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Abstract: Blockchain technology establishes trust among participants through technical means. 

However, some malicious nodes may compromise this trust through short-range reorganization attacks 

for their interest. This paper develops an agent-based model to systematically analyze Proof-of-Stake 

short-range reorganization attacks, where three types of agents interact through distributed consensus 

mechanisms with ex-ante, fine-grained, and ex-post reorganization attack strategies. Through rigorous 

simulation of agent decision-making dynamics, we identify that: (1) Compared with ex-ante 

reorganization, the ratio of malicious nodes required for ex-post reorganization is much larger. (2) 

Increasing the node number increases the difficulty of ex-ante and ex-post reorganization. (3) The 

number of nodes affects ex-post reorganization attacks more significantly than ex-ante attacks. (4) Fine-

grained reorganization significantly reduces attack difficulty. 
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1. Introduction 

Since the notion of blockchain was introduced in 2008, it has gone through a long development period. 

Today, it creates the blockchain industry and attracts investments from geeks, scholars, and 

institutions, who jointly build a prosperous blockchain ecosystem. However, as the blockchain 

industry develops, its security concerns become more pronounced. According to statistics from 

blockchain security research institutions, in 2023 alone, 464 security incidents occurred, causing losses 

of up to 2.486 billion US dollars [1]. 

As the core of blockchain technology, the consensus algorithm plays a key role in ensuring the 

blockchain’s decentralized, secure, and stable operation. There are currently three mainstream 
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blockchain consensus algorithms: Proof-of-Work (PoW), represented by Bitcoin; Proof-of-Stake (PoS), 

represented by Ethereum; and Byzantine Fault Tolerance (BFT), represented by HyperLedger Fabric. 

Among them, the PoW algorithm is one of the earliest consensus algorithms applied to blockchain. Its 

essence lies in nodes competing to generate blocks through computing power, thereby earning block 

rewards while ensuring the network operates normally. However, the increase in computing power 

depends on high-energy-consuming chips and the electrical energy to drive the chips. According to 

estimates by mainstream energy-tracking research institutions, in 2021, the energy consumption of the 

Bitcoin network is equivalent to that of countries such as Sweden and Thailand [2]. Therefore, the 

PoW algorithm has a serious energy waste problem. BFT-like consensus algorithms are mainly 

applicable to consortium blockchains. Due to their decentralized nature, this consensus algorithm can 

only be applied to small-scale consortium blockchains. In summary, the PoS algorithm is very suitable 

for public large-scale blockchain infrastructure from energy consumption and decentralization 

perspectives. The Ethereum blockchain represents the broadest user base and the highest market value. 

Its consensus algorithm successfully switched from PoW to PoS in September 2022, marking that the 

PoS algorithm, as an alternative technology to the PoW algorithm and representing the future direction 

of blockchain consensus, has officially entered the mainstream vision. According to CoinMarketCap 

statistics, as of March 9, 2024, Ethereum’s market value has surged to $473.2 billion, constituting 18.2% 

of the total cryptocurrency market capitalization. Consequently, delving into the anomalies within the POS 

algorithm assumes paramount significance for ensuring the seamless functionality of the blockchain. In 

the following elaboration, the Ethereum consensus algorithm refers to the Ethereum PoS algorithm. 

Short-range reorganization attacks are more well-known among the many attack methods targeting 

the Ethereum consensus algorithm. They are relatively easy to implement but yield deleterious 

consequences such as double spending and front-running attacks. As a result, it is of great significance 

to model and analyze this attack method. This paper studies the Ethereum PoS algorithm and known attack 

models, which includes establishing a relatively comprehensive short-range reorganization attacks model 

based on PoS consensus by integrating the characteristics and attack mode of the consensus algorithm. 

The structure of this paper is shown below: Chapter 1 is an introduction to Ethereum and PoS. 

Chapter 2 is the literature review on the PoS consensus algorithm and attack methods. Chapter 3 

introduces the basic settings of the Ethereum consensus. Chapter 4 introduces the known attack methods, 

including short-range reorganization attacks, and constructs a comprehensive attack model. Chapter 5 

analyzes the effectiveness of these attack strategies through simulation experiments, considering factors 

like malicious node ratio and honest node forking degree. Chapter 6 summarises the findings and 

highlights the potential for improving Ethereum’s PoS algorithm. 

The main contributions of this paper are in the following aspects: (1) After a comprehensive analysis 

of the various factors that contribute to the success of short-range reorganization attacks, this paper 

successfully establishes a relatively complete attack model based on the multi-agent concept. (2) Based 

on this model, the impact of malicious node ratio, honest node forking degree, and short-range 

reorganization block length on attack results are analyzed for the first time. 
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2. Related literature 

2.1. Proof of stake consensus algorithm 

The consensus algorithm is the cornerstone of blockchain technology, ensuring that the node ledgers 

participating in the blockchain network reach a consensus. In open, large-scale networks, blockchain 

typically utilizes two primary consensus algorithms: the PoW and the PoS algorithms. The PoW 

algorithm requires nodes to compete for block generation through computing power. The greater the 

computing power, the higher the probability of creating new blocks. Meanwhile, PoS demands that 

nodes compete for block generation based on their stake. The larger the stake, the higher the likelihood 

of producing blocks. 

The PoS algorithm can be traced back to 2012. Given the high energy consumption and security 

issues related to the vulnerability of the Bitcoin network to 51% attacks [3], King et al. study a 

blockchain based on PoS, referred to as PeerCoin [4]. PeerCoin utilizes the PoS to replace Bitcoin's 

PoW algorithm. Its PoS algorithm integrates the concepts of coin age and PoW, adopting a chained 

consensus algorithm to enhance the sustainability and security of the chain. Subsequently, many PoS 

algorithms have been proposed [5]. Considering the energy consumption issues of PoW blockchain 

and its vulnerability to the ‘nothing at stake’ attack [6], Kwon proposes the Tendermint consensus 

algorithm [7], which is the first algorithm to combine PoS with Byzantine fault tolerance (BFT) [8]. To 

address the energy consumption issue, Gilad et al. [9] suggest an Algorand consensus algorithm based 

on a Verifiable Random Function (VRF) [10]. This algorithm employs a two-layer consensus 

architecture that balances scalability and decentralization in the blockchain, providing a reliable 

foundation for distributed applications and achieving significant breakthroughs in security and 

efficiency. Ethereum's transition from PoW to PoS consensus was initiated by Buterin and Griffith [11] 

through the Casper Finality Friendly Gadget (Casper FFG), which introduced a BFT-style finality layer 

over Ethereum’s PoW chain. Building on this hybrid framework, Buterin et al. analyzed incentive 

structures, proposing a dynamic staking reward model that inversely correlated validator returns with 

total network participation to optimize security [12]. To resolve latency in finality and eliminate PoW 

dependency, Buterin et al. [13] further enhance Ethereum PoS by combining the LMD GHOST 

algorithm [14] and Casper FFG, resulting in the Gasper consensus algorithm. A systematic comparison 

highlights that while PoW offers the strongest formal security guarantees, PoS systems like Gasper can 

achieve similar security via checkpoint finality and dynamic availability layers [15]. 

2.2. Proof of stake consensus attack methods 

Ethereum, the world’s second-largest public blockchain by market cap, is often compared to a “dark 

forest” from “The Three-Body Problem,” where visibility frequently leads to destruction [16]. Its PoS 

algorithm, which is relatively new and complex compared to PoW, has been the focus of various studies 

proposing different attack methods, including short-range reorganization attacks, finality delay attacks, 

and balance attacks. 

Neuder et al. [17] propose two methods for launching attacks that require less than one-third of the 

total stake value. One method involves short-range reorganizations of the underlying chain to initiate 

double-spending and front-running attacks. The paper constructs models to simulate and calculate the 
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probability of success in reorganizing blocks of varying lengths. The other method involves attackers 

using malicious nodes to delay block finality. They also built models to simulate and calculate the 

probability of successful attacks under different block delays. Schwarz-Schilling et al. optimize these 

two attack methods through adversarial networks, achieving successful attacks with fewer controlled 

nodes [18]. They combine these two improved attack techniques to develop a third type of attack. This 

attack allows attackers with less stake, who cannot control network message propagation, to cause 

blockchain reorganizations through remote attacks. Honest and rational malicious parties can exploit 

this attack to increase their gains or delay block confirmation times, thereby threatening the security of 

Ethereum’s PoS consensus. Additionally, this attack may lead to voting processing congestion and 

consensus instability. Kai et al. study a new type of attack called saving attacks, which prevents nodes 

from reaching consensus [19]. In saving attacks, attackers retain their block-producing power during 

temporary consensus failures and later use it to induce another consensus failure, increasing the delay in 

block finality. The authors investigate the impact of saving attacks on various fork choice algorithms, 

including the one used by Ethereum’s PoS. They simulate saving attacks on the longest chain rule, 

GHOST, and LMD GHOST, finding that saving attacks had a significant negative impact on consensus. 

When the blockchain network operates under a partially synchronous adversarial environment [20], 

attackers know when honest nodes execute fork choice algorithms and can relay messages to these nodes 

before a certain time, while honest nodes cannot immediately update each other’s messages. Neu et al. 

propose a balancing attack method in which attackers divide the honest node set into distinct groups 

while ambiguously proposing blocks, sending two different blocks to various parts of the honest node 

set, thereby splitting the chain into two forked chains [21]. Attackers influence the network’s fork choice 

algorithm by selectively releasing proof messages that favor one fork, making it appear to have the most 

validator support. They prevent block finality by maintaining a balanced distribution of validators between 

the two forks. The probability of success for the attack correlates with the total stake value controlled by 

the attacker; even controlling just 1% of the total stake can provide an opportunity for the attack. 

Buterin proposed a method to enhance proposer weight in response to balancing attacks [22]. When 

honest nodes promptly receive the block corresponding to the latest time slot, the weight of that block is 

increased to a specific percentage of the overall weight of the committee for that time slot. Subsequently, 

Ethereum’s PoS fork choice algorithm adopted the LMD GHOST protocol from the Casper CBC 

consensus algorithm [23]. This algorithm only accepts the most recent voting messages when nodes send 

multiple votes for a block. Neu et al. then improved the balancing attack strategy against Ethereum’s 

consensus, utilizing the characteristic of LMD GHOST that only accepts the latest messages as voting 

for attacks [24]. This attack requires only a constant number of ambiguous votes to surpass the 

proposer’s elevated weight. The cost of this attack is limited, and a single execution can lead to a 

permanent split among honest nodes. 

In response to the aforementioned variants of balancing attacks, some scholars proposed removing 

LMD from the LMD GHOST fork choice algorithm and only using the GHOST mechanism, but this could 

lead to more serious problems. Neu et al. propose an avalanche attack method against the GHOST 

mechanism in PoS [24], which combines selfish mining [25] and balancing attacks. This attack exploits 

specific weaknesses in the ambiguity of GHOST rules and PoS, allowing attackers to reuse uncle blocks 

in GHOST, thus contributing ambiguous blocks to multiple ancestor blocks' weight. Ultimately, Ethereum 

core developers updated the fork choice algorithm to defend against this attack on LMD GHOST, 
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completely excluding ambiguous validators. The new fork choice algorithm also downgraded the future 

voting weight of ambiguous validators. This improvement effectively prevented the aforementioned 

balancing attacks while maintaining defense against avalanche attacks. 

In the Ethereum PoS algorithm, the probability of short-range reorganization attacks is relatively 

high, and related literature has extensively explored this issue. The primary harms caused by such attacks 

include double-spending and front-running incidents. Concerning double-spending attacks, Rosenfeld 

details the specific process: the attacker first broadcasts a transaction across the blockchain network to 

pay digital currency to a merchant [26]. After the merchant receives the digital currency, they release 

the goods, after which the double-spending attacker initiates a new transaction that conflicts with the 

initial transaction to return the digital currency to themselves. They utilize a majority of the blockchain 

network’s computing power or stake to publish a forked chain block, thus reversing the old transaction 

and confirming the new one. Ultimately, the merchant loses both the digital currency and the goods, 

while the attacker gains both. Eskandari et al. describe front-running as an entity profiting by obtaining 

privileged market information about upcoming transactions in advance [27]. With the development of 

blockchain technology, front-running has re-emerged in new forms. Daian et al. study front-running 

behavior in blockchain DEXs, finding that attackers use bots to probe the Ethereum network for 

transactions with captureable value [28]. Once such transactions are identified, they issue a transaction 

that can replace the attacked transaction by increasing the transaction fee to profit. 

3. Ethereum consensus basic settings 

The overall architecture of the Ethereum consensus algorithm can be roughly divided into two layers [13]. 

The first layer involves the node staking process, where regular nodes stake a certain amount of ETH to 

become validating nodes. Validating nodes have the authority to propose blocks and vote, and they can 

receive corresponding rewards after participating in consensus correctly. Unlike PoW chains and other 

chain-based PoS algorithms, nodes must stake before participating in consensus, which helps prevent 

malicious behavior. When a node is found to engage in malicious activity, the consensus algorithm 

punishes it by reducing its staked ETH. The second layer is the node voting process. Once a regular node 

becomes a validating node, it must solve two consensus problems: the fork selection problem and the 

block confirmation problem. Ethereum consensus employs the GHOST algorithm to address the fork 

selection problem. This algorithm is based on the heaviest-weight chain rule, selecting the chain with 

the most node support as the canonical chain. After determining the canonical chain, the proposer links 

the new blockchain to the head of this chain. Additionally, the consensus mechanism utilizes the Casper 

FFG algorithm to finalize the block. Once the block is finalized, it cannot be rolled back unless the 

attacker is willing to risk incurring a significant fine of ETH. The Casper FFG algorithm is inspired by 

the Byzantine fault tolerance algorithm. Once most nodes cast their votes twice, the block is confirmed. 

The vast majority of nodes refers to at least 2/3 of the total number of nodes. This ratio ensures that the 

system can tolerate several node failures without compromising overall reliability and security. 

In the consensus algorithm, commonly used terms and their explanations are shown in Table 1: 
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Table 1. Definition of consensus basic terms. 

Terms Definition 

Canonical Chain The heaviest chain branch. 

Regular Node 

Participant in the network, responsible for receiving and 

broadcasting transactions but not directly participating in the 

consensus process. 

Validating Node 
A node with sufficient stake, participating in the consensus process, 

is responsible for verifying transactions and packaging blocks. 

Epoch 
A period of time on the chain, which is used to divide the rounds of 

validating nodes. Each epoch contains multiple slots. 

Slot 

A small period within an epoch, which is used to perform consensus 

activities of the validating node, including proposing blocks and 

voting. 

Committee 
A group of validating nodes responsible for reaching consensus and 

generating blocks within a specific slot. 

Proposer 
A special validating node in the committee is responsible for 

proposing new block proposals within the slot. 

Attestation 

The attitude of the validating nodes toward the block proposal 

during the consensus process, reaching consensus and determining 

the final block through voting. 

3.1. Node staking process 

There are many ways to stake Ethereum: solo staking, staking as a service, and pooled staking. Solo 

staking directly locks the held ETH in the network, requiring self-management of node operation and 

staking processes. Staking as a service involves entrusting a professional staking service provider to 

manage nodes and staking, saving time and energy. Pooled staking, on the other hand, involves multiple 

coin holders collaborating in staking, sharing risks and rewards. This article discusses the most 

influential and safest method, solo staking. 

Figure 1 shows the solo staking method process, which is divided into three stages: preparation, 

application, and activation stage. The first stage is the preparation stage, which involves several key 

steps. First, according to the requirements of the Ethereum mainnet, the staker should have at least 32 

ETH and a dedicated computer connected to the internet ~24/7. Next, the staker must run a full node on 

their hardware to synchronize Ethereum’s historical block data, allowing them to propose and verify 

blocks during the consensus process. Subsequently, the staker generates a public-private key pair for 

node validation based on the aggregate signature cryptographic algorithm, where the private key signs 

messages during consensus, and the public key represents the staker’s identity within the Ethereum 

network. Additionally, the staker generates another public-private key pair for withdrawals, which is 

necessary for creating a withdrawal certificate. This procedure serves as a cryptographic guarantee to 

ensure that the staked funds can be withdrawn safely. It’s important to configure the private key used 
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for signing on a dedicated computer so that the Ethereum node program can sign consensus messages 

whenever needed. Therefore, for security reasons, the private key for signing and the private key for 

withdrawals should remain separate. 

 

Figure 1. Ethereum PoS staking process. 

The second stage is the application stage. Once the staker has completed the preliminary 

preparations, it can start submitting the staking application to the staking contract. First, the staker 

packages the prepared validator public key, withdrawal voucher, and the amount of ETH into fixed data. 

This data is set as an input parameter to the Ethereum transaction. Then, the staker signs the Ethereum 

staking transaction and sends it to the Ethereum network, which enters the transaction verification pool 

through broadcasting. When the new block time arrives, the transaction is packaged into the new block 

by the validating node already in the validating node set. Subsequently, the staking contract receives the 

staker’s ETH, executes the staking transaction, and determines the validity of the data in the staking 

transaction. If the data is valid and the amount of ETH exceeds the minimum staking amount, a number 

is assigned to the validating node and add it to the validating node set. 

The third stage is the activation stage. Under normal circumstances, a validating node is activated 

when it is added to the validating node set. Since it takes at least two epochs for Ethereum’s blocks to 

be finally confirmed, for safety reasons, the node must wait at least approximately 12.8 minutes before 

verifying the block. After completing the staking process, a regular node can become a validating node 

and participate in the consensus process. Typically, the staker stakes the minimum amount (32 ETH) to 

maximize benefits. If the staker possesses a large amount of ETH, they may apply for as many validating 

nodes as possible. Therefore, in the subsequent discussion, scenarios involving stake value or node count 

are consistent- the greater the number of nodes, the higher the total stake value. 

3.2. Epoch and slot 

Currently, the number of nodes participating in the Ethereum mainnet is about 500,000. The consensus 

based on the Byzantine fault-tolerant algorithm requires nodes to participate in voting. However, if all 

nodes must verify and vote for each block, the efficiency of consensus’s network transmission and block 

verification will be significantly reduced. Therefore, the Ethereum consensus introduces the concepts of 

epoch and slot [13]. Epoch is a period on the chain used to divide the rounds of validating nodes. Each 

epoch is divided into several slots. The slot is used to execute the consensus activities of the validating 

node. Each slot is evenly allocated a part of the validating nodes. These validating nodes form the 
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committee of the slot and are responsible for proposing blocks and voting. The consensus that introduces 

the design of epoch and slot can be called the slot-based PoS algorithm.  

Figure 2 shows the differences between the slot-based PoS chain and the traditional PoW chain. In 

Figure 2, all nodes in the Bitcoin chain participate in the block generation process, and 12 blocks have 

been generated. The Ethereum chain consists of 16 validating nodes. Each epoch contains 4 slots, and 

each slot is assigned 4 validating nodes. The consensus has run for 3 epochs, or 12 slots, and has also 

generated 12 blocks. The number of committees 𝐶𝑖 in the 𝑖-th slot is shown in Equation 3.1:  

 𝐶𝑖 =
𝑁

𝑆
+ {

1        𝑖𝑓 𝑖 ≤  𝑁 𝑚𝑜𝑑 𝑆
   0        𝑖𝑓 𝑖 >  𝑁  𝑚𝑜𝑑 𝑆  

  (3.1) 

Where 𝑁 is the total number of validating nodes; 𝑆 is the number of slots in a single epoch. 

 

Figure 2. Difference between PoW chain and slot-based PoS chain. 

According to Buterin et al. [13], the committee and proposers are randomly selected, and the 

generation process is shown in Equation 3.2: 

 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑒 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒(𝑠𝑒𝑒𝑑, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠, 𝑠𝑙𝑜𝑡)  (3.2) 

Where 𝑠𝑒𝑒𝑑  is the random seed, which is determined 2 epochs in advance to prevent grinding 

attacks; 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠 is the set of validating nodes.  

The proposer of the slot is the key role of the slot committee and is responsible for the packaging of 

the block, which generation process is shown in Equation 3.3: 

 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑠𝑒𝑒𝑑, 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑒)  (3.3) 

3.3. Fork selection algorithm 

The fork selection algorithm of Ethereum is based on the GHOST algorithm. In the following discussion, 

GHOST specifically refers to Ethereum’s fork selection algorithm. The GHOST fork selection algorithm 

is designed to select the block with the greatest weight in the blockchain. Its fundamental concept is to 

choose the block with the highest observation weight in a greedy fashion, relying on the latest message 

from the validator, thus creating a secure and highly consistent blockchain [14]. 
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Figure 3 illustrates the GHOST fork selection algorithm. In Figure 3, the root of the tree represents 

the genesis block. The weight of each node is equal to the sum of the weights of all its descendant 

nodes. The fork selection algorithm starts from the genesis block, and by searching the tree, the child 

node with the largest weight value is selected as the parent node for the next search round in each step. 

This process is repeated until the leaf node is reached. The weight calculation of the node in the chain 

is shown in Equation 3.4: 

 𝑤𝑏 = ∑ 𝑤𝑐𝑐∈𝐶(𝑏) + ∑ 𝑆(𝑣)𝑣∈𝑉(𝑏)   (3.4) 

Where 𝑤𝑏 represents the weight of block 𝑏, 𝐶(𝑏) represents the set of all subblocks of block 𝑏; 𝑤𝑐 

represents the weight of block 𝑐; 𝑉(𝑏) represents all the validating nodes of block 𝑏; 𝑆(𝑣) represents 

the weight of block 𝑣. 

 

Figure 3. GHOST fork selection algorithm. 

 

Figure 4. Ethereum forking chain. 

Figure 4 shows the forking chain view of Ethereum forks combined with the slot design. It is divided 

into three parts from top to bottom. First, the top shows the slot number, and the Ethereum consensus is 

completed within 8 slots. Second, the middle part shows the block voting situation. The votes for the 𝑛-

th slot reached 8 votes. Starting from the 𝑛-th slot, two forked chains 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5) and 𝐶ℎ𝑎𝑖𝑛(𝑛 + 7) 

appeared. These two forked chains represent the chains with the blocks of the (𝑛 + 5)-th slot and the 

(𝑛 + 7)-th slot as the chain ends. The chain is composed of blocks, as shown in Equation 3.5: 
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 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5) = 𝐵𝑛, 𝐵𝑛+3, 𝐵𝑛+4, 𝐵𝑛+5  (3.5) 

Where 𝐵𝑛+5 represents the block generated by slot 𝑛 + 5, and the forked chain 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5) is 

composed of 4 blockchains. 

Finally, the bottom shows the cumulative number of votes, and the number of votes for the root 

block reaches 32, representing the total number of votes for the entire epoch. Based on the GHOST 

algorithm, starting from the block in slot 𝑛, the next block selects the block 𝐵𝑛+3 generated by the 

(𝑛 + 3)-th slot, and the final block of the fork is the block generated by the (𝑛 + 5)-th slot. Therefore, 

from the view of this node, the green part represents the canonical chain. The weight calculation method 

of this chain is shown in Equation 3.6: 

 𝑊𝑛+5 = 𝑊𝑆𝑛  + ∑ 𝑊𝑆𝑛+𝑖
5
𝑖=3   (3.6) 

Where 𝑊𝑛+5  represents the weight of 𝐶ℎ𝑎𝑖𝑛(𝑛 + 5), which traces back from the block of the 

(𝑛 + 5)-th slot to the justified block 𝐵𝑛 calculated by the Ethereum consensus, and accumulates the 

weights of these blocks.  

Therefore, if the node is the proposer of the (𝑛 + 8)-th slot, the next block points to the block 

generated by the (𝑛 + 5)-th slot, not the (𝑛 + 7)-th slot, because 𝑊𝑛+5 = 21, which is greater than 

𝑊𝑛+7 = 19. 

To defend against short-range reorganization attacks, the Ethereum main net has implemented the 

algorithm of proposer weight enhancement and cross-slot voting weight reduction. The enhanced 

proposer weight 𝑊𝑛̃ is calculated in Equation 3.7: 

 𝑊𝑛̃  = {
𝑊𝑛  +  𝑊𝑐𝑒  ∗  ∆𝑤,   𝑖𝑓 0 ≤ 𝑡𝐵 <  

𝑇

3

𝑊𝑛 ,                              𝑖𝑓  
𝑇

3
 ≤ 𝑡𝐵 ≤  𝑇

   (3.7) 

Where 𝑇 is the duration of the time slot. 𝑡𝐵  represents the time at which the block is received, 

starting from this time slot. 𝑊𝑐𝑒 is the weight of the committee for this time slot, which is the sum of the 

weights of all validating nodes in the committee. ∆𝑤 is the ratio of weight enhancement. 𝑊𝑛  is the 

weight of 𝐶ℎ𝑎𝑖𝑛(𝑛). 

The reduced cross-slot voting weight 𝑊𝐴 is calculated in Equation 3.8: 

 𝑊𝐴 =  {
1,      𝑖𝑓 𝑚 =  𝑛
∆𝑤𝑎, 𝑖𝑓 𝑚 >  𝑛

  (3.8) 

Where 𝑚 refers to the 𝑚-th slot when committee 𝑁𝑚 votes, and 𝑛 refers to the n-th slot when the 

voted 𝐵𝑛 is generated. 𝑊𝐴 means that if a committee votes for a block prematurely, its voting weight 

should be reduced by ∆𝑤𝑎. 

3.4. Finality algorithm 

Casper FFG is a block finality algorithm introduced by Ethereum consensus. The algorithm is based on 

the two-phase commit model of Byzantine fault tolerance [11]. Its first phase is justification. Validators 

stake a certain amount of ether and then participate in block verification. If the vast majority of validators 

agree that a block is valid, the block is called justified, marking the initial stage of consensus. In the 

finalization phase, validators continue to verify and add additional votes. If the vast majority of 

validators agree on a block and all blocks before the block have been justified, the block is confirmed as 
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final and finality is achieved. Through this design, Casper FFG ensures the reliability and security of 

consensus in the network and provides a more efficient and scalable consensus mechanism for Ethereum.  

Figure 5 shows the finality algorithm, in which the number of Validating Nodes is 60, and a single 

epoch is divided into 32 slots. After 3 epochs, the consensus state is divided into 3 states: Finalized, 

Justified, and None. The block numbers from 1 to 32 of the first epoch have been confirmed twice, so 

they are in the finalized state, and these 32 blocks cannot be rolled back at will. The block numbers from 

33 to 64 of the second epoch have been voted by the majority of Validating Nodes once, so they are in 

the justified state, which can be rolled back. The third epoch is currently voting, and it cannot be 

determined whether it is one of the two states. However, when the number of votes reaches or exists 40, 

the third epoch is upgraded to the justified state, and the second is upgraded to the finalized state. The 

calculation method of the block state is shown in Equation 3.9: 

 𝑆(𝑏) = {
𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑, 𝑖𝑓 𝑆(𝑎) = 𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑜𝑟 𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑛𝑑 𝑠𝑚(𝑎 → 𝑏)

𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑,  𝑖𝑓 𝑆(𝑏) = 𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑛𝑑 𝑠𝑚(𝑏 → 𝑐) 𝑎𝑛𝑑 ℎ(𝑏) = ℎ(𝑐) + 1
  (3.9) 

Where 𝑆(𝑏) represents the state function of block 𝑏, 𝑠𝑚(𝑎 → 𝑏) represents the number of votes for 

block 𝑎 to 𝑏 has reached the majority, that is, the number of votes is greater than or equal to 2/3 of the 

total votes, and ℎ(𝑏) represents the height of block 𝑏. If block (𝑎 → 𝑏) is voted by most validators and 

block a has been finalized or reasonable, then block 𝑏 is confirmed as reasonable, and the genesis block 

defaults to the finalized state. If block (𝑏 → 𝑐) is voted by most validators, block 𝑏 has been confirmed 

as reasonable, and the height of block 𝑏 is equal to the height of block 𝑐 plus 1, then block 𝑏 is confirmed 

as finalized. 

 

Figure 5. Casper FFG finality algorithm. 

4. Short-range reorganization attack model 

The Ethereum consensus protocol implements finality assurance through the Casper FFG framework, 

which imposes a security threshold requiring attackers to control over 1/3 of the staked ETH to execute 

long-range reorganization attacks against finalized blocks. Short-range reorganization attacks against 

non-finalized blocks are easier to implement without the 1/3 stake threshold. For non-finalized blocks, 

the consensus process follows the GHOST fork choice algorithm, which emphasizes recent attestations. 

This section formalizes a comprehensive short-range reorganization attack model based on multi-agents 

and systematically elaborates how attackers initiate short-range reorganizations by hiding blocks and 
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publishing them at the right time, taking advantage of network delays or the proposer's advantage (such as 

controlling the number of validators). This section first defines the roles of nodes, then explains how to 

precisely control the message-sending time and its promoting effect on the attack, and finally elaborates 

in detail how to conduct ex-ante reorganization, refined reorganization, and ex-post reorganization. 

4.1. Node agent definition 

Five main agents are involved in launching short-range reorganization attacks: proposer node, validator, 

attacker, honest node and malicious node. Different entities may assume multiple roles simultaneously, 

and malicious nodes may have various behaviors, some of which are punished. First, let us introduce the 

different roles: 

(1) Proposer node P: In the slot, a unique node is pre-selected from the committee through a random 

algorithm as the proposer node P, responsible for proposing blocks. 

(2) Validator V: In the slot, nodes other than the proposer node are pre-selected from the committee 

through a random algorithm as validators, responsible for voting on the blocks proposed by the 

proposer node P. 

(3) Attacker A: The entity that initiates the attack can control any abnormal behavior of one or 

more nodes to achieve the purpose of short-range reorganization attacks. 

(4) Honest node H: The node that proposes or votes for blocks according to the GHOST fork 

selection algorithm during the consensus process. 

(5) Malicious node M: During the consensus process, the node that proposes or votes according to 

the attacker's instructions. 

When malicious nodes act as proposers, they can choose to issue conflicting blocks, but such 

behavior will be punished. On the other hand, as proposers, they can also choose not to generate blocks, 

or keep blocks and release them when needed, and this behavior will not be punished. When malicious 

nodes act as validators and vote, if they violate the GHOST rule and vote for conflicting blocks, they 

will be punished; however, if they vote for a chain with a lower weight, this behavior will not be 

punished. In addition, when malicious nodes vote, the voting message can be broadcast to specific target 

nodes when necessary to influence consensus behavior, and such behavior will not be punished. The 

relationship between the validating node and the committee is shown in Equation 4.1: 

 𝑁 = 𝐶1, 𝐶2, 𝐶3, ⋯  (4.1) 

Where the set of validating nodes is defined as 𝑁; 𝐶1, 𝐶2, 𝐶3 are different members of committee. 

The relationship between the committee and each node is shown in Equation 4.2: 

 𝐶 = 𝑃 ∪ {𝑉} ∩ 𝐻 ∪ 𝑀  (4.2) 

Where 𝐶 is the committee, 𝑃 is the Proposer node, 𝑉 is the validator, 𝐻 is the honest node, 𝑀 is the 

malicious node. 

When the malicious node is a key node in short-range reorganization attacks and in slot 𝑖, the 

definition of malicious node is as shown in Equation 4.3: 

 𝑀(𝑎, 𝑅𝑖 , 𝑆𝑖 , 𝐷𝑖)  (4.3) 
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Where 𝑎 represents the malicious node address, which is the unique identifier in the network; 𝑅𝑖 is 

the role of the malicious node in slot 𝑖 , including proposer and validator; 𝑆𝑖  represents the attack 

behavior of the malicious node in the consensus process of slot 𝑖. If it is a proposer, it means withholding 

blocks or issuing two conflicting blocks. If it is a validator, it indicates the way of voting; 𝐷𝑖 represents 

a specific target node to which the malicious node broadcasts. 

4.2. Node attack model 

When an attacker is able to control some nodes, it can use the vulnerability of the consensus algorithm 

to launch short-range reorganization attacks. The attack behavior is mainly to coordinate malicious nodes 

to make appropriate operations at the right time. There are three main attack modes: ex-ante 

reorganization, fine-grained reorganization, and ex-post reorganization. Before explaining the node 

attack mode, Table 2 defines the relevant parameters in the consensus process. 

Table 2. Definition of relevant parameters in the consensus process. 

Parameters Definition 

𝐻𝐴 Honest node 𝐴 

𝑀𝐵 Malicious node 𝐵 

𝐹 Forking degree 

𝑁 Consensus node set 

𝐸𝑛 The 𝑛-th epoch 

𝑆𝑛 The 𝑛-th slot 

𝑃𝑛 Proposer of 𝑛-th slot 

𝐵𝑛 The block proposed by the proposer of 𝑛-th slot 

𝐴𝐴,𝑛 Node 𝐴 attest the block in 𝑛-th slot 

𝐶ℎ𝑎𝑖𝑛(𝑛) 
The forked chain with the block in 𝑛-th slot as the end of the chain, which 

contains this block and all the blocks traced back to the root 

𝐶ℎ𝑎𝑖𝑛𝐴 Forked chain 𝐴 

𝑊𝑆𝑛 Total number of attestations with 𝐵𝑛 as the root of the block tree  

𝑊𝑛 Total number of attestations for the blocks contained in 𝐶ℎ𝑎𝑖𝑛(𝑛) 

𝑊𝐵𝑛 The number of all attestations for 𝐵𝑛 

𝐶𝑛 The committee of the n-th slot, which contains all nodes assigned to this slot 

𝑐𝑛 The number of nodes in the committee of the 𝑛-th slot 

𝑡𝑛 
At 𝑛-th slot, the moment of broadcasting a block or authentication 

information 

∆𝑤 Percentage of proposer weight increase 

∆𝑤𝑎 Percentage of validator voting weight reduction 

Ex-ante reorganization attack means that the attacker builds 𝑚 consecutive blocks in the network to 

form a forked chain 𝐶ℎ𝑎𝑖𝑛𝐴 in advance, and keeps it from being broadcast to the network. Only the 

attacker knows the existence of this reserved private chain. Then, the attacker waits for a while and 
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suddenly broadcasts the private chain to the network. Since the previous 𝑚 blocks are unknown to the 

honest node, during this period, the honest node forms a public chain 𝐶ℎ𝑎𝑖𝑛𝐵 that is different from the 

malicious node, and its length is 𝑛 blocks. After the malicious node broadcasts the private chain, other 

nodes make fork selections according to the consensus rules. Since the weight of 𝐶ℎ𝑎𝑖𝑛𝐴 built by the 

malicious node is greater than the weight of 𝐶ℎ𝑎𝑖𝑛𝐵 built by the honest node, 𝐶ℎ𝑎𝑖𝑛𝐵 is discarded, and 

the attacker achieves the purpose of ex-ante short-range reorganization. By building blocks on the private 

chain and voting, the attacker can quickly push the private chain to surpass the public chain, thereby 

achieving control over the blockchain. This kind of pre-prepared short-range reorganization attacks may 

lead to security issues such as double spending, which undermines the trust mechanism of the blockchain. 

An ex-post reorganization attack means that the attacker attempts to reorganize the public chain 

generated before the time of the attack in order to achieve a rollback of the public chain. The attacker 

usually needs to control the majority of nodes in the entire network, and it selects the number of blocks 

that need to be rolled back. After that, the attacker quickly generates a forked chain 𝐶ℎ𝑎𝑖𝑛𝐴 and votes 

for it. This can make the weight of the forked chain 𝐶ℎ𝑎𝑖𝑛𝐴 greater than the public forked chain 𝐶ℎ𝑎𝑖𝑛𝐵. 

Once the weight of 𝐶ℎ𝑎𝑖𝑛𝐴  is greater than 𝐶ℎ𝑎𝑖𝑛𝐵 , according to the consensus rules, regardless of 

whether subsequent nodes are honest, new blocks are appended to 𝐶ℎ𝑎𝑖𝑛𝐴. Therefore, the 𝐶ℎ𝑎𝑖𝑛𝐵 fork 

chain is discarded, and the ex-post reorganization attack succeed. Ex-post reorganization attacks may 

also lead to a decrease in consensus security. Comparing ex-ante reorganization and ex-post 

reorganization, there are the following differences: 

(1) The time attributes of the chain are different: the ex-ante reorganization reorganizes chains in 

the future, while the ex-post reorganization reorganizes chains in the past. 

(2) The difficulty of the attack is different: the stake required for ex-ante reorganization is smaller 

than that of ex-post reorganization, and ex-post reorganization is more complicated. 

(3) The fundamental attack methods are different: despite the less difficulty of the ex-ante 

reorganization attack, its attack methods are more varied, and its means of attack are more 

complex. The complexity of ex-post reorganization is relatively smaller, but it mainly depends 

on the stake value it controls. 

Whether ex-ante or ex-post reorganization attack, the attacker must control many malicious nodes 

to launch the attack successfully. A balance attack can increase the success rate and reduce the number 

of malicious nodes required. This method is implemented by precisely controlling the time the node 

sends the voting message. Since the message needs to be broadcast on the network before covering all 

honest nodes, the time the voting message arrives at each honest node may be inconsistent. This 

inconsistency causes a specific time when the weight of each forked chain observed by half of the honest 

nodes differs from that of the other half. By taking advantage of this inconsistency, different parts of the 

honest nodes vote for different forked chains, which is called forking. The forking degree of honest 

nodes is defined in Equation 4.4: 

 𝐹 = 𝐻𝑚/𝐻ℎ  (4.4) 

Where 𝐻𝑚 represents the number of malicious chains supported by the honest node after forking; 

𝐻ℎ represents the number of honest chains supported by the honest node. When 𝐹 equals 0, it means that 

the attacker has not forked any honest node, and all honest nodes support the chain generated by the 
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honest node. This situation is equivalent to the attacker not considering the precise control mode, and it 

is easiest to create a condition with no forking degree. When 𝐹 equals 1, it means that the attacker divides 

the honest node set equally, half of which supports the chain generated by the malicious node, and the 

other half supports the chain generated by the honest node. The attacker precisely controls the time to 

fork honest nodes as much as possible, which means maximizing 𝐹, so that it can reorganize the chain 

with less controlled nodes, reducing the difficulty of the attack. Compared with the ex-ante 

reorganization attack, this method requires the forked blocks to be exposed in advance. 

4.3. Ex-ante reorganization 

This section introduces the specific process of ex-ante reorganization in detail. Assuming that the total 

number of nodes is 32, the number of malicious nodes controlled by the attacker is 8, and one epoch is 

divided into 8 slots. First, the attacker’s process of reorganizing one block and two blocks is explained, 

and then the general process of reorganizing k blocks is derived. Through these processes, we can deeply 

understand how the attacker uses malicious nodes to implement ex-ante reorganization attacks. 

 

Figure 6. Specific process of one-block ex-ante reorganization. 

Figure 6 shows the schematic diagram of one-block ex-ante reorganization. In Figure 6, the square 

represents the block generated by the slot, the gray circle is the malicious node, and the blue circle is the 

honest node. The specific steps of the attack include: (1) The first step, the malicious node, as the 

proposer of the 𝑛 + 1 slot 𝑆𝑛+1, does not broadcast the generated block immediately. (2) The second 

step, since the proposer 𝑃𝑛+2 of slot 𝑛 + 2 has not received the block of the 𝑛 + 1 slot 𝑆𝑛+1, it generates 

block 𝐵𝑛+2 and appends it to the block 𝐵𝑛 of the 𝑛 + 2 slot. (3) The third step, after the block 𝐵𝑛+2 is 

broadcasted, the malicious node releases the 𝑛 + 1  block 𝐵𝑛+1 , with the voting message 

{𝐴𝐴,𝑛+1, 𝐴𝐵,𝑛+1, 𝐴𝐶,𝑛+1} of the malicious node in 𝐵𝑛+2. In addition, the honest nodes 𝐻𝐷 and 𝐻𝐸 vote 

for 𝐵𝑛+2. Finally, the proposer 𝑃𝑛+3 of slot 𝑛 + 3 calculates that 𝑊𝑆𝑛+1 is 3 and the weight of 𝑊𝑆𝑛+2 

is 2. Therefore, according to the GHOST algorithm, 𝑊𝑆𝑛+1 > 𝑊𝑆𝑛+2. It appends the new block 𝐵𝑛+3 

to 𝐵𝑛+1, so 𝐵𝑛+2 is discarded and the consensus is reorganized. 
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Figure 7. Specific process of two-block ex-ante reorganization. 

 

Figure 8. Specific process ex-ante reorganization of 𝑘 blocks. 

Figure 7 shows the process of two-block ex-ante reorganization. It is found that the number of 

malicious nodes required to reorganize two blocks successfully is 2 more than the case of reorganizing 

only one block. In this case, the number of malicious nodes required to launch the attack successfully is 

5, while the number required to reorganize only one block under the same conditions is 3. The steps of 

the attack include: (1) The first step, the malicious node becomes 𝑃𝑛+1 of the (𝑛 + 1)th slot, and does 

not broadcast immediately after generating the block. (2) The second step, since 𝑃𝑛+2 does not receive 

𝐵𝑛+2, it appends block 𝐵𝑛+2 to 𝐵𝑛. Similarly, 𝐵𝑛+3 is appended to 𝐵𝑛+2. (3) In the third step, after 𝐵𝑛+3 

is broadcast, the malicious node releases 𝐵𝑛+1  with the malicious node's voting message 

{𝐴𝐴,𝑛+1, 𝐴𝐵,𝑛+1, 𝐴𝐶,𝑛+1, 𝐴𝐷,𝑛+1, 𝐴𝐸,𝑛+1}. Finally, 𝑃𝑛+3 calculates that 𝑊𝑆𝑛+1 is 5 at this time, and the 

weight of 𝑊𝑆𝑛+2 is 4. Therefore, according to the GHOST rule, the new block 𝐵𝑛+4 is appended to 

𝐵𝑛+1, so 𝐵𝑛+2 and 𝐵𝑛+3 are reorganized. 

Figure 8 shows the process of 𝑘-blocks ex-ante reorganization. The specific steps of the attack include: 

(1) The first step, the malicious node acts as 𝑃𝑛+1 of the 𝑛 + 1 slot, and does not broadcast the block 

immediately after generating it. (2) The second step, since 𝑃𝑛+2 did not receive 𝐵𝑛+1, it appends the new 

block 𝐵𝑛+2 to 𝐵𝑛. The blocks from 𝐵𝑛+3 to 𝐵𝑛+𝑘+1 are appended in sequence as usual. (3) In the third 

step, after 𝐵𝑛+𝑘+1 is broadcasted, the malicious node releases the reserved block 𝐵𝑛+1, and the malicious 

nodes from 𝑛 + 2 to 𝑛 + 𝑘 + 1 also send out voting messages 𝐴𝐴,𝑛+1, 𝐴𝐵,𝑛+1, 𝐴𝐶,𝑛+1, 𝐴𝐷,𝑛+1, 𝐴𝐸,𝑛+1, ⋯ 

at this time. Finally, 𝑃𝑛+𝑘+2 calculates that 𝑊𝑆𝑛+1 is 2𝑘 + 1 at this time, which is greater than the weight 
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of 𝑊𝑆𝑛+2 2𝑘. Therefore, according to the GHOST algorithm, it appends the new block 𝐵𝑛+𝑘+2 to 𝐵𝑛+1, 

so the 𝑘 blocks from 𝑛 + 2 to 𝑛 + 𝑘 + 1 are reorganized. 

4.4. Fine-grained reorganization 

Fine-grained reorganization refers to an attacker who precisely controls the voting behavior of malicious 

nodes to influence the honest node's judgment of the current forked chain, thereby reducing the difficulty 

of the attack [18]. The key to this strategy is to control the sending time of the voting message. Using 

this strategy, the attacker can release the malicious node's voting message at a critical moment, thereby 

affecting the decision of the honest node during the consensus process, causing the network to reorganize 

or the node to choose a different forked chain, achieving the purpose of the attack. Through fine-grained 

reorganization, the attacker can flexibly manipulate the network's consensus process and increase the 

attack's success rate. 

 

Figure 9. Precisely control the voting message. 

Figure 9 shows the precise control of voting message time. The upper part of Figure 9 shows the 

state of chain bifurcation at 𝑇1, and the chain is divided into bifurcation chain 𝛼 and bifurcation chain 𝛽. 

When the slot progresses to 𝑛 + 2, bifurcation chain 𝛼 is currently composed of 2 blocks, namely 𝐵𝑛, 

𝐵𝑛+2, with a weight of 2, and bifurcation chain 𝛽 is currently composed of 2 blocks, namely 𝐵𝑛, 𝐵𝑛+1, 

with a weight of 1. When the slot progresses to 𝑛 + 3, there are 4 nodes participating in the consensus of 

the 𝑛 + 3 slot, 𝐴 and 𝐵 are honest nodes, and 𝐶 and 𝐷 are malicious nodes. In the lower part of Figure 11, 

it is assumed that the attacker can control the voting time of 𝐶 and 𝐷, so that 𝐴 and 𝐵 split and vote in 

different bifurcation chains respectively. First, determine that the malicious node's voting message is 

sent at the voting time of the 𝑛 + 3  slot, 𝑇2 −  𝑇 , which is 𝑇1 . 𝐶  and 𝐷  vote for 𝐵𝑛+1 . After the 

broadcast of time 𝑇, the honest node 𝐵 receives the vote of the malicious node. B determines that the 

weight of the forked chain 𝛽 is 3, which is greater than the forked chain 𝛼, so 𝐵 votes for the forked 
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chain 𝛽. At this time, 𝐴 has not received the voting message from the malicious node and still believes 

that the weight of the forked chain 𝛽 is less than the forked chain 𝛼, so it votes for the forked chain 𝛼. 

 

Figure 10. Chain views of precise control of the honest node. 

 

 

Figure 11. Specific process of fine-grained reorganization. 

Figure 10 shows the chain views of honest nodes 𝐴 and 𝐵 during the voting process. The upper part 

of Figure 10 shows the chain view of node 𝐵 after time 𝑇. At this time, it observes that fork chain 𝛼 has 

two honest nodes voting for 𝐵𝑛+2, and fork chain 𝛽 has three nodes voting for 𝐵𝑛+1, so 𝐵 decides to vote 

for fork chain 𝛽. The lower part of Figure 10 shows the chain view of node 𝐴 after time 𝑇. At this time, it 

observes that fork chain α has two honest nodes voting for 𝐵𝑛+2, and fork chain 𝛽 has only one node voting 

for 𝐵𝑛+1, so 𝐴 decides to vote for fork chain 𝛼. In the second half of the time of the (𝑛 + 3)-th slot, after 

the message is fully broadcast, the chain views of 𝐴 and 𝐵 tend to be consistent. At this time, the weights 

of fork chain α and fork chain 𝛽 are close to the same. If the attacker wants to increase the length of the 

reorganized block, it can continue to use this method to attack. 

Figure 11 introduces the specific process of fine-grained reorganization in detail. The total number of 

nodes is 64, the number of malicious nodes controlled by the attacker is 8, one epoch is divided into 8 

slots, and the length of the reorganized block is 𝑘. The specific steps of the attack include: (1) In the first 

step, malicious node 𝑃𝑛+1, as the proposer of slot 𝑆𝑛+1, generates block 𝐵𝑛+1 but does not broadcast the 
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block immediately. Implement refined control message strategy and wait for the generation and voting of 

block 𝑆𝑛+2. (2) In the second step, when the voting time of 𝑆𝑛+2 comes, 𝑃𝑛+1 broadcasts the block to the 

network and attaches a vote 𝐴𝑝,𝑛+1 for 𝑛 + 1. After that, the honest nodes 𝐻𝐶 and 𝐻𝐷 in the committee of 

𝑆𝑛+2 receive the voting message 𝐴𝑃,𝑛+1 and judge that the weight 𝑊𝑛+1 of the 𝑛 + 1 branch is greater 

than the weight 𝑊𝑛+2 of the 𝑛 + 2 branch (since the current slot is in 𝑆𝑛+2, the block of this slot does not 

accumulate weight). At this time, the two nodes generate voting messages 𝐴𝐶,𝑛+1  and 𝐴𝐷,𝑛+1  and 

broadcast them. The other four honest nodes 𝐻𝐸 , 𝐻𝐹 , 𝐻𝐺 , and 𝐻𝐻  did not receive the block 𝐵𝑛+1 and 

voting message of 𝑛 + 1 in time, so they generated votes for 𝑛 + 2 𝐴𝐸,𝑛+2, 𝐴𝐹,𝑛+2, 𝐴𝐺,𝑛+2, 𝑎𝑛𝑑𝐴𝐻,𝑛+2. 

(3) In the third step, the two malicious nodes 𝑀𝐴 and 𝑀𝐵 in slot 𝑆𝑛+2 wait for the voting opportunity 𝑡𝑛+2 

after the generation of block 𝐵𝑛+3 of 𝑛 + 3. When the opportunity comes, 𝑀𝐴 and 𝑀𝐵 send votes 𝐴𝐴,𝑛+1 

and 𝐴𝐵,𝑛+1for 𝑛 + 1 to the network. After a period of time, the two nodes 𝐻𝐼 and 𝐻𝐽 in slot 𝑛 + 3 receive 

𝐴𝐴,𝑛+1 and 𝐴𝐵,𝑛+1, and determine that the branch weight 𝑊𝑛+1 of 𝑛 + 1 is greater than the weight 𝑊𝑛+3 

of 𝑛 + 3. At this time, 𝐻𝐼 and 𝐻𝐽 vote 𝐴𝐼,𝑛+1 and 𝐴𝐽,𝑛+1 for 𝑛 + 1. The other four honest nodes 𝐻𝐾, 𝐻𝐿, 

𝐻𝑀, 𝐻𝑁 did not receive 𝐵𝑛+1 and its voting message in time, so they voted 𝐴𝐾,𝑛+3, 𝐴𝐿,𝑛+3, 𝐴𝑀,𝑛+3, 𝐴𝑁,𝑛+3 

for 𝐵𝑛+3. (4) Finally, when it comes to slot 𝑆𝑛+𝑘, the attacker finds that there is only one block left, so it 

directly releases the malicious node vote of 𝑛 + 𝑘 in advance. After that, all the honest nodes of 𝑆𝑛+𝑘+1 

calculate 𝑊𝑛+𝑘 and 𝑊𝑛+1, see Equation 4.5 and Equation 4.6. 

 𝑊𝑛+𝑘 = 𝑊𝐵𝑛 + ∑ 𝑊𝐵𝑛+𝑖 
𝑘
𝑖=2 = 4𝑘 + 3  (4.5) 

 𝑊𝑛+1 = 𝑊𝐵𝑛 + 𝑊𝐵𝑛+1  = 4𝑘 + 4  (4.6) 

Through calculation, it is found that 𝑊𝑛+1 is greater than 𝑊𝑛+𝑘, so all committee nodes 𝑊𝑛+𝑘+1 in 

slot 𝑛 + 𝑘 + 1 vote for 𝐵𝑛+1, and the attack is completed. In the best case, only 2𝑘 − 1 malicious nodes 

are needed to complete this attack. 

 

Figure 12. Specific process of one-block ex-post reorganization. 
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Figure 13. Specific process of k-blocks ex-post reorganization  

4.5. Ex-post reorganization 

This paper designs an ex-post reorganization attack method and introduces the specific process of ex-

post reorganization in detail. The environment parameters of the attack are set to be consistent with ex-

ante reorganization. The total number of nodes is 32, the number of malicious nodes controlled by the 

attacker is 8, and one epoch is divided into 8 slots. First, the process of the attacker reorganizing 1 block 

is explained, and then the general process of reorganizing 𝑘 blocks is derived. Through these processes, 

we can deeply understand how the attacker uses malicious nodes to implement ex-post reorganization 

attacks. After that, this paper simulates the attack strategy and calculate the success probability of the 

attack through experimental simulation. 

Figure 12 shows the specific process of one-block ex-post reorganization. The square blocks in the 

figure are blocks generated by the slot, the gray circles are malicious nodes, and the blue circles are 

honest nodes. The attack steps include: (1) The first step, malicious node as the proposer 𝑃𝑛+2 of slot 

𝑆𝑛+2, violates the weight priority principle of the fork selection algorithm, and decides to append to 𝐵𝑛 

and generate block 𝐵𝑛+2.(2) The second step, in slot 𝑆𝑛+2, according to the GHOST algorithm, the 

voting count starts from the block of the previous slot, so in this slot, the honest node only votes for 

𝐵𝑛+1, and 𝐵𝑛+2 only has malicious nodes voting. (3) The third step, in slot 𝑆𝑛+3, since the weight of 

𝑊𝑛+2 is 4, which is the same as 𝑊𝑛+1, the proposer of 𝑆𝑛+3 must also be a malicious node for the attack 

to succeed. At this time, the proposer appends the block to 𝐵𝑛+2. After the 𝐵𝑛+3 block is broadcast, 

assuming that the other honest nodes of 𝑆𝑛+3 The node votes for 𝐵𝑛+3; finally, in slot 𝑆𝑛+4, the proposer 

of this slot calculates the weight 𝑊𝑛+3 to be 7, which is greater than the weight of 𝑊𝑛+1, which is 5. 

Therefore, according to the GHOST algorithm, the proposer appends the new block to 𝐵𝑛+3, so 𝐵𝑛+1 is 

discarded and the consensus is reorganized. 

Figure 13 shows the specific process of k-blocks ex-post reorganization. The specific steps for a 

successful attack include: (1) The first step, the malicious node, as the proposer 𝑃𝑛+𝑘+1 of slot 𝑆𝑛+𝑘+1, 

decides to append the block to 𝐵𝑛 and broadcast it. (2) The second step, in slot 𝑆𝑛+𝑘+1, according to 

the GHOST algorithm, the voting count starts from the block of the previous slot, so 𝑆𝑛+𝑘+1 only has 

malicious nodes voting. (3) The third step, in slot 𝑆𝑛+2𝑘+2, since the weight 𝑊𝑛+2𝑘+1 calculated by 

the committee of this slot is consistent with 𝑊𝑛+𝑘, 𝑃𝑛+2𝑘+2 must also be a malicious node, and the 

proposer appends the block to 𝐵𝑛+2𝑘+1. Assume that after the block 𝐵𝑛+2𝑘+2 is broadcasted, there are 

two other malicious nodes in slot 𝑆𝑛+2𝑘+2 that vote for the block generated by this slot. Finally, in 

slot𝑆𝑛+2𝑘+3, the proposer 𝑃𝑛+2𝑘+3 of this slot calculates that the weight of 𝑊𝑛+2𝑘+2 is 2𝑘 + 3, which 
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is greater than the weight of 𝑊𝑛+𝑘 2𝑘 + 1. Therefore, according to the GHOST algorithm, it appends 

the new block to 𝐵𝑛+2𝑘+2, so blocks 𝐵𝑛+1, ⋯ , 𝐵𝑛 + 𝑘 are discarded, and the consensus undergoes a 

𝑘-block reorganization.  

5. Experiments 

By analyzing short-range reorganization attacks, we can extract the key parameters that affect the attack 

results. After setting the key parameters, we can simulate the attack method and launch the attack. This 

paper designs an algorithm for experimental simulation and calculate the probability of success in an 

epoch. The key parameters are shown in Table 3: 

Table 3. Key parameters of the short-range reorganization model. 

Parameter Symbol Definition 

Number of nodes 𝑁 
Integer type. The total number of nodes participating in the consensus. The 

default value is 4096. 

Malicious node ratio 𝑚 
Floating point type, value range is 0 to 1. The ratio of malicious nodes 

controlled by the attacker to the total number of nodes. The default value is 0.3. 

Slot number 𝑆 
Integer type. The number of slots in a single epoch in the consensus algorithm. 

Currently, the value of Ethereum mainnet is 32, so the default value is 32. 

Reorganization 

model 
𝑅 

Enumeration type. Includes three modes: ex-ante reorg, fine-grained reorg, and 

ex-post reorg. The default value is ex-ante reorg. 

Degree of honest 

nodes forking 
𝐹 

Floating point type, ranging from 0 to 1. The degree of honest node forking 

when fine-grained reorganization is implemented. If the honest node set is 

forked into two, the value is 1. The default value is 0 

Voting weight 

enhancement 
𝛥𝑤 

Floating point type, value range is 0 to 1. Enhance the proposer weight. If it is 

0, it means that this method is not enabled. The default value is 0. 

Cross-slot voting 

weight reduction 
𝛥𝑤𝑎 

Floating point type, value range is 0 to 1. Degrade the cross-slot voting weight. 

If it is 1, it means that this method is not enabled. The default value is 1. 

Blockchain 

reorganization length 
𝐵 

Integer type. The number of short-range reorganization blocks. The minimum 

value is 1 and the maximum value is 𝑆 − 1. The default value is 1. 

Simulations count 𝑐 
Integer type. The number of experimental simulations, that is, the number of 

simulation epochs. The default value is 10,000. 

Probability of success 𝑃 Floating point type. Short-range reorganization attacks success probability. 

According to the short-range reorganization model, the definition of key parameters is shown in 

Equation 5.1: 

 𝑃 = 𝑓(𝑁, 𝑚, 𝑆, 𝑅, 𝐹, 𝛥𝑤, 𝛥𝑤𝑎, 𝐵, 𝑐)  (5.1) 

Where 𝑓 is the short-range reorganization attacks model. Other terms that are not listed in the key 

parameter table but have been mentioned in the Ethereum basic settings include: the number of malicious 

nodes 𝑀 = 𝑁 ∙ 𝑚, the number of committee nodes 𝐶 = 𝑁/𝑆. Regarding the weight value calculated in 
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the fork selection algorithm, the weight of 1 node is defined as 1, and the weight of the proposer after 

the power is raised is 𝑊 = 𝐶 ∙ 𝛥𝑤. The function 𝑓 is computed through different algorithms depending 

on the value of parameter 𝑅. Specifically: when 𝑅 = ex-ante_reorg, 𝑓 is calculated using Algorithm 1; 

when 𝑅 = ex-post_reorg , Algorithm 2 is employed; and when 𝑅 = fine_grained_reorg , the 

computation follows Algorithm 3. 

Algorithm 1: Simulating ex-ante short-range reorganization attack 

Input: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡: malicious node ratio, 𝑟𝑜𝑔𝑛:reorganization length, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡: 

simulation rounds, 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡: total nodes, 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟: slot number 

Output: attack success probability  

1: Initialize parameters: 

2: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ×  𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 

3: 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡/𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 

4: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 0 

5: for 𝑖𝑑 ← 1 to 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 do 

6:       Shuffle nodes 𝑥 randomly 

7:       Initialize 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[ ], 𝑛𝑜𝑟𝑚𝑎𝑙[ ], 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[ ]  

8:       for  𝑖 ← 1 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 do 

9:              Assign 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 nodes to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑡 

10:              Record leader status 

11:              Count 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖] and 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖]  

12:       for 𝑖2 ← 1 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 do 

13:              if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖2]  ==  1 then 

14:                     𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 0, 𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 ← 0 

15:                     𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒_0 ← 0  

16:                     for 𝑖3 ← 𝑖2 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 do 

17:                           if in initial adversary leader phase then 

18:                                𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 + 𝑓𝑎𝑢𝑙𝑡[𝑖3] 

19:                           else  

20:                                𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 + 𝑓𝑎𝑢𝑙𝑡[𝑖3] 

21:                                𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 ← 𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 + 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖3] 

22:                           if 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒_0 ≥ 𝑟𝑜𝑔𝑛 and 

23:                                (𝑖𝑡𝑒𝑚_𝑓𝑎𝑢𝑙𝑡 + 𝑡𝑒𝑚𝑝_𝑓𝑎𝑢𝑙𝑡) > (𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙 + 𝑡𝑒𝑚𝑝_𝑛𝑜𝑟𝑚𝑎𝑙) then 

24:                               a𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 + 1 

25:                               terminate outer loop 

26: return 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐/𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 
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Algorithm 2: Simulating ex-post short-range reorganization attack 

Input: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡: malicious node ratio, 𝑟𝑜𝑔𝑛: reorganization length, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡:  

simulation rounds, 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡: total nodes, 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟: time slot number 

Output: attack success probability     

1: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ×  𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 

2: 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡/𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 

3: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 0 

4: for 𝑖𝑑 ← 1 to 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 do 

5:       Shuffle nodes 𝑥 randomly 

6:       Initialize 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[ ], 𝑛𝑜𝑟𝑚𝑎𝑙[ ], 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[ ]  

7:       for 𝑖 ← 0 to 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 − 1 do 

8:             𝑠𝑙𝑜𝑡𝑖 ←  𝑖/𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 

9:            if 𝑖 𝑚𝑜𝑑 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 == 0 then 

10:                 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑠𝑙𝑜𝑡𝑖] ← (𝑥[𝑖] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑐𝑜𝑢𝑛𝑡)? 1 ∶  0  

11:            if 𝑥[𝑖] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 then 

12:                  𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] + 1 

13:            else 

14:                  𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] ← 𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] + 1 

15:       for 𝑖2 ← 𝑟𝑜𝑔𝑛 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do 

16:              if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖2]  ==  1 then 

17:                     for 𝑖4 ← (𝑖2 − 𝑟𝑜𝑔𝑛) to 𝑖2 − 1 do 

18:                           𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠+= 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖4] 

19:                     𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0 

20:                     for 𝑖3 ← 𝑖2 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do 

21:                           𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 +  𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖3] 

22:                           if 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 >  𝑖𝑡𝑒𝑚_𝑛𝑜𝑟𝑚𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 then 

23:                                𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 +  1    

24:                                terminate outer loop 

25: return 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐/𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 

Next, this paper conducts attack simulation experiment in 3 ways: First, we analyze the impact of 

the malicious node ratio on success. Attackers can achieve success by controlling more malicious nodes. 

Then, we analyze whether the increase in the number of nodes affects success. Finally, we analyze the 

impact of the degree of honest node forking on success when fine-grained reorganization is implemented. 
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Algorithm 3: Simulating fine-grained short-range reorganization attack 

Input:𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒: honest node forking degree, 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡: malicious node ratio, 𝑟𝑜𝑔𝑛:  

reorganization length, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡:simulation rounds, 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡: total nodes,  

𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟: time slot number 

Output: attack success probability  

1: 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ×  𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 

2: 𝑛𝑜𝑑𝑒_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 ← 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡/𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 

3: 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟 ← 𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒/(1 + 𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒) 

4: 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟 ← 1/(1 + 𝑓𝑜𝑟𝑘_𝑑𝑒𝑔𝑟𝑒𝑒) 

5: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ← 0 

6: for 𝑖𝑑 ← 0 to 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 − 1 do 

7:       Shuffle node 𝑥 randomly 

8:       Initialize 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[ ], 𝑛𝑜𝑟𝑚𝑎𝑙[ ], 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[ ]  

9:       for 𝑖1 ← 1 to 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 − 1 do 

10:             𝑠𝑙𝑜𝑡𝑖 ←  𝑖1/𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 

11:            if 𝑖1 𝑚𝑜𝑑 𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡_𝑝𝑒𝑟_𝑠𝑙𝑜𝑡 == 0 then 

12:                 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑠𝑙𝑜𝑡𝑖] ← (𝑥[𝑖1] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑐𝑜𝑢𝑛𝑡)  

13:            if 𝑥[𝑖1] < 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 then 

14:                  𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑠𝑙𝑜𝑡𝑖] + 1 

15:            else 

16:                  𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] ← 𝑛𝑜𝑟𝑚𝑎𝑙[𝑠𝑙𝑜𝑡𝑖] + 1 

17:       for 𝑖2 ←0 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do 

18:              if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖2]  ==  1 then 

19:                     𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖2] 

20:                    𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 ← 1, 𝑠𝑡𝑎𝑟𝑡_0 ← −1 

21:                     for 𝑖3 ← 𝑖2 + 1 to 𝑠𝑙𝑜𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 − 1 do 

22:                           if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_ℎ𝑒𝑎𝑑𝑒𝑟[𝑖3] == 0 and 𝑠𝑡𝑎𝑟𝑡_0 < 0 then 

23:                                        s𝑡𝑎𝑟𝑡_0 ← 𝑖3 

24:                                𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠[𝑖3]    

25:                                𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑝𝑒𝑟 × 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖3] 

26:                                𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 ← 𝑛𝑜𝑟𝑚𝑎𝑙[𝑖3] − 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠       

27:                                if 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 ≥ 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 + 1 then 

28:                                      𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 −  𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 

29:                           else if 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑛𝑜𝑟𝑚𝑎𝑙 == 𝑛𝑜𝑟𝑚𝑎𝑙_𝑡𝑜_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 then 

30:                                 𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ← 2 

31:                             else 

32:                                    break 

33:                             if 𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ≥ 𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 then 

34:                                    𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 ← 𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 + 1 

35:                                    𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ←  𝑖𝑡𝑒𝑚_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 − 𝑛𝑒𝑒𝑑𝑒𝑑_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 

36:                             else 

37:                                    break 

38:                     if 𝑠𝑡𝑎𝑟𝑡_0 ≥ 0 and 𝑡𝑒𝑚𝑝_𝑟𝑒𝑔𝑜 > 𝑟𝑜𝑔𝑛 then 

39:                           𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 ←  𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐 + 1 

40:                           break 

41: return 𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑢𝑐/𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 
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5.1. Impact of malicious node ratio on success 

In order to increase the probability of a short-range reorganization, the obvious way for an attacker is to 

control more malicious nodes. This section analyzes the impact of malicious node ratio on ex-ante 

reorganization and ex-post reorganization. The key parameters are malicious node ratio 𝑚 , 

reorganization mode 𝑅 and reorganization block length 𝐵. Other parameters are default values. We 

analyze how changes in these parameters affect the success rate. The number of experiments is calculated 

based on the length of one year. That is to say, if a reorganization does not occur in a year, the probability 

of its occurrence can be ignored in this paper. If calculated according to the parameters of the Ethereum 

mainnet, the duration of each slot is 12 seconds, and the number of epochs in a year is 82125. The key 

parameters are shown in Equation 5.2: 

 𝑃 = 𝑓(4096, 𝑚, 32, 𝑅, 0,0,1, 𝐵, 82125)  (5.2) 

 

Figure 14. Impact of malicious node ratio on ex-ante reorganization attack success rate. 

Figure 14 shows the effect of different malicious node ratios on ex-ante reorganization attack 

success from 1 block to 8 blocks. From Figure 14(a), we can conclude that: (1) The attack success rate 

is low when the malicious node ratio is low. When the malicious ratio is less than 0.11, the attack success 
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rate is nearly 0, which shows that ex-ante short-range reorg attacks fail in most cases. (2) The attack 

success rate gradually increases as the malicious node ratio increases. At a malicious node ratio of about 

0.33, the attack success rate is close to 50%. (3) When the malicious node ratio exceeds 0.4, the attack 

success rate quickly reaches 100%. This shows that ex-ante short-range reorg attacks almost always 

succeed at high ratios. From Figure 14(b), only when the malicious node ratio exceeds 0.24 can the 

attacker launch a 2-block ex-ante short-range reorg attack within 1 year. When the malicious node ratio 

exceeds 0.35, ex-ante short-range reorg attacks always succeed. From Figure 14(c), only when the 

malicious node ratio exceeds 0.24 can the attacker launch a 4-block ex-ante short-range reorg attack 

within 1 year. When the malicious node ratio exceeds 0.40, ex-ante short-range reorg attacks always 

succeed. From Figure 14(d), the corresponding thresholds are 31% and 50% when reorganizing 8 blocks.  

 

Figure 15. Impact of malicious node ratio on ex-post reorganization results. 

Figure 15 shows the impact of different malicious node ratios on ex-post reorganization success 

from 1 block to 8 blocks. From Figure 15(a), when reorganizing one block, we can conclude that: (1) 

When the malicious node ratio is lower than 0.47, the attack success rate is 0. That is, the system is 

relatively safe and has not been attacked significantly. (2) Starting from 0.48, the attack success rate 

gradually increases but is still low. When it is around 0.5, the attack success rate rises rapidly to about 

26%. (3) When the malicious node ratio exceeds 0.5, the attack success rate quickly approaches 100%, 
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and the system’s security drops sharply. From Figure 15(b), only when the malicious node ratio exceeds 

0.50 can the attacker launch a 2-block ex-post short-range reorg attack within 1 year. When the malicious 

node ratio exceeds 0.52, ex-post short-range reorg attacks always succeed. From Figure 15(c), the 

corresponding thresholds are 0.53 and 0.54 when reorganizing 4 blocks. From Figure 15(d), the 

corresponding thresholds are 0.57 and 0.58 when reorganizing 8 blocks. Therefore, compared with an 

ex-ante reorg attack, the ratio of malicious nodes required for an ex-post reorg attack is much larger, and 

regardless of the number of blocks reorganized, the success rate is very low. 

5.2. Impact of node number on success 

In actual blockchain networks, the number of nodes participating in the consensus often changes 

dynamically. As blockchains based on the PoS algorithm become more and more popular, the number 

of participants is expected to increase significantly. This section analyzes whether the attack success rate 

remains unchanged as the number of consensus nodes increases while the malicious node ratio remains 

unchanged. From the perspective of network security, that is, whether the increase in the number of 

nodes brings additional difficulty to short-range reorganization attacks. The key parameters are the node 

number 𝑁, and the reorganization mode 𝑅. The other parameters are the default values. This section 

analyzes how changes in these parameters affect the success rate. The range of the total number of nodes 

is set from 960 to 19200. The key parameters are shown in Equation 5.3: 

 𝑃 = 𝑓(𝑁, 𝑚, 32, 𝑅, 0,0,1, 𝐵, 82125)  (5.3) 

Figure 16 shows the impact of adjusting the node number on ex-ante and ex-post reorg attacks. 

Figure 16(a) shows the impact of the increase in the node number on success when the malicious node 

ratio is 0.3. The result shows that as the node number increases, the attack success rate gradually 

decreases, stabilizing around 90%. Figure 16(b) shows the impact of the increase in the node number on 

success when the malicious node ratio is 0.5. The result shows that the attack success rate decreases 

exponentially as the node number increases, and the trend does not slow down. Therefore, from the 

experimental results, the increase in the node number increases the difficulty of ex-ante reorganization and 

ex-post reorganization. The node number has a greater impact on ex-post reorganization in comparison. 

 

Figure 16. Impact of node number on attack results. 
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5.3. Impact of honest node forking degree on success 

To further reduce the number of nodes required for short-range reorganization attacks to succeed, the 

honest node can be forked by precisely controlling the sending time, with one part supporting the chain 

generated by the honest node and the other part supporting the chain generated by the malicious node. 

The degree of forking depends on the accuracy of the estimation of sending time. Attackers usually test 

the average sending time by sending messages in advance and then estimate the sending time. However, 

the network latency is dynamic, so this section analyzes the impact of different node forking degrees on 

the attack's success rate. As is defined in Equation 4.4, forking degree 𝐹 = 𝐻𝑚/𝐻ℎ , where 𝐻𝑚 

represents the number of malicious chains supported by the honest node after forking; 𝐻ℎ represents the 

number of honest chains supported by the honest node. When 𝐹 equals 0, it means that the attacker has 

not forked any honest node, and all honest nodes support the chain generated by the honest node. This 

situation is equivalent to the attacker not considering the precise control mode, and it is easiest to create 

a condition with no forking degree. When 𝐹 equals 1, it means that the attacker divides the honest node 

set equally, half of which supports the chain generated by the malicious node, and the other half supports 

the chain generated by the honest node. This situation is the best condition for implementing this attack. 

The key parameters of this experiment are the honest node forking degree 𝐹 and the reorganized 

block length 𝐵. According to the analysis of the impact of malicious node ratio on the attack, the attacker 

only needs to control more than 10% of the nodes to launch an attack successfully. In contrast, this 

strategy theoretically only needs less to launch an attack. So, in this section's experiment, the malicious 

node ratio is set to 10%, and other parameters are the default values. We analyze how changing the 

forking degree parameter affects the success rate. The key parameters are shown in Equation 5.5: 

 𝑃 = 𝑓(4096,0.1,32, 𝑓𝑖𝑛𝑒_𝑔𝑟𝑎𝑖𝑛𝑒𝑑_𝑟𝑒𝑜𝑟𝑔, 𝐹, 0,1, 𝐵, 82125)  (5.4) 

Figure 17 shows the impact of the honest node forking degree on the success of the reorg attacks 

from 2 to 16 blocks. As the forking degree increases, the probability of successful attack increases, and 

the probability stabilizes after reaching a certain level. The minimum forking degrees required for 

reorganizing 2, 4, 8, and 16 blocks are 0.04, 0.36, 0.5, and 0.58, as shown in Figures 17(a), 17(b), 17(c), 

and 17(d) respectively. The highest degree reached by the reorganization of different numbers of blocks 

decreases as the length of the reorganized block increases. The highest success rate of reorganizing 2 

blocks can reach 96% in Figure 17(a), while the success rate of reorganizing 16 blocks can only reach 

82% in Figure 17(d). 

Through this experiment, we can see that the honest node forking strategy can greatly reduce the 

difficulty of attack. An attacker who controls a small number of nodes can also initiate the reorganization 

of long blocks. Compared with the strategy without honest node forking, its weakness is that the attacker 

needs to expose the block in advance, and its malicious characteristics are relatively obvious. 
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Figure 17. Impact of the honest node forking degree on attack result. 

The experiments are conducted on a system running Windows 11 as the operating system, equipped 

with a 12th Gen Intel® Core™ i7-1260P processor operating at 2.10 GHz and 16.0 GB of RAM. The 

development environment is configured using Visual Studio Code (VSCode) as the primary code editor, with 

all implementations being executed through a hybrid programming approach combining C++ and Python. 

6. Conclusion 

This paper systematically investigates Ethereum’s consensus algorithm and known attack methods, 

developing a comprehensive model for short-range reorganization attacks in Proof-of-Stake (PoS) 

systems. We categorize attack strategies into three distinct modes: ex-ante reorganization, fine-grained 

reorganization, and ex-post reorganization. Through systematic experimentation, the study 

quantitatively analyzes how key factors, including malicious node ratio, honest node forking degree, and 

reorganization block length, influence attack outcomes. 

The experimental findings offer critical insights for enhancing blockchain security against short-

range reorganization attacks. The ratio of malicious nodes required for ex-post reorganization is much 

larger than for ex-ante reorganization. Increasing the node number increases the difficulty of ex-ante and 

ex-post reorganization. The node number has a greater impact on ex-post reorganization in comparison. 
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Adopting a fine-grained reorganization strategy can greatly reduce the difficulty of a reorganization 

attack. Honest node forking strategy can greatly reduce the difficulty of attack.  

While the research highlights three specific types of short-range reorganization attacks, it does not 

address the practical implementation challenges of the described attacks in live Ethereum environments 

or evaluate how Ethereum’s existing safeguards might mitigate their impact. Although real-world 

Ethereum cases were not analyzed, the quantified non-linear relationships between network scale, honest 

node forking degree, and attack results provide a mathematical modeling foundation for optimizing 

consensus parameters and designing defense strategies. These results enable developers to strategically 

strengthen systems by raising economic and technical barriers to short-range reorganization attacks, 

ensuring defenses align with evolving threat models. 
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