
ELSP  Biomed. Inform. 

Dick JM, Biomed. Inform. 2025(1):0005 

 

 Copyright©2025 by the authors. Published by ELSP. This work is licensed under Creative Commons 

Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction 

in any medium provided the original work is properly cited. 

Article │Received 6 December 2024; Accepted 16 May 2025; Published 26 May 2025 
https://doi.org/10.55092/bi20250003 

Chemical features of proteins in microbial genomes associated 

with body sites and gut inflammation 

Jeffrey M. Dick 

Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment 

Monitoring (Ministry of Education), School of Geosciences and Info-Physics, Central South 

University, Changsha 410083, China; E-mail: jeff@chnosz.net. 

Highlights:  

 Chemical analysis quantifies water and oxygen content of microbial protein sequences. 

 Lower water content in gut bacterial proteins compared to other body sites. 

 Gut inflammation reduces oxygen content of bacterial community proteins. 

 Obligate anaerobes have more oxidized proteins than aerotolerant bacteria in the gut. 

Abstract: Human bodies host complex communities of microorganisms that adapt to different 

environments, from the gut to other body sites. This study leverages new chemical information from 

multi-omics datasets to understand how bacterial proteins change in response to two critical factors: 

oxygen and water availability. Chemical features of proteins were quantified by a computational 

approach that combines reference genomes with microbial abundances to assess community-level trends. 

We discovered that microbial proteins vary across different body sites, with the gut presenting unique 

characteristics. First, gut bacterial proteins have lower water content compared to bacteria in other body 

areas. This suggests that the intestinal environment drives specific evolutionary adaptations. Second, in 

patients with inflammatory conditions like COVID-19 and inflammatory bowel disease (IBD), gut 

bacterial proteins show distinctive chemical changes. Despite the oxidizing conditions associated with 

gut inflammation, bacterial proteins become more chemically reduced due to the shifting abundances of 

different types of bacteria. This unexpected result leads to the insight that some bacteria that typically 

thrive in oxygen-free environments (anaerobic bacteria such as Faecalibacterium) have more oxidized 

proteins than those in aerotolerant bacteria. This can help anaerobes survive and compete when the gut’s 

chemical conditions become more challenging during inflammation. By applying advanced 

computational techniques to a large collection of microbial community datasets, this research reveals 

that bacterial genomes actively evolve to survive in specific chemical conditions. 
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1. Introduction 

Understanding how microorganisms adapt to our body’s unique chemical environments provides 

insights into health and disease. Microbial communities must deal with and adapt to their chemical 

environments. Importantly, the chemical environment matters for host-associated communities and not 

only free-living communities [1]. Variations in oxygen concentration and water availability create 

unique selective pressures across different host body sites, driving microbial adaptation strategies. The 

human gut, in particular, maintains a complex oxygen gradient that can be disrupted during inflammatory 

conditions, potentially triggering shifts in microbial community composition sometimes referred to as 

“dysbiosis” [2–4]. 

Current understanding of microbial genomic adaptation remains limited, especially regarding how 

chemical factors shape protein-level transformations. Oxygen and water, critical substrates in metabolic 

processes, play fundamental roles in determining microbial survival and evolutionary trajectories. 

Previous research has suggested that environmental oxygen levels influence protein elemental 

composition [5,6], but comprehensive investigations across different physiological contexts have been 

sparse. Furthermore, water has many roles in human physiology, as reflected in decreasing organismal 

water content during development from embryo to adult [7,8], higher water content in cancer compared 

to normal tissue [9], and gains and losses of H2O from eukaryotic cells during transitions to cellular 

proliferation and dormancy [10,11]. A major function of the intestine is absorption of water from the 

digesta [12], and lower water content in the colon is associated with greater mucosal thickness toward 

the rectum [13]. Therefore, monitoring oxidation and hydration state at a molecular level may be 

important for understanding adaptation of microbial genomes to human host habitats. 

This study aims to characterize genomic differences in microbial communities by examining 

chemical metrics of protein sequences across various body sites and inflammatory conditions. 

Specifically, we investigate how water content (nH2O) and oxygen content (nO2) reflect microbial 

adaptations to host environments. These values are the numbers of water and oxygen molecules in a 

theoretical reaction to form a protein from thermodynamic components, normalized by the number of 

amino acid residues. This is a new representation of sequence information, referred to here as 

“geochemical biology”, that bridges biological data with environmental parameters. 

Our research bridges multiple analytical domains, combining taxonomic abundance data, reference 

proteomes, and advanced chemical analysis to unveil nuanced mechanisms of microbial genomic 

evolution. A large collection of publicly available 16S rRNA datasets were curated for a chemical 

analysis by combining taxonomic abundances with reference proteomes for taxa in order to generate 

community reference proteomes as described previously [14,15]. We show that the trends of chemical 

metrics produced using reference proteomes are consistent with metagenomic data for the same samples. 

Then, community reference proteomes were used to observe chemical trends for communities in 

different body sites and differences between communities associated with two inflammatory diseases, 

COVID-19 and IBD. 

The research addresses critical questions: How do chemical environments shape microbial protein 

characteristics? What evolutionary strategies do bacterial communities employ when confronting 

changing physiological conditions? By answering these questions, we provide novel insights into the 

dynamic relationship between host environments and microbial genomic adaptation. 
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1.1. Terminology and scope 

The word “proteomics” refers to experimental characterization of the expression levels of proteins, but 

the specific term “reference proteome” is commonly used for genomically predicted protein sequences 

without expression levels. For instance, the authors of a study on taxonomic distribution of the opsin 

protein family [16] state that “UniProt Reference Proteomes are protein coding sequences derived from 

genome sequences”. Similarly, the authors of a review paper on mass spectrometry-based proteomics 

for small protein discovery [17] use the term “reference proteome” in this context: “Sequences of the 

proteolytic peptides are inferred from their MS/MS spectra by matching the fragmentation patterns to 

theoretical spectra of a reference proteome database that contains the sequences of all annotated proteins 

of the target organism.” 

The compound term “community reference proteome” is used here to denote the genomically 

predicted protein sequences in a community. This compound term is not used in the proteomics literature, 

so it should not be confused with protein expression levels in proteomic or metaproteomic experiments. 

The scope of this study is a description of chemical features of protein sequences at the community 

level. The methods are chosen to quantify how communities may be shaped by environmental factors. 

This approach aligns with guild-based microbiome studies to identify diverse groups that use 

environmental resources in a similar way [18]. For instance, part of this study looks at how anaerobic 

and aerotolerant subsets of communities, which are composed of various phylogenetic lineages, 

nevertheless exhibit convergent chemical features of their reference proteomes. 

The second part of the scope, community-level differences, implies a high degree of aggregation of 

protein sequences from individual genomes. This method uses phylogenetic signal (e.g. average protein 

sequence compositions for genera) to distill genomic differences into a single quantity for each 

community. This approach aligns with the idea of using taxonomic information to predict trait 

differences between bacteria [19]. While this study is concerned with the aggregate manifestation of 

phylogenetic differences between communities, explaining the distribution of particular phylogenetic 

groups is outside the scope of this study. 

The lack of species or subspecies-level taxonomic assignments represents limitations of the 

aggregation strategy. To address this limitation, comparisons are made with independent data for 

metagenomes. The comparisons show that community reference proteomes, which use only taxonomic 

classifications and reference genomes, have similar values for chemical features as proteins in 

metagenomes, which are based on shotgun DNA sequencing. This shows that the methodology is 

appropriate for the scope of this study. 

No attempt is made here to explain the observed chemical variation in terms of other genomic 

features such as GC content. Previous authors have found that GC content doesn’t capture the diversity of 

amino acid composition in different ecological settings [20] or the chemical properties of amino acid 

thought to be targeted by selection [21]. Documenting the chemical features of whole-community protein 

sequences as done in this study highlights environmental factors that may shape protein evolution, offering 

a foundation for future studies of how GC content or other genetic factors modulate these patterns. 

Several datasets for metagenomes, metagenome-assembled genomes, and metaproteomes are 

analyzed in this study, and they are referred to by those names or abbreviations (MG, MAG, MP) to 

distinguish them community reference proteomes. In particular, the metaproteomic datasets analyzed 
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here use reported protein abundances from mass spectrometry experiments. These metaproteomic 

datasets are analyzed for comparison with community reference proteomes, with the caveat noted below 

that metaproteomes represent short time scales of expression level changes, unlike longer time-scale 

changes of protein sequences in genomes due to evolutionary processes. 

2. Methods 

2.1. Base assumptions of this study 

This study probes how chemical features of microbiomes (specifically, bacterial communities) might 

reflect different chemical environments of microbial habitats in the human body. Reference proteomes 

for individual taxa (species, genus, etc.) do not vary by environment, but taxonomic abundances do. 

Multiplying the amino acid compositions of reference proteomes by taxonomic abundances produces 

community reference proteomes from which chemical features can be calculated. The logic is similar to 

existing methods for using taxonomic abundances to infer functional potential of communities (e.g. 

Tax4Fun [22]), but the target variables in this study are chemical features of protein sequences rather 

than metabolic or functional features. 

2.2. Theory and calculation of chemical features 

Thermodynamic theory provides a framework for linking elemental stoichiometry of biomolecules 

and the environment. A key concept is thermodynamic components, also known as basis species [23]. 

The basis species are a minimal set of molecular species that contain as many species as chemical 

elements, and which may be used to represent the composition of all other species (such as proteins). 

Expressing the composition of proteins in terms of basis species, or components, denotes a change in 

coordinates from elemental composition to chemical composition. There are five different elements 

in the primary sequences of proteins, so that is the number of thermodynamic components that is 

used. Because water and oxygen are major factors in metabolic reactions, they are the first two 

components chosen here. The remaining components, namely glutamine, glutamic acid, and cysteine 

(QEC) were chosen for several reasons. First, they represent nitrogen, carbon, and sulfur in 

biologically available forms, i.e. amino acids. Second, glutamine and glutamic acid are central 

metabolites with a relatively high degree of metabolic network connectivity [24]. Third, compared to 

other possible combinations of amino acids, QEC yields a strong positive correlation between oxygen 

content (the number of O2 needed to compose a given protein from the basis species) and carbon 

oxidation state (ZC) [24]. Notably, carbon oxidation state is an electronegativity-based measure that 

is independent of the choice of components, so the correlation between alternative metrics for 

oxidation state (ZC and nO2) reflects an underlying consistency. Finally, for all the proteins in a given 

genome, there is very little correlation between ZC and nH2O (i.e. stoichiometric water content) [25]. 

This important result shows that oxygen and water content computed using the chosen basis species 

represent distinct chemical features of proteins. 

It should be noted that projecting the elemental composition of proteins in terms of basis species 

does not represent the actual mechanism of protein formation. Nevertheless, thermodynamic 

components represent a mathematical transformation from elemental composition to chemical 
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composition. Therefore, elemental compositions of protein sequences inferred from multi-omics datasets 

can be combined with methods of chemical analysis to test the hypothesis that oxygen and water 

availability shape the genomic adaptation of the human microbiota. 

nH2O and nO2 were calculated according to 
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where nGln, nGlu, nCys, nH2O, and nO2 are the stoichiometric coefficients of the basis species 

composing a protein with formula CcHhNnOoSs, and the matrix on the left represents the number of 

elements in each of the basis species. The values of nH2O and nO2 reported here were normalized by 

protein length. Instead of calculating elemental formulas of proteins as an intermediate step, amino acid 

compositions were combined with precomputed values of nO2 and nH2O for amino acid residues to 

calculate chemical metrics for proteins as described previously and implemented in the canprot R 

package [9,24]. 

Equation (1) encapsulates the underlying logic for turning elemental composition (a vector of 

abundances of elements) into chemical features such as nH2O and nO2. In turn, the sources of data for 

elemental composition are protein sequences, specifically their amino acid composition. Amino acid 

compositions of proteins at the community level were generated in this study for community reference 

proteomes (made by combining taxonomic abundances and genomic reference databases) or inferred 

from metagenomes and metaproteomes. In addition to the methods outlined below, see Ref. [14] for a 

graphical overview of the method for generating community reference proteomes (but the RefSeq 

database used in that study is replaced by GTDB in this study) and Ref. [15] for a description of the 

software package used for this purpose. 

2.3. 16S rRNA gene sequence processing 

Literature searches were used to locate publicly available 16S rRNA gene sequencing datasets 

(Table 1). Gut microbiome datasets with at least 20 samples (total for controls and patients) available 

by the end of 2023 were included, while those for oropharyngeal and nasopharyngeal microbiomes 

available by the end of 2022 were included. Sequence data were downloaded from the National 

Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). FASTQ sequence 

files for paired-end sequences were merged using the “fastq_mergepairs” command of VSEARCH 

version 2.15.0 [26]. Quality filtering was done with maximum expected error rate of 0.005 and a 

sequence truncation length specific for each dataset (see Table S1 for details and sequence 

processing statistics). Singletons were removed and remaining sequences were subsampled at a 

depth of 10000. Reference-based chimera detection with the VSEARCH command “uchime_ref” 

was performed using the SILVA SSURef NR99 database version 138.1 [27]. Taxonomic 

classification was performed using the RDP Classifier version 2.13 [28] retrained with the Genome 

Taxonomy Database (bac120_ssu_reps and ar53_ssu_reps in GTDB release 220) [29]. Samples with 

less than 100 classified reads were excluded from the following analysis.   
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Table 1. Sources of 16S rRNA gene sequence data for COVID-19 and IBD.  

No. Accession Ref. nControl nPatient  No. Accession Ref. nControl nPatient 

Nasopharyngeal (COVID-19)  Oral or oropharyngeal (COVID-19) 

1 PRJNA774098 [33] 12 21  1 PRJNA767939 [34] 15 22 

2 PRJNA714242 [35] 10 32  2 PRJNA692359 [36] 14 26 

3 PRJNA673585 [37] 18 56  3 PRJNA780671 [38] 24 30 

4 PRJNA777915 [39] 38 38  4 PRJNA684070 [40] 44 50 

5 PRJNA726205 [41] 7 76  5 PRJNA669421 [42] 54 46 

6 PRJNA707350 [43] 26 63  6 PRJNA639286 [44] 24 97 

7 PRJNA726992 [45] 20 75  7 PRJNA683617 [46] 33 221 

 PRJNA726994     8 PRJNA739539 [47] 140 166 

8 PRJNA683617 [46] 34 216  9 PRJNA660302 [48] 150 242 

9 PRJNA703574 [49] 91 226       

           

Gut (COVID-19)  Gut (IBD) 

1 PRJNA736160 [50] 14 15  1 PRJNA679275 [51] 10 10 

2 PRJNA767939 [34] 15 22  2 PRJNA673073 [52] 10 11 

3 PRJNA705797 [53] 14 25  3 PRJNA884507 [54] 10 11 

4 PRJNA684070 [40] 32 17  4 PRJEB33711 [55] 9 21 

5 PRJNA703303 [56] 30 26  5 PRJNA391149 [31] 22 19 

6 PRJNA636824 [57] 30 30  6 PRJNA313074 [58] 13 30 

7 PRJNA678695 [59] 34 50  7 PRJNA975689 [60] 6 42 

8 PRJDB11949 [61] 61 45  8 PRJNA368966 [62] 32 77 

 PRJDB12349     9 PRJEB47161 [63] 96 56 

9 PRJNA753792 [64] 22 89   PRJEB47162    

10 PRJNA859805 [65] 52 59  10 PRJNA398089 (*) [66] 43 112 

11 PRJNA769052 [67] 50 78  11 PRJEB18471 [68] 62 124 

12 PRJEB61722 [69] 38 100  12 PRJEB42155 [70] 19 186 

 PRJEB61723     13 PRJNA237362 [30] 31 224 

13 PRJNA660302 [48] 72 100  14 PRJNA431126 [32] 38 286 

14 PRJNA758913 [71] 38 141  15 PRJNA398187 (*) [72] 63 283 

15 PRJNA756849 [73] 145 104       

Note: Accessions are NCBI BioProject numbers. Counts for control and patient are based on number of samples available 

from SRA, not numbers of subjects described in papers. Counts exclude samples with low taxonomic classification rate (see 

Methods) and therefore may be less than the number of available samples. Datasets are ordered by increasing number of 

samples in each disease and body site group. Asterisks (*) indicate datasets for mucosal samples; the remaining gut datasets 

are for fecal samples. Several studies [30–32] reported data for both mucosal and fecal samples, but only the data for fecal 
samples were analyzed here. 

2.4. Reference proteomes for taxa 

Reference proteomes of archaeal and bacterial taxa were made as described previously [74], except that 

GTDB (release 220 dated 2024-04-24) was used instead of the NCBI Reference Sequence database 

(RefSeq). Briefly, for each genome in GTDB, the amino acid composition of all proteins was summed 

and divided by the number of proteins. Then, amino acid compositions for all genomes in each genus 

were summed and divided by the number of genomes to generate the amino acid compositions of genus 

reference proteomes. Similarly, amino acid compositions for all genomes in each family, order, class, 
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phylum, and domain were summed and divided by the number of genomes to generate the amino acid 

compositions of reference proteomes for taxa at those levels. 

Reference proteomes for species and genera in the Unified Human Gastrointestinal Genome 

(UHGG) were made in an analogous fashion. Taxonomic lineages and contamination and completeness 

values for each of the 4744 species-level clusters present in UHGG version 2.0.1 were obtained from 

the MGnify website (https://www.ebi.ac.uk/metagenomics/browse/genomes, accessed on 2023-12-30); 

those with contamination <2% and completeness >95% were used to generate reference proteomes for 

comparison with GTDB. 

2.5. Community reference proteomes 

The chem16S package version 1.2.0 [15] was used to compute chemical features of community reference 

proteomes. The lowest-level taxonomic classification, from genus to domain, for each processed 16S 

rRNA gene sequence was retained. The relative abundances of taxa in each sample were multiplied by 

the previously computed amino acid compositions of reference proteomes for taxa and summed to obtain 

the amino acid composition of the community reference proteome. chem16S was modified during this 

study to include domain-level classifications instead of being restricted to phylum level as described 

previously [14,15]. Because the great majority of classifications are resolved to lower taxonomic levels 

(mostly genus level; Table S1), this change make no discernible difference to the results, but it ensures 

that all of the available taxonomic information is used in the pipeline. 

2.6. Metagenomic data processing: Shotgun metagenomes 

Forward sequences from each sequencing run were processed for removal of adapter sequences and 

dereplication using scripts modified from the MG-RAST pipeline [75]. Human sequences were removed 

using bowtie2 version 2.5.0 [76] with the GRCh38 reference database (https://genome-

idx.s3.amazonaws.com/bt/GRCh38_noalt_as.zip, accessed on 2022-11-17). Then, rRNA sequences 

were removed using SortMeRNA version 2.1b [77], and partial protein sequences were predicted using 

FragGeneScan version 1.18 [78]. The amino acid compositions of all protein sequences in each run were 

summed and used to calculate chemical metrics. Dataset accession numbers and processing statistics are 

listed in Table S2. 

2.7. Metagenome-assembled genomes from COVID-19 patients and controls 

Nucleotide sequences of metagenome-assembled genomes (MAGs) generated by [79], which are 

based on metagenomic data originally reported by [80] and [81] (NCBI BioProjects PRJNA650244 

and PRJNA624223, respectively), were obtained from the file MAG.zip 

(https://figshare.com/s/a426a12b463758ed6a54, accessed on 2022-10-27). The MAGs analyzed here 

pass completeness and contamination thresholds of ≥50% and ≤5%, respectively [79]. Identifications 

of MAGs from COVID-19 patients and controls were obtained from BioSample metadata for NCBI 

BioProject PRJNA650244. For each MAG, protein sequences were predicted using Prodigal [82], 

and the amino acid compositions of all predicted proteins were summed and used to calculate 

chemical metrics. 
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2.8. Metaproteomic data processing 

Protein sequences were obtained from GenBank (accessed on 2022-09-06), UniProt (accessed on 2022-

08-31), or the Human Oral Microbiome Database (HOMD) [83] version 9.15 (updated date: 2022-02-

07; accessed on 2023-02-03). For processing UniProt IDs, the UniProt ID mapping tool [84] was used 

with the taxonomy filter set to include only bacterial sequences (in order to exclude human proteins), 

and amino acid composition was computed from canonical protein sequences. For processing HOMD 

IDs, sequence files in the PROKKA directory were used (Genomes Annotated with PROKKA 1.14.6). 

For the following datasets, protein sequences were obtained from the UniProt database. Amino acid 

compositions of proteins identified in each sample were summed and weighted by abundances (where 

available) to obtain the amino acid composition of the metaproteome. Starch diet (Maier et al. [85]): 

Metaproteomic abundances and UniProt IDs were obtained from https://zenodo.org/record/838741. 

Additional mapping to the UniParc database was used to retrieve obsolete sequences. Ulcerative colitis 

(Thuy-Boun et al. [86]): Protein IDs were extracted from PeptideEvidence fields of *.mzid.gz files from 

accession PXD022433 listed on ProteomeXchange [87]. IDs with “.” or “_” were omitted to retain 

UniProt IDs. 

For the saliva microbiome from Granato et al. [88], Majority Protein IDs and LFQ intensity for 

saliva cells were taken from Table S9 of the source publication; data for saliva supernatant were not 

analyzed here. For each protein, the first Majority Protein ID was used to look up the protein sequence 

in HOMD. Organism ID SEQF2791 (Selenomonas sp. HMT 136) was not found in HOMD at the time 

of this study, so the second Majority Protein ID was used in this case. For the oral microbiome from 

Jiang et al. [89], Majority Protein IDs and LFQ intensity were taken from the proteinGroups.txt file 

available downloaded from PXD026727. The first Majority Protein ID was used for each protein, except 

for some organisms not found in HOMD at the time of this study (SEQF1058, SEQF3075, SEQF1068, 

SEQF1063, SEQF2480, SEQF2762, SEQF3069, and SEQF2791), for which the second Majority Protein 

ID was used. For both of these datasets, the amino acid composition of each identified protein was 

multiplied by its abundance measured by LFQ intensity and summed to obtain the amino acid 

composition of the metaproteome. 

For the COVID-19 gut metaproteome from He et al. [90], the file “Table S2. Global 

metaproteome.xlsx” was downloaded from Supplementary Files on ResearchSquare 

(https://doi.org/10.21203/rs.3.rs-208797/v1). UniProt IDs were extracted from the “Accession” column 

by keeping values starting with “tr|” or “sp|”. Amino acid compositions of the proteins were multiplied 

by spectral counts and summed to obtain the amino acid composition of the metaproteome. For the 

COVID-19 gut metaproteome from Grenga et al. [91], GenBank protein IDs were extracted from 

*.mzid.gz files from accession PXD024990 listed on ProteomeXchange, and the esearch command  

(part of the NCBI E-utilities; https://www.ncbi.nlm.nih.gov/books/NBK25501/) with the “-organism 

bacteria” option was used to download bacterial protein sequences. 

2.9. Oxygen tolerance of genera 

The “List of Prokaryotes according to their Aerotolerant or Obligate Anaerobic Metabolism” was taken 

from Table S1 of Million and Raoult [92]. The list was modified in this study by the removal of 

Photorhabdus, which was listed in both categories, and the addition of obligately anaerobic genera 
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Anaerobutyricum, Phocaeicola, Romboutsia, and Vescimonas, according to their descriptions in [93–96]. 

With these changes, 235 obligately anaerobic and 399 aerotolerant genera are listed. Alphabetic suffixes 

for polyphyletic groups in GTDB [97] were removed before matching genus names to this list. Any 

genus listed as “variable” or “unknown” or not present in the list was considered to have unassigned 

oxygen tolerance. 

2.10. Statistics 

R [98] was used for data processing, visualization, and statistical analysis. Because they are affected 

by sample sizes, significance tests (p-values) were not used in this study. Instead, the effect size is 

used to measure the strength of association between chemical features and body site or disease 

condition. The effect size used here is Cohen’s d, a standardized mean difference, calculated using the 

R package effsize [99]. The standardization ensures that metrics with different variance (nH2O and nO2) 

can be compared with each other. No predetermined threshold for small or large effects is used; larger 

effects are identified by comparison among the datasets. 

3. Results 

3.1. Correspondence between shotgun metagenomes and community reference proteomes 

Samples with high levels of host DNA require special treatment for effective shotgun metagenomic 

sequencing of microbial communities [100]. Therefore, this study uses techniques to maximize 

information retrieval from 16S rRNA gene sequences, which are less affected by host DNA contamination. 

Specifically, 16S rRNA-based taxonomic abundances were combined with reference genomes to generate 

community reference proteomes. The following analysis establishes the reliability of chemical features 

inferred from community reference proteomes. For this purpose, we analyzed 16S rRNA sequences and 

shotgun metagenomes for the same samples available from the Human Microbiome Project (HMP) [101]. 

The selected HMP samples include 49 samples analyzed by Aßhauer et al. [22] together with 52 other 

samples analyzed by Dick and Tan [74]. 

The pipeline for processing shotgun metagenomes (hereafter just “metagenomes”) includes a 

screening step to remove human DNA (see Methods for details). In order to assess the contribution of 

putative human DNA, the pipeline was run twice for each HMP metagenome: once with no screening, 

and once with screening for human DNA removal. Screening human DNA results in low protein 

prediction rate for some samples (Table S2). These samples exhibit relatively high scatter of chemical 

metrics (Figure 1a,b) probably as a result of low amounts of microbial DNA in these samples. Because 

of this, metagenomic sequencing runs were subject to a protein prediction rate cutoff of 40%. This value 

was arrived at by trial and error to remove the greatest number of outlier points while at the same time 

keeping at least one sample for each body site. This procedure left one sample for the nasal cavity, 

represented by the filled blue square in Figure 1a. A formal sensitivity analysis for this cutoff value was 

not performed. 

Screening human DNA from the HMP metagenomes and omitting samples with low protein 

prediction rate yields a high correlation of chemical features between metagenomically inferred proteins 
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and community reference proteomes (right-hand panels in Figure 1a,b). Consistent differentiation of 

chemical features between body sites is evident in scatter plots of nH2O vs nO2 (Figure 1c). 

Community reference proteomes are informative about the chemical features of proteins in 

communities where shotgun metagenomes are challenged by high levels of human DNA. Specifically, 

metagenomic samples for the nasal cavity and urogenital tract have relatively high amounts of putative 

human DNA removed in the screening step (Figure S1), and none of the screened metagenomic samples 

for the nasal cavity passes the protein-prediction-rate cutoff of 40% (Figure 1c). However, community 

reference proteomes exhibit relatively high nO2 for the nasal samples. This is a plausible outcome given 

the oxygenated environment in the airway and corroborates a previous stoichioproteomic analysis [6]. 

 

Figure 1. Chemical features of community reference proteomes compared to metagenomic protein 

sequences. (a) Oxygen content (nO2) and (b) water content (nH2O) for samples from the Human 

Microbiome Project. Chemical metrics were calculated for metagenomes without a screening step 

to remove human DNA sequences ((a,b) left) and with the screening step ((a,b) right). Filled 

symbols indicate runs for which the number of predicted protein sequences is > 40% of the number 

of metagenomic reads input to the sequence processing pipeline (see Table S2). Unfilled symbols 

represent metagenomic samples regarded to have potentially high levels of human DNA 

contamination and were excluded from the calculation of R2 values. Dashed lines are 1:1 lines, not 

regression lines. (c) Scatter plots of nH2O vs nO2 for community reference proteomes and 

metagenomes. Metagenomic processing for the latter plot included the screening step to remove 

human DNA, and only metagenomic sequencing runs with at least 40% protein prediction rate are 

shown. GI – gastrointestinal; UG – urogenital.  
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3.2. Ruling out contamination as a major issue 

There is potential for contamination (e.g., chimeras) in the GTDB, which is the source of reference 

proteomes and the 16S rRNA training set for taxonomic classification used in this study. To rule out 

contamination as a major issue, reference proteomes from GTDB were compared with genomes 

available in a second database subject to stringent contamination checking. Reference proteomes in this 

study were derived from 113104 genomes in GTDB release 220, representing a total of 24959 genera. 

Conversely, theUnified Human Gastrointestinal Genome (UHGG v2.0.1) from MGnify [102,103] 

consists of 4744 high-quality (CheckM contamination <5% and completeness >50%) species-level 

clusters representing 1031 genera. In this version of UHGG, genomes likely to contain chimeric 

sequences and contigs likely to originate from the host genome were removed 

(https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v2.0.1/README_v2.0.1.txt, 

accessed on 2024-01-02). As reported below, we identified 27 genera with high relative abundance 

changes in gut datasets for COVID-19 and IBD (see Section 3.5). All but one of these genera is present 

in the UHGG; the exception is Vescimonas, which is an obligately anaerobic bacterium isolated from 

feces [96]. Therefore, despite the much higher taxonomic diversity of GTDB compared to UHGG, 

classification of 16S rRNA gene sequences using the GTDB-based training set successfully identifies 

gut-associated organisms rather than spurious taxonomic groups. 

Species-level reference proteomes in GTDB form natural clusters on a plot of water vs. oxygen 

content (Figure 2a), suggesting that chemical metrics for genus reference proteomes represent genuine 

biological differences. Similar clusters characterize reference proteomes of taxa selected from UHGG 

using stringent criteria (contamination <2% and completeness >95%, including 2350 species-level 

clusters representing 643 genera), and chemical metrics for genus-level reference proteomes are highly 

correlated between GTDB and UHGG (Figure 2b,c). Furthermore, for HMP samples, there is a tight 

correlation between chemical metrics calculated in this study and a previous study [74], which used the 

Ribosomal Database Project (RDP) training set and RefSeq-based reference proteomes (Figure 2d). 

Therefore, we see no evidence that derived chemical features are adversely affected by genome 

contamination that may be present in the GTDB but not other databases. 

There was no minimum number of genomes in a genus for it to be included in the generation of 

community reference proteomes. The variance of genomes contributing to different genera is visualized 

in Figure 2a. For instance, despite the large variation and overlapping ranges for species in the 

Phocaeicola, Bacteroides, and Prevotella genera, they have a lower range of nH2O than other genera 

shown on this diagram. Conversely, ranges of nO2 for Bifidobacterium and Corynebacterium overlap 

with each other but are markedly higher than many others. The uncertainty introduced by using reference 

proteomes aggregated at taxonomic levels higher than species likely contributes to the scatter of points 

between community reference proteomes and metagenomes (Figure 1a,b) but does not obscure the 

big-picture differences between body sites, such as more oxidized communities in the skin and lower 

nH2O of gut communities, both of which are also supported by metagenomic data (Figure 1c).  
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Figure 2. Chemical features for genera from different reference databases. (a) Starburst plot of 

chemical metrics of reference proteomes for selected genera and their species in GTDB. No 

contamination filtering was applied. The genera shown are those with a relative abundance 

difference of at least 5% between aggregated samples for controls and patients in one or more 

COVID-19 or IBD 16S rRNA datasets (see Section 3.5). The starburst patterns are drawn from a 

central point representing the parent taxon (genus) to each of the children (species). Bold font 

represents obligately anaerobic genera; (b) Chemical metrics of reference proteomes for the same 

genera in the UHGG computed from species-levels clusters with contamination <2% and 

completeness >95%;  (c) Comparison of chemical metrics for genus reference proteomes in GTDB 

and UHGG; (d) Comparison of chemical metrics of community reference proteomes for HMP 

samples generated with the GTDB-based training set used in this study and with the RDP training 

set used previously by [74]. Dashed lines in (c) and (d) are 1:1 lines. 

3.3. Chemical features of bacterial proteins in different body sites 

The dataset of 16S rRNA gene sequences reported by Boix-Amorós et al. [104] represents nasal, skin, 

oral, and fecal (i.e., gut) communities. Reference proteomes for oral and nasal communities exhibit the 

lowest and highest ranges of nO2 compared to other body sites. Skin and gut communities have 

intermediate nO2 while gut communities have lower nH2O than other body sites (Figure 3a). 

Furthermore, Boix-Amorós et al. performed viral inactivation experiments by treating samples with 

ethanol, formaldehyde, heat, psoralen, or trizol. Treatment with ethanol, and to a lesser extent heat or 

trizol, results in lower nH2O of community reference proteomes; no systematic change in nO2 was 

found (Figure S2). 
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Figure 3. Multi-omics comparison of chemical features for microbiomes in human body sites. (a) 

Oxygen and water content of community reference proteomes for nasal, oral, skin, and gut sites, 

based on 16S rRNA gene sequences from ref. [104]; (b) Community reference proteomes based on 

16S rRNA data for controls in COVID-19 studies (Table 1); (c) Proteins predicted from 

metagenomes for controls and COVID-19 patients: nasopharyngeal [105], oropharyngeal [106], and 

gut [81]; (d) Metaproteomes for controls and patients in non-COVID-19 studies: ulcerative colitis [86] 

and dietary resistant starch [85] for gut microbiomes and oral cancer [88] and lung cancer [89] for 

oral microbiomes. Each point represents a single sample, except for (b), where each point represents 

the mean of samples in a particular dataset. The dashed triangle representing the convex hull around 

the points in (a) is replicated in (b–d) for visual comparison. Effect sizes (Cohen’s d) shown on the 

horizontal and vertical axes were calculated for nO2 and nH2O, respectively. O-G, 

S-G, and N-G refer to differences of oral, skin, and nasal compared to gut samples. 

To find out whether the same trends are recapitulated in independent datasets, we generated 

community reference proteomes for control subjects in COVID-19 studies (Table 1). The trend of 

relatively low nH2O in gut communities is also present in these datasets (Figure 3b). Turning to analysis 

of metagenomes, controls and COVID-19 patients generally exhibit lower protein nH2O for gut 

compared to oral communities (Figure 3c). Finally, metaproteomes for gut communities have lower nO2 

and higher nH2O than those from oral communities (Figure 3d). In summary, community reference 

proteomes and metagenomes both reveal a tendency for lower nH2O in gut communities compared to 

other body sites, whereas metaproteomes of gut communities are reduced compared to oral communities. 
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3.4. Chemical features inferred from multi-omics data for COVID-19 and IBD 

Community reference proteomes for nasopharyngeal and oropharyngeal or oral samples in COVID-19 

studies exhibit a range of positive and negative mean differences of chemical metrics between controls and 

patients (Figure 4a). Although most datasets for oropharyngeal communities have lower mean nO2 in 

COVID-19 patients compared to controls, the difference is relatively small as judged by effect size. In 

contrast, gut datasets on the whole exhibit lower nO2 in COVID-19 patients. Furthermore, the most 

extreme points correspond to large negative differences; five gut datasets have ΔnO2 < −0.005 but none 

has ΔnO2 > 0.005. 

 

Figure 4. Differences of chemical features for microbial proteins between controls and COVID-19 or 

IBD patients. (a) Mean differences of chemical metrics for reference proteomes for nasopharyngeal, 

oropharyngeal, and gut communities from 16S rRNA datasets for COVID-19 studies (see Table 1). Effect 

sizes (Cohen’s d) are shown for differences of oxygen and water content on the horizontal and vertical 

axes, respectively; (b) MAGs in controls and COVID-19 positive subjects reported by Ke et al. [79] 

based on metagenomic data from Yeoh et al. [80] and Zuo et al. [81]; (c) Bacterial metaproteomes in 

controls and COVID-19 positive subjects based on data from He et al. [90] and Grenga et al. [91]; (d) 

Community reference proteomes computed from the 16S rRNA datasets for IBD listed in Table 1; (e) 

Metagenomes for ulcerative colitis (UC) and Crohn’s disease (CD) patients and controls from  

Lloyd-Price et al. [66]. In (b), (c), and (e), boxplots show the median (thick line), first and third quartiles 

(box), most extreme values within 1.5 × the interquartile range away from the box (whiskers), and outliers 

(points); effect sizes (Cohen’s d) for nO2 or nH2O are listed above the boxplots. 
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This chemical reduction trend is supported by multi-omics data. Ke et al. [79] reported metagenome-

assembled genomes (MAGs) that are in turn based on two previous metagenomic studies. The MAGs 

based on data from Yeoh et al. [80] and Zuo et al. [81] are characterized by lower median nO2 for protein 

sequences in COVID-19 compared to controls; however, the difference for the former set of MAGs is 

larger (Figure 4b). Similarly, metaproteomic data reported by He et al. [90] yield lower nO2 for bacterial 

proteins in COVID-19 patients than controls, but the metaproteomic dataset of Grenga et al. [91] shows 

smaller differences of chemical metrics for bacterial proteins (Figure 4c). 

We next analyzed data for IBD to characterize genomic adaptation to a different inflammatory 

condition. On the whole, community reference proteomes have lower nO2 in IBD patients compared to 

controls (Figure 4d). Analysis of metagenomic data from Lloyd-Price et al. [66] also yields lower nO2 

of proteins in IBD compared to controls, but the difference is more pronounced for Crohn’s disease than 

for ulcerative colitis (Figure 4e). 

In summary, a large majority of 16S rRNA-based community reference proteomes point to lower 

oxygen content of gut microbial proteins in COVID-19 and IBD patients than in controls. Not all MAGs, 

metagenomes, and metaproteomes show large differences of protein nO2, but when they do, they 

recapitulate the same chemical reduction trend. 

3.5. Differential contributions by obligate anaerobes and facultative anaerobes 

Dissecting the contributions of obligate anaerobes and aerotolerant organisms can help to understand the 

community-level trends of nO2 for COVID-19 and IBD. “Obligate anaerobe” is a widely used term that 

hides a great deal of variation in actual oxygen tolerance. The functional definition of obligate 

anaerobes—organisms that do not require O2 to grow well and whose growth is blocked by exposure to 

a certain level of O2 in laboratory tests—means that many such organisms can survive or even grow at 

low oxygen levels [107]. For instance, some species in the Bacteroides genus can tolerate exposure to 

air for 24 h or more, yet this genus, or the Bacteroidia class, is commonly described as obligately 

anaerobic [107,108]. Using this conventional terminology, we find that reference proteomes of 

aerotolerant organisms have higher nO2 than obligate anaerobes (Figure S3), indicating genomic 

adaptation to oxygen availability in a broad environmental context. 

Differences of relative abundance of genera between aggregated samples for controls and COVID-19 

or IBD patients are visualized in Figure 5. Only genera with at least a 5% increase or decrease in at least 

one dataset are shown. Relative abundance differences rather than fold changes are used to visualize 

taxa with the largest abundance differences. For example, a genus with a 2-fold change from 10% to 

20% relative abundance would be shown here, but one with a 2-fold change from 1% to 2% relative 

abundance would not be shown. Faecalibacterium and Prevotella, both obligate anaerobes, are notable 

for large decreases in many datasets for COVID-19 and IBD. Interestingly, Blautia_A (obligate 

anaerobe) decreases by more than 5% and Escherichia (aerotolerant) increases by more than 5% in many 

COVID-19 datasets, in contrast to more subdued changes in most IBD datasets. The relative abundance 

of the aerotolerant Streptococcus increases by at least 5% in several datasets for both COVID-19 and 

IBD. Bacteroides and Phocaeicola, both classified as obligate anaerobes, exhibit variable patterns of 

abundance changes in IBD and COVID-19. 
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Figure 5. Differences of abundances of genera between controls and COVID-19 or IBD patients. 

Genus-level classifications were averaged to obtain relative abundances for control and patient 

groups in each dataset. Genera with a relative abundance change of at least 0.05 (i.e., 5%) between 

controls and patients in any COVID-19 or IBD dataset are shown in the figure. Blue and red represent 

increased and decreased relative abundance in patients compared to controls. The most intense colors 

represent a maximum relative abundance difference of 25%; differences larger than this are indicated 

by up- or down-pointing triangles for increased or decreased abundances. The genera are ordered by 

increasing nO2 of their reference proteomes, plotted at the top. Bold text indicates obligately 

anaerobic genera. Bifidobacterium, which comprises both obligately anaerobic and aerotolerant 

species and is classified as “variable” in the list from ref. [92], is marked with an asterisk (*). 

Despite being obligate anaerobes, important gut bacteria such as Faecalibacterium and Prevotella 

have relatively high nO2 of their reference proteomes, as shown by the upper line plot in Figure 5. 

Likewise, subcommunities of obligate anaerobes in fecal samples have higher abundance-weighted nO2 

compared to subcommunities of obligate anaerobes in other body sites (Figure 6a). This trend underlies 

a surprising inversion, in which subcommunities of obligate anaerobes in the gut actually have higher 

oxygen content of proteins than subcommunities of aerotolerant organisms (see Figure 6b for selected 
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datasets for COVID-19 and IBD). This inversion is more characteristic of gut communities than those 

in other body sites (Figure S4). 

 

Figure 6. Higher oxygen content of proteins in anaerobic bacteria but higher abundance of 

aerotolerant bacteria in gut inflammatory diseases. In (a) for body sites and (b) for gut 

communities in selected COVID-19 and IBD studies, the length of vertical lines denotes relative 

abundances of genera; those that are at least 3% abundant are labeled. Within aerotolerance groups 

(colored boxes), lines are arranged by increasing nO2 of the reference proteomes for genera, and 

the width and height of boxes represent the total range of nO2 and cumulative abundance. Vertical 

white lines indicate abundance-weighted values of nO2 for genera in each aerotolerance group. (c) 

Cumulative percent abundance of aerotolerant genera in COVID-19 and IBD studies (Table 1). 

Points above the diagonal dashed 1:1 line represent datasets with higher abundance of aerotolerant 

genera in patient compared to control groups. 

Among body sites, gut microbiota are uniquely enriched in aerotolerant genera in COVID-19 or 

IBD patients compared to controls (Figure 6c). Despite the relatively high abundance of aerotolerant 

genera in patient gut samples, they do not exceed the levels of aerotolerant genera in nasopharyngeal or 

oropharyngeal samples, reflecting the persistence of obligate anaerobes in the gut even in inflammatory 

conditions. While an expansion of aerotolerant gut microbes is consistent with previous reports for 

inflammatory diseases [2,109], the lower nO2 of proteins for gut communities in COVID-19 and IBD 
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patients compared to controls is a surprising result that evokes not only environmental factors but also 

competitive interactions. 

4. Discussion 

This study bridges multiple scientific domains, combining techniques from microbiology, genomics, and 

thermodynamics to provide a novel perspective on microbial adaptation to the complex chemical 

environments within the human body. By developing a method that translates genomic data into chemical 

features, we’ve created a new lens for understanding how microorganisms respond to environmental 

variation, which is important for host-associated and not only free-living communities [1,3]. This new way 

of measuring molecular characteristics suggests that microorganisms have adapted to our bodies by 

fine-tuning their protein sequences to survive in specific environments.  

Our analysis quantifies the chemical aspects of bacterial proteins across different body sites and 

during inflammatory conditions (summarized in Table 2). Community reference proteomes for skin and 

nasal communities are generally highly oxidized. This pattern parallels previous analyses of 

metagenomic data from the HMP [6,74] and suggests that oxygenated habitats on the skin and in the 

airway select for genomes with relatively oxidized proteins. However, other results from this analysis 

are more surprising. 

Table 2. Chemical metrics with relatively large effect sizes in this study. CRP—community 

reference proteome; MG—metagenome; MP—metaproteome. 

Comparison Difference Data Type Figure 

Nasal vs gut ↑ nO2 CRP 3a 

Oral vs gut ↓ nO2 CRP 3a 

Gut vs other sites ↓ nH2O CRP 3a 

Gut vs other sites ↓ nH2O MG 3c 

Gut vs oral ↓ nO2 MP 3d 

Ethanol treatment vs untreated ↓ nH2O CRP S2 

Gut COVID-19 vs control ↓ nO2 CRP 4a 

Gut COVID-19 vs control ↓ nO2 MP 4c 

Gut IBD vs control ↓ nO2 CRP 4d 

4.1. Understanding microbial adaptation to chemical variables 

Our study highlights two unexpected discoveries about microbial communities. First, we discovered a 

distinct chemical signature for gut microbial communities, particularly in terms of water content, a 

metric derived from elemental composition. This finding suggests that bacteria in the intestinal 

environment have evolved unique genomic adaptations to cope with the gut’s specific physiological 

conditions. The intestine has a physiological function of water absorption [12], and this appears to exert 

a strong selective pressure on microbial genomic evolution. Moreover, our finding of lower nH2O in 

ethanol-treated communities is consistent with in vitro selection for genomes that are adapted to 

dehydrating environments such as that associated with ethanol treatment [110]. 

The second major finding concerns how bacterial communities change during inflammatory 

conditions like COVID-19 and inflammatory bowel disease (IBD). The chemical analysis of proteins 
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revealed a surprising trend: bacterial proteins become more chemically reduced during these conditions. 

This result is counterintuitive because inflammation is typically associated with increased oxidation, 

specifically higher oxygen levels and/or greater availability of other electron acceptors [1,108,111]. This 

result points to complex survival strategies employed by microorganisms. 

During inflammation, the gut environment becomes more hospitable to aerotolerant bacteria that 

can survive in oxygen-rich conditions. Indeed, we found increased abundances of aerotolerant genera 

for patients in most COVID-19 and IBD datasets, which recapitulates previous findings for inflammatory 

diseases [2]. However, Faecalibacterium, an obligate anaerobe recognized as having anti-inflammatory 

associations [112], has a proteome that is more oxidized than many aerotolerant bacteria in the gut. The 

generally lower abundance of Faecalibacterium for COVID-19 and IBD patients compared to controls 

contributes to a trend of chemical reduction (i.e. lower nO2 of proteins) at the whole-community level. 

Importantly, this trend is also supported by metagenomic and metaproteomic data. 

These findings highlight the intricate relationship between microorganisms and their host 

environments and suggest that genomic evolution is more nuanced than previously understood. 

Chemical variables like oxygen levels and water content are not just passive background factors, but 

active drivers of microbial evolution. 

4.2. Limitations and future directions 

Several important limitations should be acknowledged. Our analysis primarily used data for fecal 

samples, which cannot capture the spatial complexity of the gut’s oxygen and water gradients. Natural 

O2 gradients within the intestine support populations of obligate anaerobes and facultative anaerobes in 

distinct locations [113]. Furthermore, mucous becomes denser and more continuous toward the rectum 

and may be associated with a longitudinal gradient of decreasing water content within the gut [13]. 

Therefore, future research should employ location-specific sampling to more precisely map microbial 

adaptations along the intestinal tract. Additionally, while we took steps to minimize potential data 

contamination, further rigorous screening of genomic databases and analysis of laboratory control 

samples would strengthen our conclusions. 

The method of combining 16S rRNA-based taxonomic abundances with reference genomes to 

generate community reference proteomes overlooks the variations within species. Furthermore, many 

bacteria are novel and lack reference genomes, making it challenging to include these species in the 

analysis of this study. This was the reason for using shotgun metagenomes from the Human Microbiome 

Project (after in silico filtering of human DNA) to validate the inferences from community reference 

proteomes (Figure 1). Nevertheless, we acknowledge that omitting species-level variation could lead to 

potential errors in the results and even affect the conclusions.The lack of direct quantification of 

chemical features is a concern for this study. Because the features are derived from elemental 

composition, a method to analyze elemental compositions of proteins should be used. Many methods for 

elemental analysis suffer from the lack of quantification of hydrogen [114], which prevents calculating 

chemical features related to either oxidation or hydration state. It should be noted that data processing 

for mass spectrometry-based proteomics depends on genomic reference sequences, so that is also not a 

solution to the problem of direct quantification of chemical features. Alternatively, amino acid analysis 

of protein samples could be used to check the bioinformatics predictions made in this study. However, 
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methods to separate microbial and human proteins would be needed to obtain the amino acid or elemental 

composition of microbial proteins. 

We found that metaproteomes are oxidized (Figure 3d) in comparison to community reference 

proteomes and metagenomically inferred proteins, which have similar ranges of chemical metrics 

(Figure 1). Higher natural abundances of cytoplasmic than membrane proteins, together with more 

efficient extraction of cytoplasmic proteins in metaproteomic experiments, can account for the high 

oxygen content of metaproteomes [14]. Gut metaproteomes are more reduced than oral ones, which is 

the opposite trend from community reference proteomes. Therefore, low oxygen concentrations in the 

intestinal lumen [1,115] appear to have a more pronounced effect on protein expression, as detected by 

metaproteomes, than on genomic adaptation. The contrasting trends reflect different timescales of 

evolutionary and cellular processes: metagenomes and community reference proteomes probe genomic 

differences that arise through long-term evolutionary adaptation, whereas metaproteomes reflect not 

only genomic constraints but also dynamic protein expression on shorter timescales. This suggests future 

research directions to track microbial protein expression in real time to reveal chemical adaptations at 

timescales relevant to disease progression.  

5. Conclusion 

Our study produces new insight on the molecular underpinnings of a well-known phenomenon: that 

bacterial communities are not static but dynamically responsive to their chemical environments. We used 

a new bioinformatic approach to examine mechanisms of molecular adaptation in microbial communities. 

This method bridges multiple analytical domains, combining taxonomic data, protein reference databases, 

and chemical analysis. This new approach reveals unexpected findings and new perspectives on microbial 

adaptation. First, gut communities are adapted to restricted water availability compared to other body sites. 

Second, inflammation in the gut is associated not only with lower abundances of obligate anaerobes 

(a phenomenon documented in previous studies) but also with relatively oxidized protein sequences in 

these anaerobes, which provides preliminary evidence that their genomes may have adapted to transiently 

higher oxygen levels associated with inflammation. A novel implication of this analysis is that anaerobes 

with highly chemically reduced proteomes may be poorly adapted to oxidative conditions in the intestine 

and therefore might be predicted to have stronger associations with dysbiosis. 

Our findings have broader implications beyond microbiology. The ability to track chemical changes 

in bacterial proteins offers insights into how living systems adapt to stress and changing conditions. 

Populations of cells possess sophisticated mechanisms for survival in challenging environments, 

reshaping themselves at the molecular level through genomic variation. By understanding these intricate 

evolutionary mechanisms, we move closer to comprehending the complex interdependence between 

biomolecules and their environments that sustains life. 

6. Supplementary data 

The author confirms that the supplementary data are available within this article. The Supplementary 

Information consists of Table S1 (16S rRNA gene sequence processing statistics), Table S2 

(Metagenome sequence processing statistics), and Figures S1–S4. 
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7. Data availability 

The original contributions of this study are available in the following repositories. Training files for the

RDP Classifier generated from GTDB release 220 are archived at https://doi.org/10.5281/zenodo.1270

3477. Analysis scripts, processed data files generated in this study, and functions to make the plots are 

in the “microhum” section of the JMDplots R package version 1.2.22, available at https://github.com/je

dick/JMDplots and archived at https://doi.org/10.5281/zenodo.15468698. 
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