Buterin V. Proposal for mitigation against balancing attacks to LMD GHOST. 2020. Available:

https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation(accessed on 22 April 2025).

[14] Sompolinsky Y, Zohar A. Secure high-rate transaction processing in bitcoin. In Financial

Cryptography and Data Security: 19th International Conference, FC 2015, San Juan, USA,

January 26–30, 2015.

[15] Álvarez IA, Gramlich V, Sedlmeir J. Unsealing the secrets of blockchain consensus: A systematic

comparison of the formal security of proof-of-work and proof-of-stake. In Proceedings of the 39th

ACM/SIGAPP Symposium on Applied Computing, Avila, Spain, April 8–12, 2024, pp. 278–287.

[16] Torres CF, Camino R. Frontrunner jones and the raiders of the dark forest: an empirical study of

frontrunning on the ethereum blockchain. In 30th USENIX Security Symposium (USENIX Security 21),

Vancouver, Canada, August 11–13, 2021, pp. 1343–1359.

[17] Neuder M, Moroz DJ, Rao R, Parkes DC. Low-cost attacks on Ethereum 2.0 by sub-1/3

stakeholders. arXiv 2021, arXiv:2102.02247.

[18] Schwarz-Schilling C, Neu J, Monnot B, Asgaonkar A, Tas EN, et al. Three Attacks on Proof-of-Stake

Ethereum. In Financial Cryptography and Data Security, Grand Anse, Grenada, May 2–6, 2022, pp.

560–576.

[19] Otsuki, Kai, Ryuya Nakamura, and Kazuyuki Shudo. "Impact of saving attacks on blockchain

consensus." IEEE Access 2021, 9:133011–133022.

[20] Dwork C, Nancy L, Larry S. Consensus in the presence of partial synchrony. J.ACM 1988, 35(2):

288–323.

[21] Neu J, Tas EN, Tse D. Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma.

In 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, May 24–27, 2021,

pp. 446–465.

[22] Buterin V, Hernandez D, Kamphefner T, Pham K, Qiao Z, et al. Combining GHOST and casper.

arXiv 2020, arXiv:2003.03052.

[23] Zamfir V. Casper the friendly ghost: a correct by construction blockchain consensus protocol.

Whitepaper: https://github.com/ethereum/research/blob/master/papers/caspertfg/caspertfg. pdf, 2017.

[24] Neu, Joachim, Ertem Nusret Tas, and David Tse. "Two more attacks on proof-of-stake

GHOST/Ethereum." Proceedings of the 2022 ACM Workshop on Developments in Consensus, Los

Blockchain Article

 32

Angeles, USA, November 7, 2022, pp. 43–52.

[25] Eyal I, Emin GS. Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 2018,

61(7):95–102.

[26] Rosenfeld M. Analysis of hashrate-based double spending. arXiv 2014, arXiv:1402.2009.

[27] Eskandari, S., Moosavi, S., Clark, J. SoK: Transparent Dishonesty: Front-Running Attacks on

Blockchain. In Financial Cryptography and Data Security. Gerhard Goos, Juris Hartmanis, Eds.

Lecture Notes in Computer Science, Springer, Cham. 2020.

[28] Daian P, Goldfeder S, Kell T, Li Y, Zhao X, et al. Flash boys 2.0: Frontrunning, transaction

reordering, and consensus instability in decentralized exchanges. arXiv 2019, arXiv:1904.05234.

	1. Introduction
	2. Related literature
	2.1. Proof of stake consensus algorithm
	2.2. Proof of stake consensus attack methods

	3. Ethereum consensus basic settings
	3.1. Node staking process
	3.2. Epoch and slot
	3.3. Fork selection algorithm
	3.4. Finality algorithm

	4. Short-range reorganization attack model
	4.1. Node agent definition
	4.2. Node attack model
	4.3. Ex-ante reorganization
	4.4. Fine-grained reorganization
	4.5. Ex-post reorganization

	5. Experiments
	5.1. Impact of malicious node ratio on success
	5.2. Impact of node number on success
	5.3. Impact of honest node forking degree on success

	6. Conclusion
	Acknowledgments
	Conflicts of interests
	Authors’ contribution
	References

