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Highlights:  

 Machine learning (ML) models leveraging clinical trial and real-world data were developed 

to identify multivariate signatures predictive of COVID severe disease (SD) at baseline and to 

evaluate the generalizability of these findings. 

 Nirmatrelvir/ritonavir was the greatest predictor of severe disease (SD). 

 Other key baseline risk factors were elevated viral load, hsCRP, ferritin, haptoglobin, and increased age. 

 Using ML to identify factors predictive of disease outcomes may aid clinical decision making and 

trial considerations. 

Abstract: Objectives: COVID-19 remains a significant healthcare burden. Leveraging the combined 

power of clinical trial data and big data from the real world, this study elucidated baseline factors 

predictive of subsequent outcomes relating to severe COVID-19 disease (SD) and the effect of 

nirmatrelvir/ritonavir (Tx), a protease inhibitor, on disease progression. Methods: We retrospectively 

analyzed data from the Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients (EPIC-HR) 

clinical trial (NCT04960202) to discern observational associations between baseline factors and 

subsequent SD outcome. Baseline factors, including demographics, clinical laboratory results, 

symptoms, medical history, vital signs, and electrocardiogram features, were studied using machine 

learning (ML) for their importance in predicting hospitalization or death through Day 28, with Tx effects 

analyzed statistically. Generalizability of results was evaluated using real-world data (RWD) Optum 

Electronic Health Records. Results: Modeling indicated Tx was the greatest predictor of whether a 

patient progressed to SD. The most important baseline factors associated with increased risk of SD 
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were elevated baseline (1) viral load (VL; > ~4 log10 copies/mL), (2) hsCRP (> ~1 mg/dL), (3) 

ferritin (> ~280 ug/L), (4) haptoglobin (> ~210 mg/dL), and (5) increased age (> ~48 years). Tx 

reduced VL and abnormally high hsCRP and haptoglobin to greater extents than placebo at the measured 

time points. RWD validation supported findings on increased risk with elevated hsCRP and ferritin and 

increased age (no data were available on VL and haptoglobin). Conclusion: ML analysis identified 

critical baseline factors immediately before or at the beginning of COVID-19 infection predictive of 

progression to SD in adults that are common to a heterogeneous population. This study provides insights 

on multivariate signatures of COVID-19 disease progression and Tx effects, which may aid future 

studies and inform treatment decision making. 

Keywords: big data; real-world evidence; machine learning; precision medicine; COVID-19; EPIC-HR 

1. Introduction 

The COVID-19 outbreak, officially declared a global pandemic in March 2020, remains a serious public 

health threat [1,2]. As of early August, 2024, there were over 776 million confirmed COVID-19 cases 

and 7.1 million COVID-19 deaths worldwide [3], with 4.6 per 100,000 weekly laboratory-confirmed 

COVID-19 hospitalizations and 498 weekly COVID-19 deaths in the United States alone in the same 

period [4]. Diagnosis of COVID-19, which typically relies on development of characteristic 

symptomatology and subsequent confirmatory diagnostic testing, is challenging because SARS-CoV-2 

infections demonstrate variable symptomatology, prolonged incubation periods, and high rates of 

asymptomatic infection [5–7]. Thus, reported COVID-19 cases likely underestimate the true number of 

global infections and reinfections identified by prevalence surveys, partially due to reduced testing and 

reporting delays [8]. Severe COVID-19 disease (SD) is associated with increased risk of long-term 

sequelae, known as Post-COVID Conditions or Long COVID [2]. Known risk factors for SD, 

hospitalization, or death include age, cardiovascular disease, chronic lung disease, chronic kidney 

disease, and immunosuppression [9–11]. However, other factors associated with progression of SD, such 

as baseline laboratory findings, are not well characterized and warrant further study.  

We constructed machine learning (ML) models that leveraged the strength of both clinical trial data 

and real-world data to derive multivariate signatures of SD and elucidate the treatment effect of 

nirmatrelvir/ritonavir (Tx), which contributed to precision medicine decision making. 

2. Methods 

2.1. Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients (EPIC-HR) data 

The EPIC-HR study was a phase 2–3, double-blind, randomized, controlled trial active between July 

and December 2021 that enrolled nonhospitalized symptomatic adults with COVID-19 and increased 

risk of progressing to SD due to age ≥ 60 years, body-mass index > 25, immunosuppression, presence 

of cardiovascular diseases, and/or diabetes [9–12]. The study enrolled patients unvaccinated against 

COVID-19 and required initial onset of signs/symptoms attributable to COVID-19, such as cough, 

shortness of breath or difficulty breathing, and fatigue within 5 days before or on randomization day. In 

addition, patients’ COVID-19 status and treatment efficacy were assessed by baseline and changes in viral 

load (VL), defined as the level of SARS-CoV-2 RNA (log10 copies/mL) in nasopharyngeal swab samples 
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quantified by PCR, with a lower limit of quantification of 2.0 log10 copies/mL. For statistical analyses, 

values < 2.0 were imputed to 1.7 log10 copies/mL, and not detected was imputed to 0 log10 copies/mL. A 

VL of 4.0 log10 copies/mL was considered elevated for this study. The primary endpoint was the 

proportion of participants with COVID-19–related hospitalization or death from any cause through Day 

28 [12], which was used in this study to characterize SD. Participants were randomized 1:1 to receive 

either Tx or placebo (PBO) every 12 hours for 5 days. The full details of the EPIC-HR study are provided 

elsewhere (NCT04960202; ClinicalTrials.gov) [12].  

The study cohort used herein was extracted based on the modified intent-to-treat 2 population, 

comprising all participants randomly assigned to the Tx arm who received ≥ 1 dose of study intervention. 

Participants who did not get hospitalized or die through Day 28 were designated as Class 0; conversely, 

participants who were hospitalized or died before or on Day 28 were designated as Class 1. Of the 2091 

participants ultimately selected for the study cohort, 76 (3.63%) progressed to SD (Appendix Table S1a) 

such that the PBO arm comprised 1053 participants with 66 (3.16%) SD cases and the Tx arm comprised 

1038 participants with 10 (0.48%) SD cases (Appendix Table S1b). 

2.2. Development of the predictive SD ML model 

In a retrospective analysis, baseline factors (also referred to as features) were ranked by their contribution 

to SD risk by constructing and interpreting a predictive ML model on the EPIC-HR study cohort, which 

will be subsequently referred to as the SD ML model. All 99 factors available were used to engineer 

features for model inputs, including demographics, clinical laboratory values, symptoms, medical 

history, vital signs, and electrocardiogram features. Treatment arm assignment was input as an indicator 

variable, with one encoding assignment to the Tx arm and zero the PBO arm (Appendix Table S2). For 

the ML model to be predictive, only data measured before the occurrence of endpoints were allowed as 

inputs; thus, the SD model only included baseline measurements because death/hospitalization could 

have occurred any time post-baseline.  

Five ML algorithms were constructed and compared for predictive performance: logistic regression 

(LogitReg), random forest (RF), balanced random forest (BRF), light gradient boosting machine (LGB), 

and XGBoost (XGB). Nested cross validation (nCV) framework was used to train and evaluate the 

models [13]. Feature selection and imputation were completely performed on the training sets from the 

inner folds of nCV, while the held-out outer folds were completely unseen in model construction. This 

nCV process resulted in five “outer models” for each ML algorithm. The best-performing algorithm 

from nCV was subsequently retrained on the full EPIC-HR dataset and designated the “benchmark 

model.” The performance of this model was assumed to be comparable with, if not superior to, the average 

scores of outer models of the chosen algorithm without inadequately overfitting the training sets [13]. To 

optimize ML models against high-class imbalance (i.e., prevalence of Class 1 is ~3.5%) with relatively 

low sample size, performance metrics for model selection emphasized the F1 score, which is the 

harmonic mean of precision and recall. Furthermore, we focused on constructing ensemble tree-based 

algorithms with inverse class weighting, such as RF, BRF, LGB, and XGB. These generally excel in 

imbalanced datasets because their hierarchical structure allows them to learn from both classes. Since 

these methods tend to overfit to training samples, we also selected for minimum overfit in F1 score for 

increased potential of model generalizability. See Appendix Section 1.2–1.5 for a more detailed 

description of the ML model optimization. 
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2.3. ML model interpretation 

The contribution of each feature to SD risk, or feature importance, was determined by Shapley additive 

explanation (SHAP) values. SHAP values are a measure of individualized feature importance. This 

measure helps clarify the combined effect of multiple features on the model’s output or risk score 

(i.e., SD risk) because the values add up to the risk score for each participant. The importance of the 

feature for the entire study cohort, or global feature importance, was evaluated by global SHAP values, 

computed as the average absolute values of the individualized SHAP values. The contributions of input 

factors to SD risk were ranked by their respective global feature importance measures.  

Statistical analyses were conducted to determine Tx impact on factors prioritized by the SD ML 

model (Appendix Section 2), designed for post hoc interpretation of multivariate ML results. The factors 

ranked high in importance to SD risk by ML that were potentially modifiable by treatment were selected. 

For each selected factor, mean values at each available measured time point and their respective 95% 

confidence intervals (CIs) were calculated for participants, with the respective factor values falling 

outside the clinically accepted normal range for the PBO and Tx arms. The mean change from baseline 

(CFB) on each day was compared between the two arms by two-sided two-sample t test (P ≤ 0.05). If 

the selected factor had different abnormal thresholds for different subpopulations as defined by the 

laboratory specification, the analysis was repeated for each subpopulation (Appendix Section 2).  

2.4. Real-world data for validation 

The Optum Electronic Health Record (EHR) dataset is an in-house collection of US health records that 

was selected as an independent dataset to assess the generalizability of findings obtained from the SD 

ML model analysis developed using EPIC-HR data. These real-world data (RWD) were matched 

wherever possible to the EPIC-HR study. Patients age ≥ 18 years diagnosed with COVID-19, as 

identified by the International Classification of Diseases, Tenth Revision code of U07.1, from June 1 to 

December 15, 2021, were included. Since RWD were sparse, especially for symptom and laboratory 

measurements, COVID-19–related symptoms were not required for study cohort inclusion. In addition, 

time windows relative to the indexed COVID-19 diagnosis allowable for feature value inclusion were 

expanded to catch more data, with symptoms expanded to 10 days and laboratory values to 28 days before 

the indexed COVID-19 diagnosis date. In case of multiple measurements within the time window, the 

closest to the index date was chosen. Measurement units were converted to match those from EPIC-HR. 

2.5. Evaluation of generalizability of ML modeling results 

To evaluate the generalizability of findings based on the SD ML model, additional ML models were 

constructed with RWD using nCV framework and interpreted by SHAP as described previously. Within 

the time frame of our RWD extraction, the data that were captured corresponded to Delta as the dominant 

viral strain, matching that of EPIC-HR; however, this time frame was before the US Food and Drug 

Administration granted Emergency Authorization of Tx [14]. As a result, Tx effect could not be validated, 

so validation instead focused on the untreated population. The following three strategies were designed 

to seek potential evidence supporting the finding of prioritized factors: (1) use EPIC-HR PBO data to 

train the model via nCV and evaluate the resulting model using RWD; (2) compare RWD study 
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population means for Class 1 and Class 0 for prioritized factors; and (3) use RWD in nCV to check if 

prioritized factors were also prioritized in RWD.  

3. Results 

3.1. Factors critical to SD risk 

The BRF algorithm with average test ROC-AUC and F1 scores across five outer nCV folds of 0.859 and 

0.630, respectively, and their respective mean absolute deviation (MAD) of 0.032 and 0.034 was selected 

and retrained on the entire EPIC-HR data to obtain the benchmark model (see Appendix 3). Based on 

this model, baseline risk factors were ranked by the magnitude of their contribution to SD risk for 

untreated (Figure 1a) and treated participants (Figure 1b) in descending order of importance. Each dot 

on the plot represents the contribution of the corresponding feature to SD risk for one study participant: 

red and blue denote high and low feature values, respectively, and the amount of feature contribution to 

SD is quantified in the x-axis. The black vertical line at zero denotes no contribution to risk; the farther 

away features are from this vertical line, the greater the contribution of the feature to model output risk 

score, with positive x-direction indicating increase in risk and negative direction decrease in risk.  

 

Figure 1. Contribution of baseline factors to SD risk. The top factors contributing to SD risk are illustrated 

by the beeswarm plot in (a) the PBO arm and (b) the Tx arm. Features are ranked in decreasing order of 

their respective global SHAP values on each arm based on the benchmark model. The top 20 most important 

features are shown from a total of 61 input features to the SD ML model after feature selection. Each dot 
on the plot represents how the corresponding feature contributed to SD risks for one study participant: red 

and blue colors denote high and low feature values, respectively, and the feature contributions to SD are 

shown against the x-axis. The black vertical line at zero denotes no contribution to risk; the farther away 
features are from this vertical line, the greater the contribution of the feature to model-output risk score, with a 

positive x-direction indicating increase in risk and negative direction decrease in risk. The width of the jitters in 

the y-axis direction is proportional to the number of participants with the same feature value and feature 
contribution. Serology status is positive if either one of qualitative IgG-IgM anti-N or anti-S is positive. Age 

group is defined as 1844, 4559, 6064, 6574, and ≥ 75 years, with increase in age category encoded by a 
higher integer value. Ethnicity is encoded as Hispanic or Latino (1) and Not (0). Note the unit for eGFR is 

mL/min/1.73 m2 more specifically. Abbreviations: ALP: alkaline phosphatase; ALT: alanine transaminase; 

AST: aspartate aminotransferase; CK: creatinine kinase; eGFR: estimated glomerular filtration rate calculated 
by the CKD-EPI (Chronic Kidney Disease-Epidemiology Collaboration) equation using serum creatinine in the 

Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients trial data; hsCRP: high-sensitivity 

C-reactive protein; IgG: immunoglobulin G; IgM: immunoglobulin M; LDH: lactate dehydrogenase; PBO: 

placebo; SD ML: severe COVID-19 disease machine learning; SHAP: Shapley additive explanation; Tx: 
nirmatrelvir/ritonavir; VL: SARS-CoV-2 viral RNA level, also referred to as viral load. 
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As shown in Figure 1a, not receiving Tx imposed the greatest contribution to increasing SD risk for 

the untreated population and increased risks for all untreated participants. Receiving Tx contributed the 

most to decreasing risk of SD, with all participants contributing negative SHAP values (i.e., decreased 

SD risk) (Figure 1b). The remaining top ten baseline factors prioritized were the same between the PBO 

and Tx groups (Figures 1a and b). High baseline high-sensitivity C-reactive protein (hsCRP) increased 

SD risk, while lower values alleviated risk. Positive serology status (either one of qualitative IgG-IgM 

anti-N or anti-S is positive) decreased risk, while a negative status increased risk for all untreated 

participants. Elevated baseline VL, ferritin, haptoglobin, and increased age were also top predictors for 

increased SD risk. Furthermore, low baseline estimated glomerular filtration rate (eGFR), high creatinine 

kinase (CK), and high glucose increased SD risk. Higher age group was near the top ten features and 

mirrored the importance of increased age in SD. Although below the top ten in ranked importance, 

elevated baseline temperature, fibrinogen, aspartate aminotransferase, alanine transaminase, and weight 

also contributed to increased risk for SD, as did low baseline alkaline phosphatase and calcium levels. 

At the bottom of the ranked lists, slightly higher SD risk was observed for participants not of Hispanic 

or Latino ethnicity and with hypertension risk in the PBO group (Figure 1a) and increased baseline 

lactate dehydrogenase and procalcitonin for the Tx group (Figure 1b). Together, the above were the top 

20 risk factors, while contribution of the remaining ones were small individually, and their combined 

contributions are shown in the last row of the figure. 

3.2. Persistence of prioritized factors 

Because the definition of high risk in EPIC-HR included many underlying conditions, we tested if the 

above identified factors would change due to variation in the population characteristics. We checked 

feature importance in the five different outer models trained and tested with different, randomly selected, 

class-prevalence stratified data splits per the nCV framework. Receiving Tx (or not) and baseline ferritin, 

hsCRP, VL, haptoglobin, and age were among the top ten features in all five outer BRF models, 

providing evidence that these six variables are common characteristics for progression to SD that can 

withstand variations in the study population. Other clinical features are sensitive to heterogeneity in the 

study population and thus model parameterization; these should be cautiously interpreted. In fact, 

baseline serology status and glucose appeared in four of the five outer models. Baseline CK appeared in 

three, but no other variables appeared in more than half of the outer models.  

Additionally, we obtained the thresholds of the continuous features that were prioritized in all five 

outer models that lead to increased SD risk. For each feature, this was achieved by scattering SHAP 

values of the feature from the benchmark model against values of the feature, with the threshold being 

the feature value that divided positive and negative SHAP values for the majority of participants in 

the untreated population. We observed that baseline hsCRP > ~1 mg/dL, VL > ~4 log10 copies/mL, 

ferritin > ~280 µg/L, and haptoglobin > ~210 mg/dL contributed to increased SD risk for most 

participants. Most participants aged > ~48 years were also at increased SD risk. Similar thresholds were 

also observed in the Tx arm. Because this is a multivariate analysis, each of the clinical variables should 

be interpreted in context of the others studied. Having one feature exceeding the threshold increases SD 

risk for most participants, but not for all. Furthermore, having ≥ 1 feature contributing positively to SD 

risk does not guarantee SD progression, as risk depends on multiple features. However, having a higher 

number of the prioritized features in the extremes of the identified abnormal threshold does substantially 
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increase the probability of progression. As shown in Figure 1, the mixtures of red and blue for all feature 

values (except treatment and serology status) at any given feature importance (i.e., SHAP value) suggest 

that for a given level of contribution to SD risk, the feature value may be different between different 

participants, driven by the values of the other features.  

3.3. Characteristics of participants at high risk of SD 

The characteristics of participants at high risk of SD are further illustrated in Figure 2. The figure 

delineates how each feature additively drives changes in SD risk score, f(x), for each participant, thus 

providing interpretation of each feature in a multivariate context and complementing the feature-centric 

view in Figure 1. The heatmaps rank SD risk in decreasing order for each untreated participant according 

to SD progression status (Figure 2). The features are also ranked by decreasing order of importance for the 

respective groups studied. As shown in Figure 2a, not receiving Tx was the largest contributor to SD risk. 

Overall, the prioritized factors contributed to increased risk (red) for severe SD participants (Figure 2a), 

but alleviated risk (blue) for those who did not progress (Figure 2b). In patients who did not experience 

SD, most of the prioritized factors contributed to decrease in risk, which together sufficiently lowered the 

risk of SD. There were, however, a small number of exceptions, especially when the risk score was at an 

intermediate level.  

3.4. Impact of treatment 

The impact of Tx on the following top seven modifiable features was studied: (1) hsCRP, (2) VL, (3) 

ferritin, (4) haptoglobin, (5) eGFR, (6) glucose, and (7) CK. Statistically significant results comparing 

mean BL or CFB between Tx and PBO for subsequent measured days (P ≤ 0.05) are shown in line plots 

in Figure 3 (further detailed in Appendix 2.1). The means (solid line) and 95% CIs (shades) are shown 

for VL, hsCRP, and haptoglobin for participants in the PBO (black) and Tx (blue) groups in Figure 3a–

c, respectively. Only participants with hsCRP or haptoglobin values above reference range at baseline 

were included in the analysis (for sample sizes, see Appendix Table S3). Tx reduced VL to greater 

extents than PBO, especially on Day 3 and Day 5 (Figure 3a). Similarly, Tx further reduced hsCRP, 

especially at end of treatment on Day 5 (Figure 3b). In the PBO group, haptoglobin decreased on Day 

14 (Figure 3c, black), whereas in the Tx group, it initially decreased on Day 5 and decreased further on 

Day 14 (Figure 3c, blue). Differences in mean CFB values between the Tx and PBO groups for abnormal 

levels of glucose, ferritin, CK, and eGFR were not statistically significant (Appendix 4.2).  

Furthermore, in participants who did not progress to SD, hsCRP and haptoglobin decreased with 

time (Appendix Figure S4 and Table S4). Treatment (blue) decreased their levels to greater extents 

compared with PBO (black) with statistical significance on measured days. By contrast, in SD 

participants, there was no statistical difference of hsCRP and haptoglobin levels between the PBO and 

Tx groups; hsCRP and haptoglobin remained high. Compared with PBO (black), Tx (blue) on average 

decreased hsCRP and haptoglobin on Day 5 but not on Day 14, although not in a statistically significant 

manner on either day. In addition, at baseline, hsCRP and haptoglobin levels were higher in the SD 

cohort than the non-SD cohort, consistent with results from ML modeling. 
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Figure 2. Contribution of prioritized baseline factors to SD risk for each untreated participant. Heatmaps 

for untreated participants who (a) progressed to SD and (b) who did not progress to SD. Each column 

represents a participant (i.e., instance), and the model input features are shown on the y-axis. Individualized 

SHAP values are illustrated by heatmap for the features shown: red shading indicates a positive contribution 
to risk and blue shading reduced risk. The higher the intensity of the color, the higher the magnitude of 

contribution to SD risk the feature has for the individual. The global feature importance of each feature is 

shown as the black bar on the right-hand side of the heatmap and is measured by the mean absolute value 
of the corresponding individualized SHAP values. Features are ranked in descending order of their 

respective global feature importance measures. Only instances where the model predicted correctly are 

shown to guide the correct feature interpretation. Abbreviations: CK: creatinine kinase; eGFR: estimated 

glomerular filtration rate calculated by the CKD-EPI (Chronic Kidney Disease—Epidemiology 
Collaboration) using serum creatinine in the Evaluation of Protease Inhibition for COVID-19 in High-Risk 

Patients trial data; hsCRP: high-sensitivity C-reactive protein; f(x): risk score (i.e., output of the benchmark 

model); PBO: placebo; SD: severe COVID-19 disease; SHAP: Shapley additive explanation. 
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Figure 3. Impact of treatment on prioritized clinical features. Line plots are shown for (a) VL, (b) hsCRP, 

and (c) haptoglobin. Blue indicates Tx arm and black PBO arm. Only participants with abnormal hsCRP 
(> 0.5 mg/dL) and haptoglobin (> 200 mg/dL) at baseline are included in the analysis. Means of laboratory 

values are shown by a solid line with 95% CIs in shaded areas. The dot on the line indicates the time point 

at which the data were measured. P values from two-sample t tests on means at baseline or means of change 

from baseline on subsequent days between the PBO and Tx groups are shown at the bottom of the plot for 
each subsequent day measured (see Appendix 2.1 for detailed statistical methods). Statistically significant 

P values (P ≤ 0.05) are bolded and indicated with an asterisk. Abbreviations: BL: baseline; hsCRP:  

high-sensitivityC-reactive protein; PBO: placebo; Tx: nirmatrelvir/ritonavir; VL: SARS-CoV-2 viral RNA 
level, also referred to as viral load. 
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Figure 4. RWD validation results. Panel (a) shows the number of patient records remaining after 
performing each filtering step in the process of projecting EPIC-HR cohort onto RWD. Panel (b) shows 

Validation Strategy 1 results (EPIC-HR PBO data to train model via nCV and evaluate the resulting model 

using RWD). Performance was evaluated by ROC-AUC, precision, recall, and F1 score on the specified 

unseen test set. First row: test performances averaged across the five outer models in the nCV when training 
and testing on EPIC-HR PBO data (n = 1053 in total for EPIC-HR PBO arm, of which 80% was reserved 

for training and validation and 20% were held out for testing). Mean and MAD in brackets are reported for 

each metric. Second row: test performance of the developed ML model on RWD (RWD test set n = 946). 
Panel (c) shows the results for Validation Strategy 2 (compare RWD study population means for Class 1 

and Class 0): P values of the prioritized factors hsCRP, ferritin, and age from two-sample t test comparing 

means of the SD and non-SD subgroups. Missing data were discarded, and the remaining data were 
log-transformed before hypothesis test. Sample sizes are shown as (Class 0, Class 1): hsCRP (495, 135), 

ferritin (462, 108), age (778, 168). Panel (d) shows results for Validation Strategy 3 (use RWD data in nCV 

to check if previously prioritized factors were also prioritized in RWD): the number of folds in the nCV 

(out of total of five) where the previously prioritized factors appeared among the top ten features ranked by 
SHAP values for the BRF and RF models constructed using RWD. The higher number of folds a factor 

appears in, the more likely the factor generalizes across the heterogeneity in the study population. Total 

sample size is 946 (i.e., the entire RWD study cohort), of which 80% were for training and validation and 
20% were held out for testing. Abbreviations: BRF: balanced random forest; EPIC-HR: Evaluation of 

Protease Inhibition for COVID-19 in High-Risk Patients trial; hsCRP: high-sensitivity C-reactive protein; 

ML: machine learning; MAD: mean absolute deviation; nCV: nested cross validation; PBO: placebo; RF: 

random forest; ROC-AUC: area under the curve (AUC) for the receiver operating characteristic (ROC) 
curve; RWD: real-world data; SD: severe COVID-19 disease; SHAP: Shapley additive explanation. 
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3.5. Validation using RWD 

An independent dataset was used to validate the features (baseline ferritin, hsCRP, VL, haptoglobin, and age) 

prioritized in all five outer models of the SD ML model developed using EPIC-HR data. Figure 4a shows 

the process that projects the EPIC-HR study cohort onto Optum-EHR data, with details stated in Appendices 

5.1 and 5.2. Ultimately, 63 features remained, with ferritin (39.7% missing), hsCRP (33.4% missing), and 

age (no missing values) remaining of the five prioritized features. Notably, RWD did not have VL or serology 

status, and there were limited available symptom data without severity grading (binary variable only). The 

RWD cohort contained 946 patients with 17.8% having SD (Class 1). COVID-19 vaccination status could 

not be matched to EPIC-HR, which recruited only unvaccinated individuals, because the RWD source data 

on vaccination status was unreliable. Based on surveillance readouts, a sizable proportion of the US 

population would have been vaccinated for COVID-19 by the specified time [4]. 

For validation Strategy 1, BRF was the best performing model (Appendix 5.3), with average test 

performance and MAD in brackets on EPIC-HR PBO from the nCV shown in the first row of Figure 4b. 

Test performance on RWD (Figure 4b, second row) had a lower ROC-AUC, but recall, F1 score, and 

precision were similar. Recall degraded more than precision due to a larger number of false positives, 

which was expected since RWD had more Class 1 cases than the EPIC-HR PBO data. This model also 

prioritized hsCRP and ferritin for all five folds of the nCV and age for four folds. Results indicated that 

the model’s ability to identify patients at risk of SD and its prioritized risk factors were largely 

generalizable between EPIC-HR and RWD. For Strategy 2, the means of the three prioritized factors 

were significantly different between SD and non-SD patients in RWD (P values are shown in Figure 

4c). For Strategy 3, when ML models were trained entirely on RWD using nCV, BRF and RF performed 

virtually equivalently (Appendix 5.4). Figure 4d shows the number of outer models in the five-fold nCV 

in which hsCRP, ferritin, and age appeared among the top ten most important features by SHAP value. 

The importance of hsCRP in SD was clear as it appeared in all five folds. Ferritin appeared in fewer 

folds, possibly because it was missing for ~40% of the patients in the cohort, and data imputation per nCV 

framework (Appendix 1.3) degraded the data quality. Age only appeared in one fold each for BRP and RF, 

possibly because when controlling for missing data, the RWD cohort likely captured a sicker cohort, as 

characterized by a higher prevalence of hospitalization/death than EPIC-HR. In this case, age may be 

comparatively less important in determining SD than other factors such as comorbidities. It is to be noted, 

for both RF and BFR, all three factors were selected by hypothesis-testing-based feature selection across 

all nCV folds. 

4. Conclusion 

This study suggests Tx is the greatest predictor of whether a patient progresses to SD. Elevated baseline 

VL, hsCRP, ferritin, haptoglobin, and increased age are the most important clinical features that are 

likely common to patients with heterogeneous underlying conditions. Tx reduces VL and abnormal 

values of hsCRP and haptoglobin to greater extents than PBO. Many of the identified factors in this study 

are markers of activated immune response, inflammatory response, and multiorgan damage. Prior evidence 

exists that certain laboratory findings such as elevated CRP and ferritin may predict severe disease, but 

mostly in a univariate fashion, where relative priority to other factors could not be studied. It was also not 

always clear if the measurements were obtained at the baseline of COVID-19 infection. The multivariate 
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analysis here offered by ML methodology provides a holistic view of baseline patient characteristics 

contributing to increased risk of SD in adult patients with COVID-19. 

Previously, CRP, ferritin, and haptoglobin have been separately shown to be abnormal in patients 

with COVID-19 or SD. CRP, already abnormally elevated in COVID-19, was up to two-fold higher in 

SD [15–17]. Serum CRP is an acute-phase protein and active regulator of host innate immunity, which 

was found to be highly predictive of the need for mechanical ventilation and has been proposed to guide 

escalation of treatment of COVID-19–related uncontrolled inflammation [15,16]. COVID-19 infection 

is associated with iron overload in patients potentially related to abnormal ferritin levels, hemoglobin 

denaturation, and/or dysregulated iron channel metabolism [18,19]. Similar to CRP, haptoglobin is 

considered a positive acute-phase reactant with its concentration elevated during inflammation [20]; 

however, comparatively, haptoglobin is less studied in COVID-19, with inconsistent findings on its 

correlation with severity of disease. Our study found elevated baseline haptoglobin values contributed 

to increased risk of severe disease, supported by previous findings [21]. On the other hand, other studies 

did not observe differences among varying COVID-19 disease severity [22] or even found it to be 

significantly lower in deceased patients than in COVID-19 survivors, which authors hypothesized to be 

caused by haptoglobin depletion from hemolysis [23]. Previous studies also found that risk of hospitalization 

and death increases with age [24,25]. VL is suggestive of active viral proliferation and is used to identify 

severe viral infections of the respiratory tract. One study found that SD cases have higher VL than mild to 

moderate cases [26], while another suggested that high VL was associated with increased risk of intubation 

and in-hospital mortality [27]. Many studies also found a direct relationship between older age and higher 

VL [28]. Appendix Section 6.1 includes discussion of other factors identified by ML modeling.  

Nirmatrelvir/ritonavir is an antiviral that inhibits SARS-CoV-2 viral replication by targeting its main 

protease (Mpro, also known as 3C-like protease, 3CL), resulting in clinically reduced VL in patients in 

treatment of COVID-19 [29]. Although hypothesized in Appendix Section 6.2, the mechanism of action 

of COVID-19 in affecting serum levels of hsCRP and haptoglobin and the impact of Tx await to be 

further studied in order to establish causality in the observations made. In our study, only observational 

correlation between the prioritized baseline factors and SD were established. Causality needs to be 

further assessed by additional analyses and experiments. 

Our study aimed to distinguish the most informative factors associated with increased risk of SD. 

The methodology was carefully designed in consideration of the high class imbalance in the EPIC-HR 

data and model generalizability. We cautiously focused the interpretation of factors prioritized in all 

nCV outer models, so results are persistent despite changes in model parameterization and more 

representative of the entire study population (Appendix Section 7). Furthermore, patients in the EPIC-

HR study were enrolled at 343 sites across the Americas, Europe, Asia, and Africa [12], making the 

dataset representative of the majority of COVID-19–affected populations. RWD validation also showed 

generalizability of hsCRP, ferritin, and age relating to SD risk, even in a population with high COVID-

19 vaccination rates [4], while VL and haptoglobin were unavailable in the RWD. Even though the RWD 

did not contain Tx information (Appendix Section 8), the validation still serves to strengthen the findings 

of the prioritized factors because those factors were at baseline when no treatment had been 

administered. Limitations of this study included the small sample sizes in both EPIC-HR and RWD 

datasets and the collection of most of their data from patients infected during the early part of the 

pandemic, before high rates of vaccination. Some of the population may not have been previously 
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infected or may have been infected with a different variant, in which case further data collection could 

improve generalizability. Finally, the RWD dataset lacked some of the measurements available in 

EPIC-HR (e.g., symptom profile and VL). Because model performance improves with greater breadth 

and depth of available training data, this effectively capped the level the model could achieve. Additional 

input data, further validation of the model, and more in-depth interpretation of modeling results will 

advance the understanding of risk factors contributing to COVID-19 disease progression.  

Machine learning modeling and interpretation supported by statistical analysis is a powerful tool 

for prioritizing factors that enable precision medicine decision making. Careful design of ML training 

framework and validation using big data is a good approach to strengthen evidence for generalizability 

of findings based on clinical trial data. Analysis showed receiving Tx was the greatest predictor and 

most important factor in reducing risk of progression to SD. Elevated baseline VL (> ~4 log10 

copies/mL), hsCRP (> ~1 mg/dL), ferritin (> ~280 µg/L), haptoglobin (> ~210 mg/dL), and increased age 

(> ~48 years) were among the most important baseline factors contributing to increased risk of 

progressing to SD. Tx reduced VL and abnormal values of hsCRP and haptoglobin to greater extents 

than PBO at the measured time points. These results provide insights on multivariate signatures of 

COVID-19 progression, which may aid future studies and healthcare practices. 

Supplementary data 

The authors confirm that the supplementary data are available at Biomedical Informatics online. 
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