Article | Received 5 March 2025; Accepted 3 June 2025; Published 7 July 2025 https://doi.org/10.55092/cle20250001

## Supplementary data

# Geochronology and geochemistry of mafic rocks in the Wutai area, North China: constraints on the latest Neoarchean– Paleoproterozoic tectonic setting of the Trans-North China Orogen and the onset of plate tectonics

#### Zubair Raja Asim, Jingyu Wang, Bin Wu, Caiyun Lan and Xiaoping Long\*

State Key Laboratory of Continental Evolution and Early Life, Department of Geology, Northwest University, Xi'an 710069, China

\* Correspondence author; Email: longxp@nwu.edu.cn.

#### **Supplementary tables**

**Supplementary Table 1.** SHRIMP U-Pb data for zircons from gabbro and amphibolite in Wutai complex, North China Craton.

| Spot No.      | Th/U | <sup>207</sup> Pb/ <sup>206</sup> |              | <sup>207</sup> Pb/ <sup>235</sup> |              | <sup>206</sup> Pb/ <sup>238</sup> |              | <sup>207</sup> Pb/ |          | <sup>207</sup> Pb <sup>/2</sup> |                  | <sup>206</sup> Pb/ <sup>2</sup> |          |
|---------------|------|-----------------------------------|--------------|-----------------------------------|--------------|-----------------------------------|--------------|--------------------|----------|---------------------------------|------------------|---------------------------------|----------|
| Sportion      | 11.0 | Pb                                |              | U                                 |              | U                                 |              | <sup>206</sup> Pb  |          | 3°U                             |                  | 38U                             |          |
|               |      | Ratio                             | $\pm1\sigma$ | Ratio                             | $\pm1\sigma$ | Ratio                             | $\pm1\sigma$ | Age<br>(Ma)        | $\pm 2s$ | Age<br>(Ma)                     | $\frac{\pm}{2s}$ | Age<br>(Ma)                     | $\pm 2s$ |
| Gabbro (19-WT | -12) |                                   |              |                                   |              |                                   |              | . ,                |          | ~ /                             |                  | ~ /                             |          |
| 19WT-12-1     | 0.9  | 0.16891                           | 1.21         | 10.8579                           | 1.5          | 0.46631                           | 1.5          | 2540               | 40       | 2507                            | 29               | 2464                            | 62       |
| 19WT-12-2     | 0.1  | 0.06155                           | 2.96         | 0.6213                            | 3.2          | 0.07325                           | 2.4          | 639                | 131      | 490                             | 25               | 456                             | 21       |
| 19WT-12-3     | 0.2  | 0.04952                           | 1.98         | 0.1572                            | 1.7          | 0.02305                           | 1.0          | 145                | 95       | 148                             | 5                | 147                             | 3        |
| 19WT-12-4     | 0.1  | 0.05785                           | 0.94         | 0.6361                            | 1.1          | 0.07965                           | 1.0          | 518                | 41       | 499                             | 9                | 494                             | 9        |
| 19WT-12-5     | 1.1  | 0.16714                           | 1.92         | 10.8508                           | 1.7          | 0.47136                           | 1.7          | 2522               | 64       | 2508                            | 31               | 2488                            | 70       |
| 19WT-12-6     | 0.6  | 0.16985                           | 1.01         | 10.7986                           | 1.4          | 0.45509                           | 1.6          | 2574               | 51       | 2505                            | 27               | 2416                            | 65       |
| 19WT-12-7     | 0.5  | 0.05640                           | 2.14         | 0.5157                            | 1.9          | 0.06645                           | 1.1          | 440                | 93       | 421                             | 13               | 415                             | 9        |
| 19WT-12-8     | 0.5  | 0.05851                           | 4.31         | 0.5008                            | 4.4          | 0.06209                           | 1.4          | 492                | 185      | 410                             | 29               | 388                             | 11       |
| 19WT-12-9     | 0.8  | 0.15674                           | 2.44         | 9.5484                            | 2.5          | 0.44118                           | 1.4          | 2414               | 84       | 2390                            | 46               | 2355                            | 56       |
| 19WT-12-10    | 0.5  | 0.17260                           | 2.42         | 12.0793                           | 2.0          | 0.50792                           | 1.3          | 2574               | 82       | 2608                            | 36               | 2647                            | 59       |
| 19WT-12-11    | 0.3  | 0.05305                           | 0.84         | 0.3139                            | 0.9          | 0.04265                           | 0.7          | 325                | 38       | 277                             | 4                | 269                             | 4        |
| 19WT-12-12    | 0.6  | 0.05615                           | 3.46         | 0.3235                            | 2.8          | 0.04276                           | 1.3          | 383                | 157      | 284                             | 14               | 270                             | 7        |
| 19WT-12-13    | 0.6  | 0.17148                           | 1.11         | 11.1537                           | 1.3          | 0.47201                           | 1.3          | 2567               | 36       | 2533                            | 24               | 2490                            | 53       |
| 19WT-12-14    | 0.5  | 0.16771                           | 2.12         | 10.6024                           | 1.8          | 0.45817                           | 1.1          | 2530               | 71       | 2488                            | 34               | 2431                            | 44       |
| 19WT-12-15    | 0.5  | 0.16964                           | 1.56         | 9.1909                            | 1.1          | 0.39290                           | 1.2          | 2550               | 53       | 2357                            | 21               | 2136                            | 45       |
| 19WT-12-16    | 0.4  | 0.16993                           | 1.37         | 10.4706                           | 1.0          | 0.44670                           | 1.2          | 2554               | 46       | 2477                            | 19               | 2380                            | 49       |
| 19WT-12-17    | 0.6  | 0.16838                           | 0.96         | 11.0342                           | 1.2          | 0.47447                           | 0.8          | 2537               | 32       | 2524                            | 23               | 2502                            | 32       |



Copyright©2025 by the authors. Published by ELSP. This work is licensed under Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

## Supplementary Table 1. Cont.

| Spot No.         | Th/U    | <sup>207</sup> Pb/ <sup>206</sup><br>Pb |              | <sup>207</sup> Pb/ <sup>235</sup><br>U |              | <sup>206</sup> Pb/ <sup>238</sup><br>U |               | <sup>207</sup> Pb/<br><sup>206</sup> Pb |          | <sup>207</sup> Pb <sup>/2</sup><br><sup>35</sup> U |                  | <sup>206</sup> Pb/ <sup>2</sup><br><sup>38</sup> U |         |
|------------------|---------|-----------------------------------------|--------------|----------------------------------------|--------------|----------------------------------------|---------------|-----------------------------------------|----------|----------------------------------------------------|------------------|----------------------------------------------------|---------|
|                  |         | Ratio                                   | $\pm1\sigma$ | Ratio                                  | $\pm1\sigma$ | Ratio                                  | $\pm 1\sigma$ | Age<br>(Ma)                             | $\pm 2s$ | Age<br>(Ma)                                        | $\frac{\pm}{2s}$ | Age<br>(Ma)                                        | $\pm2s$ |
| Gabbro (19-WI    | [-12)   |                                         |              |                                        |              |                                        |               | . ,                                     |          |                                                    |                  |                                                    |         |
| 19WT-12-18       | 0.4     | 0.17043                                 | 1.62         | 10.6066                                | 1.8          | 0.45150                                | 1.7           | 2556                                    | 54       | 2487                                               | 33               | 2400                                               | 66      |
| 19WT-12-19       | 0.6     | 0.16363                                 | 1.64         | 11.0009                                | 1.8          | 0.48689                                | 1.1           | 2490                                    | 54       | 2522                                               | 35               | 2557                                               | 47      |
| 19WT-12-20       | 0.6     | 0.17081                                 | 1.72         | 11.1577                                | 1.8          | 0.47317                                | 1.0           | 2561                                    | 57       | 2534                                               | 34               | 2497                                               | 40      |
| Amphibolite (19- | -WT-71) |                                         |              |                                        |              |                                        |               |                                         |          |                                                    |                  |                                                    |         |
| 19WT-71-1        | 2.9     | 0.11129                                 | 2.09         | 3.9808                                 | 2.2          | 0.25941                                | 1.5           | 1811                                    | 78       | 1627                                               | 37               | 1486                                               | 40      |
| 19WT-71-2        | 0.7     | 0.10972                                 | 0.74         | 2.9503                                 | 2.0          | 0.19436                                | 1.6           | 1791                                    | 27       | 1390                                               | 32               | 1144                                               | 34      |
| 19WT-71-3        | 1.2     | 0.12874                                 | 1.42         | 6.2584                                 | 1.9          | 0.35269                                | 1.5           | 2072                                    | 50       | 2007                                               | 33               | 1945                                               | 51      |
| 19WT-71-4        | 1.1     | 0.13237                                 | 1.78         | 6.3912                                 | 1.5          | 0.35033                                | 1.2           | 2124                                    | 64       | 2030                                               | 26               | 1936                                               | 41      |
| 19WT-71-5        | 0.8     | 0.12986                                 | 1.59         | 5.2062                                 | 1.8          | 0.29054                                | 1.2           | 2092                                    | 55       | 1852                                               | 30               | 1644                                               | 34      |
| 19WT-71-6        | 0.8     | 0.13139                                 | 2.13         | 6.6262                                 | 2.4          | 0.36592                                | 1.8           | 2108                                    | 73       | 2059                                               | 42               | 2009                                               | 62      |
| 19WT-71-7        | 0.9     | 0.12435                                 | 1.24         | 4.6175                                 | 2.3          | 0.26887                                | 1.8           | 2016                                    | 44       | 1749                                               | 39               | 1534                                               | 50      |
| 19WT-71-8        | 5.1     | 0.13145                                 | 1.32         | 5.4638                                 | 2.2          | 0.30099                                | 1.6           | 2114                                    | 45       | 1892                                               | 37               | 1696                                               | 47      |
| 19WT-71-9        | 0.9     | 0.12763                                 | 1.17         | 5.2874                                 | 1.3          | 0.30023                                | 0.9           | 2063                                    | 42       | 1866                                               | 23               | 1692                                               | 27      |
| 19WT-71-10       | 0.6     | 0.12318                                 | 1.19         | 6.1705                                 | 1.1          | 0.36140                                | 0.8           | 1998                                    | 42       | 1999                                               | 18               | 1988                                               | 28      |
| 19WT-71-11       | 0.3     | 0.12054                                 | 0.59         | 4.9818                                 | 4.1          | 0.29919                                | 3.9           | 1963                                    | 21       | 1808                                               | 63               | 1684                                               | 111     |
| 19WT-71-12       | 1.2     | 0.12787                                 | 0.83         | 5.6979                                 | 0.8          | 0.32334                                | 0.7           | 2065                                    | 29       | 1930                                               | 14               | 1806                                               | 23      |
| 19WT-71-13       | 0.9     | 0.13346                                 | 1.44         | 7.0271                                 | 1.7          | 0.38229                                | 1.5           | 2138                                    | 50       | 2112                                               | 30               | 2086                                               | 54      |
| 19WT-71-14       | 0.9     | 0.12953                                 | 1.12         | 4.7597                                 | 1.2          | 0.26658                                | 1.1           | 2088                                    | 40       | 1777                                               | 21               | 1523                                               | 29      |
| 19WT-71-15       | 0.9     | 0.11717                                 | 1.09         | 2.6798                                 | 3.2          | 0.16432                                | 2.8           | 1907                                    | 39       | 1312                                               | 48               | 979                                                | 51      |
| 19WT-71-16       | 0.9     | 0.13660                                 | 2.57         | 6.9715                                 | 2.1          | 0.37079                                | 1.3           | 2176                                    | 89       | 2106                                               | 37               | 2033                                               | 45      |
| 19WT-71-17       | 1.0     | 0.12443                                 | 0.87         | 4.4302                                 | 1.3          | 0.25820                                | 1.1           | 2017                                    | 30       | 1716                                               | 22               | 1480                                               | 28      |
| 19WT-71-18       | 0.8     | 0.15954                                 | 1.77         | 6.8553                                 | 2.8          | 0.31261                                | 2.8           | 2444                                    | 57       | 2086                                               | 49               | 1750                                               | 85      |
| 19WT-71-19       | 0.9     | 0.13171                                 | 1.84         | 6.6060                                 | 1.7          | 0.36440                                | 0.9           | 2109                                    | 67       | 2057                                               | 30               | 2002                                               | 31      |
| 19WT-71-20       | 1.1     | 0.13334                                 | 1.80         | 4.8147                                 | 3.6          | 0.26261                                | 3.5           | 2132                                    | 62       | 1774                                               | 61               | 1498                                               | 93      |

**Supplementary Table 2.** Major and trace element compositions of the gabbros in Wutai complex, North China Craton.

| Rock Type                       |            |            |            |            |            |            | Gal        | obro       |            |            |            |            |            |            |
|---------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample<br>Number                | 19W<br>T02 | 19W<br>T03 | 19W<br>T04 | 19W<br>T05 | 19W<br>T06 | 19W<br>T07 | 19W<br>T08 | 19W<br>T09 | 19W<br>T10 | 19W<br>T11 | 19W<br>T13 | 19W<br>T14 | 19W<br>T15 | 19W<br>T16 |
| SiO <sub>2</sub>                | 49.55      | 48.37      | 49.03      | 47.64      | 48.18      | 49.02      | 49.90      | 49.29      | 49.63      | 48.52      | 49.04      | 49.61      | 48.48      | 49.71      |
| TiO2                            | 1.72       | 1.97       | 1.67       | 2.25       | 2.03       | 1.65       | 1.85       | 1.80       | 2.29       | 1.73       | 2.13       | 1.96       | 2.24       | 2.03       |
| Na <sub>2</sub> O               | 2.59       | 2.26       | 2.50       | 2.59       | 2.24       | 2.07       | 2.35       | 2.45       | 2.38       | 2.00       | 2.31       | 2.38       | 2.43       | 2.36       |
| TFe <sub>2</sub> O <sub>3</sub> | 13.83      | 15.45      | 14.37      | 16.54      | 16.46      | 14.48      | 15         | 14.76      | 15.43      | 14.91      | 15.91      | 15.11      | 16.58      | 15.08      |
| Al <sub>2</sub> O <sub>3</sub>  | 13.49      | 12.96      | 13.33      | 13.19      | 13.27      | 12.97      | 12.95      | 13.36      | 12.88      | 12.76      | 12.97      | 12.97      | 13.30      | 13.14      |
| MnO                             | 0.180      | 0.21       | 0.19       | 0.21       | 0.21       | 0.200      | 0.200      | 0.200      | 0.22       | 0.20       | 0.20       | 0.20       | 0.19       | 0.190      |
| MgO                             | 5.97       | 6.04       | 6.15       | 5.62       | 5.62       | 6.89       | 5.87       | 6.06       | 4.99       | 7.04       | 6.34       | 6.41       | 5.98       | 6.13       |
| CaO                             | 8.98       | 9.00       | 9.10       | 8.94       | 8.89       | 9.43       | 8.94       | 8.87       | 8.38       | 9.36       | 8.39       | 8.69       | 8.50       | 8.25       |
| K <sub>2</sub> O                | 0.93       | 0.99       | 1.00       | 0.80       | 1.08       | 1.07       | 1.09       | 1.20       | 1.20       | 1.17       | 1.15       | 1.09       | 1.01       | 1.17       |
| P2O5                            | 0.63       | 0.76       | 0.65       | 0.70       | 0.68       | 0.52       | 0.74       | 0.75       | 0.93       | 0.54       | 0.62       | 0.62       | 0.59       | 0.60       |
| L.O.I                           | 1.24       | 1.05       | 1.22       | 0.86       | 1.22       | 1.01       | 0.99       | 1.13       | 0.98       | 1.11       | 0.68       | 0.56       | 0.49       | 0.55       |
| Total                           | 99.11      | 99.06      | 99.21      | 99.34      | 99.88      | 99.31      | 99.88      | 99.87      | 99.31      | 99.34      | 99.74      | 99.60      | 99.79      | 99.21      |

| Supplementary | Table | 2. | Cont. |
|---------------|-------|----|-------|
|---------------|-------|----|-------|

| Rock      | Туре         |       |              |       |       |       | G      | abbro        |       |       |              |              |              |       |
|-----------|--------------|-------|--------------|-------|-------|-------|--------|--------------|-------|-------|--------------|--------------|--------------|-------|
| Sam       | ple          | 19W   | 19W          | 19W   | 19W 1 | 9W 19 | 9W 19W | 19W          | 19W   | 19W   | 19W          | 19W          | 19W          | 19W   |
| Num<br>Li | 17 4         | 102   | 103          | 104   | 105 1 | 20.4  | 19.9   | 20.9         | 19.8  | 20.7  | 15.0         | 114          | 12.6         | 14.6  |
| Be        | 1.18         | 1.37  | 1.11         | 1.33  | 1,19  | 1.17  | 1.35   | 1.31         | 1.57  | 1.08  | 1.22         | 1.26         | 1.13         | 1.24  |
| Sc        | 35.6         | 37.1  | 36.9         | 36.5  | 38.2  | 37.6  | 38.5   | 36.1         | 36.1  | 39.1  | 35.7         | 36.4         | 35.2         | 34.1  |
| т         | 1036         | 12271 | 10206        | 13637 | 12176 | 10114 | 11303  | 10507        | 14001 | 10561 | 12814        | 12010        | 13515        | 12344 |
| v         | 281          | 315   | 300          | 401   | 401   | 290   | 309    | 288          | 310   | 316   | 356          | 319          | 407          | 343   |
| ,<br>Cr   | 302          | 250   | 273          | 216   | 172   | 350   | 234    | 263          | 128   | 354   | 267          | 287          | 247          | 282   |
| Mn        | 1504         | 1779  | 1580         | 1774  | 1725  | 1636  | 1666   | 1648         | 1776  | 1640  | 1624         | 1699         | 1.591        | 1529  |
| Со        | 39.1         | 52.4  | 59.2         | 54.8  | 54.1  | 46.1  | 48.7   | 50.4         | 47.5  | 49.8  | 53.0         | 48.8         | 54.6         | 49.4  |
| Ni        | 90.7         | 101   | 134          | 88.6  | 95.4  | 115   | 90.5   | 99.1         | 71.5  | 125   | 125          | 110          | 103          | 102   |
| Cu        | 45.8         | 60.0  | 84.3         | 200   | 58.3  | 41.7  | 42.0   | 57.9         | 62.7  | 55.8  | 58.2         | 43.5         | 55.0         | 47.6  |
| Zn        | 136          | 151   | 136          | 137   | 166   | 144   | 158    | 142          | 159   | 148   | 147          | 123          | 129          | 127   |
| Ga        | 21.9         | 23.0  | 22.3         | 22.6  | 23.9  | 20.9  | 23.4   | 22.2         | 25.3  | 21.0  | 22.1         | 21.6         | 22.2         | 21.8  |
| As        | 3.11         | 3.17  | 3.17         | 4.66  | 3.14  | 1.71  | 2.08   | 1.87         | 3.02  | 2.06  | 1.64         | 1.54         | 1.46         | 1.53  |
| Se        | 1.50         | 1.47  | 1.38         | 1.59  | 1.86  | 1.08  | 1.31   | 1.22         | 1.75  | 0.82  | 1.35         | 1.68         | 1.03         | 1.23  |
| Rb        | 14.4         | 14.4  | 16.5         | 9.08  | 17.4  | 19.4  | 18.5   | 27.6         | 23.4  | 22.5  | 22.4         | 21.7         | 20.1         | 23.4  |
| Sr        | 412          | 363   | 415          | 459   | 360   | 323   | 377    | 377          | 413   | 278   | 397          | 447          | 421          | 410   |
| Y         | 42.0         | 36.4  | 40.0         | 42.0  | 42.5  | 38.0  | 47.4   | 40.4         | 55.7  | 37.0  | 40.7         | 42.6         | 38.4         | 39.8  |
| Zr        | 202          | 236   | 197          | 215   | 218   | 183   | 238    | 241          | 308   | 177   | 224          | 219          | 207          | 238   |
| Nb        | 15.1         | 14.0  | 13.5         | 16.2  | 15.4  | 13.5  | 17.5   | 14.8         | 23.3  | 13.3  | 16.5         | 16.7         | 15.8         | 16.5  |
| Mo        | 0.54         | 0.33  | 0.59         | 0.69  | 0.35  | 0.34  | 0.48   | 0.47         | 0.40  | 0.41  | 0.76         | 0.59         | 0.75         | 0.87  |
| Sn        | 1.56         | 1.68  | 1.53         | 1.57  | 1.77  | 1.40  | 1.81   | 1.63         | 1.96  | 1.47  | 1.61         | 1.47         | 1.56         | 1.59  |
| Cs        | 0.39         | 0.54  | 0.88         | 0.28  | 0.68  | 0.43  | 0.52   | 1.18         | 0.44  | 0.59  | 0.57         | 1.10         | 0.82         | 0.79  |
| Ba        | 278          | 329   | 296          | 326   | 308   | 462   | 411    | 476          | 591   | 478   | 652          | 668          | 644          | 626   |
| La        | 39.0         | 44.1  | 43.1         | 40.5  | 43.4  | 37.0  | 47.7   | 43.0         | 61.5  | 35.6  | 43.8         | 45.5         | 40.0         | 43.5  |
| Ce        | 89.4         | 101   | 101          | 90.3  | 99.9  | 83.5  | 109    | 97.9         | 141   | 79.7  | 97.4         | 104          | 89.6         | 100   |
| Pr        | 12.3         | 13.3  | 13.2         | 12.5  | 13.6  | 11.3  | 14.7   | 13.0         | 18.9  | 11.1  | 13.5         | 13.8         | 12.2         | 13.1  |
| Nd        | 53.6         | 56.4  | 56.8         | 54.0  | 58.4  | 47.4  | 62.0   | 54.7         | 78.9  | 47.2  | 56.6         | 58.0         | 51.6         | 54.6  |
| Sm        | 9.64         | 9.41  | 9.81         | 9.52  | 10.3  | 8.86  | 11.3   | 9.85         | 14.0  | 8.72  | 10.3         | 10.5         | 9.35         | 9.85  |
| Eu        | 2.44         | 2.24  | 2.51         | 2.34  | 2.63  | 2.30  | 2.87   | 2.51         | 3.39  | 2.26  | 2.52         | 2.76         | 2.40         | 2.39  |
| Gd        | 8.62         | 8.00  | 8.67         | 8.56  | 9.10  | 8.05  | 9.94   | 8.44         | 11.9  | 7.75  | 8.71         | 9.43         | 8.19         | 8.40  |
| Tb        | 1.26         | 1.14  | 1.24         | 1.26  | 1.32  | 1.19  | 1.44   | 1.24         | 1.75  | 1.12  | 1.30         | 1.39         | 1.20         | 1.24  |
| Dy        | 7.34         | 6.33  | 6.98         | 7.33  | 7.49  | 6.76  | 8.38   | 7.21         | 9.97  | 6.59  | 7.54         | 7.73         | 6.92         | 7.27  |
| Но        | 1.48         | 1.27  | 1.40         | 1.49  | 1.49  | 1.36  | 1.68   | 1.43         | 1.98  | 1.32  | 1.50         | 1.52         | 1.38         | 1.45  |
| Er        | 4.14         | 3.65  | 3.90         | 4.20  | 4.22  | 3.85  | 4.74   | 4.12         | 5.62  | 3.71  | 4.27         | 4.30         | 3.91         | 4.15  |
| Tm        | 0.60         | 0.51  | 0.55         | 0.60  | 0.60  | 0.54  | 0.68   | 0.58         | 0.79  | 0.53  | 0.60         | 0.59         | 0.55         | 0.59  |
| Y D       | 5.78         | 3.34  | 5.48         | 5.79  | 3.85  | 5.50  | 4.25   | 3./3<br>0.55 | 5.02  | 3.57  | 5.85         | 5.93         | 5.54         | 5.79  |
| Lu        | 0.58         | 0.52  | 0.54         | 0.58  | 0.60  | 0.52  | 0.03   | 0.55         | 0.74  | 0.49  | 0.50         | 0.58         | 0.51         | 0.56  |
| HI<br>Ta  | 4./1         | 5.40  | 4.00         | 4.93  | 5.13  | 4.38  | 0.91   | 5.44<br>0.72 | 0.99  | 4.13  | 5.08         | 5.58<br>0.76 | 4./9         | 5.50  |
| 1 8<br>Dh | 0.15         | 4.20  | 0.05         | 0.72  | 0./1  | 0.01  | 0.81   | 0.75         | 1.20  | 0.00  | 0.62         | 0.70         | 0./8<br>3.47 | 2.54  |
| ги<br>Ть  | 0.4/<br>1.24 | 4.20  | 9.33<br>1.27 | 0.05  | 0.00  | 0.54  | 1 20   | 1.35         | 1 87  | 1.02  | т.30<br>1 21 | 1.25         | ).4/<br>1 17 | 1.55  |
| TI<br>TI  | 0.30         | 0.33  | 0.35         | 0.40  | 0.38  | 0.25  | 0.35   | 0.34         | 0.43  | 0.25  | 0.33         | 0.31         | 0.20         | 0.38  |

| Supplementary  | Table 3. Major | and trace | element | compositions | for the | Amphibolite | in Wı | utai |
|----------------|----------------|-----------|---------|--------------|---------|-------------|-------|------|
| complex, North | China Craton.  |           |         |              |         |             |       |      |

| Rock Type                       |        |                          |        |        | Amph         | ibolite     |        |        |        |        |
|---------------------------------|--------|--------------------------|--------|--------|--------------|-------------|--------|--------|--------|--------|
| Sample Number                   | 19WT72 | 19WT73                   | 19WT75 | 19WT76 | 19WT77       | 19WT79      | 19WT81 | 19WT82 | 19WT83 | 19WT84 |
| SiO <sub>2</sub>                | 44.60  | 42.71                    | 45.47  | 39.09  | 43.58        | 48.83       | 49.19  | 49.09  | 46.77  | 46.92  |
| TiO <sub>2</sub>                | 2.30   | 2.32                     | 2.26   | 2.51   | 2.39         | 1.73        | 1.82   | 1.72   | 1.78   | 1.76   |
| Na <sub>2</sub> O               | 2.30   | 2.25                     | 2.39   | 1.52   | 2.30         | 1.94        | 1.98   | 1.95   | 1.93   | 2.02   |
| TFe <sub>2</sub> O <sub>3</sub> | 16.02  | 17.03                    | 16.04  | 18.39  | 16.88        | 17.76       | 17.51  | 17.59  | 18.14  | 18.39  |
| Al <sub>2</sub> O <sub>3</sub>  | 14.55  | 14.49                    | 14.47  | 14.30  | 14.51        | 12.83       | 12.96  | 13.01  | 13.52  | 13.60  |
| MnO                             | 0.20   | 0.26                     | 0.19   | 0.270  | 0.230        | 0.240       | 0.24   | 0.23   | 0.25   | 0.25   |
| MgO                             | 5.78   | 6.05                     | 5.73   | 6.53   | 6            | 5.13        | 5.23   | 5.2    | 5.77   | 5.67   |
| CaO                             | 8.56   | 8.82                     | 8.58   | 9.22   | 8.86         | 9.31        | 8.84   | 9.38   | 9.49   | 9.55   |
| K <sub>2</sub> O                | 1.47   | 1.65                     | 1.29   | 1.92   | 1.44         | 0.66        | 0.61   | 0.61   | 0.65   | 0.65   |
| P2O5                            | 0.40   | 0.40                     | 0.39   | 0.39   | 0.39         | 0.25        | 0.24   | 0.25   | 0.25   | 0.24   |
| L.O.I                           | 3.17   | 3.92                     | 2.45   | 5.04   | 3.09         | 0.56        | 0.58   | 0.57   | 0.58   | 0.46   |
| Total                           | 99.35  | 99.90                    | 99.26  | 99.18  | 99.67        | 99.24       | 99.20  | 99.60  | 99.13  | 99.51  |
| Li                              | 10.8   | 10.0                     | 9.94   | 14.4   | 9.56         | 8.45        | 10.7   | 8.71   | 11.0   | 10.8   |
| Be                              | 1.31   | 1.41                     | 1.36   | 1.67   | 1.40         | 0.74        | 0.77   | 0.71   | 0.91   | 0.91   |
| Sc                              | 31.9   | 32.6                     | 30.6   | 36.1   | 32.1         | 49.4        | 49.5   | 49.0   | 53.3   | 53.6   |
| Ti                              | 14104  | 14479                    | 13881  | 15400  | 14961        | 10529       | 10655  | 10447  | 10763  | 10614  |
| V                               | 366    | 376                      | 356    | 423    | 374          | 424         | 419    | 424    | 467    | 459    |
| Cr                              | 68.3   | 69.7                     | 66.5   | 72.2   | 68.0         | 69.4        | 63.9   | 69.8   | 70.3   | 69.9   |
| Mn                              | 1634   | 2191                     | 1561   | 2250   | 1899         | 1987        | 1975   | 1944   | 2038   | 2031   |
| Со                              | 60.1   | 59.6                     | 61.6   | 53.6   | 58.6         | 44.0        | 49.4   | 66.2   | 49.3   | 50.1   |
| Ni                              | 75.9   | 71.9                     | 80.4   | 59.5   | 75.0         | 27.0        | 32.9   | 45.7   | 32.3   | 31.3   |
| Cu                              | 55.6   | 39.6                     | 45.5   | 1.20   | 33.3         | 35.1        | 72.2   | 73.7   | 29.1   | 27.6   |
| Zn                              | 124    | 125                      | 126    | 145    | 128          | 117         | 122    | 121    | 131    | 130    |
| Ga                              | 23.5   | 24.0                     | 23.5   | 25.6   | 23.7         | 19.8        | 19.2   | 19.2   | 19.8   | 19.6   |
| As                              | 1.14   | 1.64                     | 1.12   | 1.49   | 1.56         | 0.68        | 0.80   | 0.85   | 0.89   | 0.89   |
| Se                              | 0.86   | 0.99                     | 0.86   | 0.92   | 0.85         | 0.98        | 0.86   | 0.98   | 0.84   | 0.63   |
| Rb                              | 37.8   | 43.3                     | 29.8   | 57.7   | 36.8         | 6.60        | 6.67   | 5.27   | 7.33   | 6.19   |
| Sr                              | 172    | 151                      | 148    | 109    | 147          | 114         | 121    | 114    | 110    | 120    |
| Y                               | 31.4   | 31.5                     | 28.5   | 29.9   | 29.6         | 36.9        | 39.1   | 37.6   | 38.6   | 39.3   |
| Zr                              | 120    | 119                      | 117    | 127    | 121          | 119         | 129    | 122    | 125    | 120    |
| Nb                              | 6.60   | 5.35                     | 6.38   | 5.07   | 5.64         | 5.94        | 6.35   | 5.80   | 5.69   | 5.54   |
| Мо                              | 0.67   | 0.67                     | 2.49   | 0.46   | 0.53         | 0.45        | 0.40   | 1.23   | 0.33   | 0.30   |
| Sn                              | 1.49   | 1.33                     | 1.39   | 1.65   | 1.34         | 1.07        | 1.09   | 1.05   | 1.14   | 1.10   |
| Cs                              | 2.51   | 2.38                     | 2.38   | 4.49   | 1.94         | 0.10        | 0.12   | 0.07   | 0.13   | 0.13   |
| Ba                              | 19.5   | 209                      | 285    | 20.4   | 21/          | 208         | 158    | 110    | 181    | 1/1    |
| La                              | 10.5   | 19.2                     | 10.4   | 20.4   | 19.7         | 27.4        | 17.0   | 17.4   | 10.4   | 10.0   |
| Ce                              | 42.0   | 44.2<br>5 79             | 42.2   | 40.8   | 44.9<br>5.01 | 37.4<br>197 | 37.7   | 5.05   | 5 20   | 40.5   |
| Pr                              | 25.35  | 26.4                     | 24.8   | 27.5   | 26.6         | 4.07        | 4.92   | 22.05  | 23.1   | 2.22   |
| Nd<br>S                         | 5.83   | 20. <del>4</del><br>6.06 | 5 71   | 6.25   | 6.09         | 5 16        | 5 16   | 5 33   | 5 44   | 5 56   |
| 5m<br>5                         | 2.00   | 2.00                     | 1 00   | 1.03   | 2.03         | 1.70        | 1.75   | 1 73   | 1.65   | 1.72   |
| Eu                              | 6.04   | 6.30                     | 5 74   | 6.18   | 6.30         | 5.83        | 5.88   | 5.95   | 6.19   | 6.15   |
| Gu                              | 0.04   | 0.95                     | 0.90   | 0.16   | 0.93         | 0.94        | 0.98   | 0.99   | 0.19   | 1.02   |
| 10<br>Dv                        | 5 54   | 5.70                     | 5 30   | 5.63   | 5 47         | 6.12        | 6.45   | 6.33   | 6.47   | 6.60   |
| Dy<br>Но                        | 1.12   | 1.16                     | 1.07   | 1.12   | 1.08         | 1 31        | 1 41   | 1 34   | 1 38   | 1 41   |
| H0<br>Fr                        | 3.09   | 3.18                     | 2.89   | 3.11   | 2.89         | 3.74        | 4 10   | 3.88   | 3.97   | 4.03   |
| Tm                              | 0.43   | 0.44                     | 0.40   | 0.44   | 0.40         | 0.54        | 0.61   | 0.56   | 0.58   | 0.58   |
| T III<br>Vh                     | 2.72   | 2.73                     | 2.50   | 2.74   | 2.48         | 3.56        | 3.94   | 3.64   | 3.71   | 3.73   |
| Lu                              | 0.39   | 0.39                     | 0.37   | 0.38   | 0.36         | 0.54        | 0.60   | 0.54   | 0.54   | 0.54   |
| нf                              | 2.99   | 3.00                     | 2.96   | 3.22   | 3.08         | 2.98        | 3.21   | 3.04   | 3.20   | 3.02   |
| 111<br>Ta                       | 0.39   | 0.38                     | 0.37   | 0.42   | 0.39         | 0.32        | 0.35   | 0.32   | 0.33   | 0.31   |
| i a<br>Dh                       | 3.07   | 3.72                     | 2.82   | 6.15   | 3.20         | 1.28        | 1.04   | 1.25   | 0.99   | 0.81   |
| Th                              | 2.49   | 2.56                     | 2.48   | 2.71   | 2.56         | 1.02        | 1.10   | 1.07   | 1.07   | 1.07   |
| U                               | 0.66   | 0.80                     | 0.66   | 0.75   | 0.69         | 0.23        | 0.33   | 0.25   | 0.26   | 0.26   |

| Sample no.  | T(Ma) | Rb   | Sr  | <sup>87</sup> Rb/ <sup>86</sup> Sr | <sup>87</sup> Sr/ <sup>86</sup> Sr | $\pm 2\sigma$ | ( <sup>87</sup> Sr/ <sup>86</sup> Sr) i | Sm  | Nd   | <sup>147</sup> Sm/ <sup>144</sup> Nd | <sup>143</sup> Nd/ <sup>144</sup> Nd | $\pm 2\sigma$ | End(t) | Т <sub>DM1</sub> <sup>Nd</sup> (Ga) | TDM2 <sup>Nd</sup> (Ga) | ( <sup>143</sup> Nd/ <sup>144</sup> Nd) <sub>i</sub> |
|-------------|-------|------|-----|------------------------------------|------------------------------------|---------------|-----------------------------------------|-----|------|--------------------------------------|--------------------------------------|---------------|--------|-------------------------------------|-------------------------|------------------------------------------------------|
| Gabbro      |       |      |     |                                    |                                    |               |                                         |     |      |                                      |                                      |               |        |                                     |                         |                                                      |
| 19WT-02     | 2564  | 14.4 | 412 | 0.10120787                         | 0.7046609                          | 0.000010      | 0.70092                                 | 9.6 | 53.6 | 0.109107562                          | 0.511469359                          | 0.000005      | 6.1    | 2.44                                | 2.43                    | 0.50962                                              |
| 19WT-13     | 2564  | 22.4 | 397 | 0.16338287                         | 0.7067064                          | 0.000006      | 0.70065                                 | 10  | 56.6 | 0.110398558                          | 0.511429525                          | 0.000004      | 4.9    | 2.53                                | 2.52                    | 0.50956                                              |
| 19WT-16     | 2564  | 23.4 | 410 | 0.165265046                        | 0.7067584                          | 0.000007      | 0.70063                                 | 9.9 | 54.6 | 0.109442548                          | 0.511419704                          | 0.000004      | 5.1    | 2.52                                | 2.51                    | 0.50956                                              |
| Amphibolite |       |      |     |                                    |                                    |               |                                         |     |      |                                      |                                      |               |        |                                     |                         |                                                      |
| 19WT-73     | 2087  | 43.3 | 151 | 0.830347643                        | 0.7226782                          | 0.000008      | 0.69803                                 | 6.1 | 26.4 | 0.139255162                          | 0.511911234                          | 0.000003      | 1.0    | 2.52                                | 2.42                    | 0.50988                                              |
| 19WT-77     | 2087  | 36.8 | 147 | 0.724902324                        | 0.7211088                          | 0.000009      | 0.69959                                 | 6.1 | 26.6 | 0.13889233                           | 0.511890856                          | 0.000004      | 0.7    | 2.55                                | 2.44                    | 0.50987                                              |

Supplementary Table 4. Sr-Nd isotopic compositions for the Mafic intrusions in Wutai complex, North China Craton.

## Supplementary Table 5. Summary of previous and current zircon U-Pb ages and from the Wutai complex, North China Craton.

| Sample No. | Coordinates                   | Rock type                                               | Age                                  | Method       | Reference                                                   |
|------------|-------------------------------|---------------------------------------------------------|--------------------------------------|--------------|-------------------------------------------------------------|
|            |                               | Gabbro rocks                                            |                                      |              |                                                             |
| 95-PC-55C  | N = 38 56.21, E = 113 00.66   | Gabbros                                                 | $2528\pm 6\ Ma$                      | SHRIMP       | Wang et al. (2000)                                          |
| 19 WT-12   | N = 38 59 33, E = 112 58 39   | Gabbros                                                 | $2543\pm20~\text{Ma}$                | LA-ICP-MS    | This study                                                  |
|            |                               | Granitoids                                              |                                      |              |                                                             |
| WL12       | -                             | Longquan granitoids                                     | $2543\pm7\ Ma$                       | SHRIMP       | Zhao <i>et al.</i> , (2007),<br>Wild <i>et al.</i> , (1997) |
|            |                               | Dioritic rocks                                          |                                      |              |                                                             |
| WT1001-1   | N 20 14 52 F 112 27 (1        | Diorite                                                 | $2636\pm22~Ma$                       | LA-ICP-MS    | Chen et al. (2015)                                          |
| WT1003     | N = 39 14.52, $E = 113$ 37.61 | Diorite                                                 | $2548\pm15\ Ma$                      | LA-ICP-MS    |                                                             |
| C-1        | N = 39 08.29, E = 113 37.61   | Diorite                                                 | 2420 + 74 34 - 0, 2057 + 52 34       |              | V (2017)                                                    |
| C-2        | N = 39 08.10, E = 113 11.90   | Diorite                                                 | $2420 \pm /4$ Ma & $205 / \pm 53$ Ma | LA-MC-ICP-MS | Yao (2017)                                                  |
| Ek-01      | N = 39 06.4, E = 113 14.71    | Diorite                                                 | $2557 \pm 20$ & $2199 \pm 20$ Ma     |              | Sun et al. (2019)                                           |
|            |                               | Volcanic rocks                                          |                                      |              |                                                             |
| 96-PC-114  | N = 39 04.01, E = 113 16.63   | Meta-Basa-Itic andesite                                 | $2529\pm10\;Ma$                      |              |                                                             |
| 96-PC-115  | N = 39 03.7, E = 113 15.1     | Meta-Basaltic andesite                                  | $2524\pm10~Ma$                       | SHRIMP       |                                                             |
| 96-PC-119  | N = 39 05.31, E = 113 16.83   | Meta-Basaltic andesite, Baizhiyan<br>'Formation' (Ekou) | 2513 ± 8 Ma                          | SHRIMP       | Wilde et al. (2004)                                         |
| WT-9       | N = 39 02.86, E = 113 36.9    | Meta-dacite                                             | 2523 ± 9 Ma                          | SHRIMP       |                                                             |

\_\_\_\_

| Sample No. | Coordinates                  | Rock type                             | Age                                         | Method    | Reference                  |
|------------|------------------------------|---------------------------------------|---------------------------------------------|-----------|----------------------------|
|            |                              | Volcanic rocks                        |                                             |           |                            |
| WT-12      | N = 39 02.81, E = 113 36.9   | Meta-rhyodacite                       |                                             |           |                            |
| WT-13      | N = 39 02.88, E = 113 37.22  | Meta-rhyolite                         | $2516\pm10$ Ma &2533 $\pm8$ Ma              | SHRIMP    | Wilde et al. (2004)        |
| WT-17      | N = 39 002.86, E = 113 36.75 | Meta-rhyodacite                       | $2524 \pm 8$ Ma                             |           |                            |
| HMY-1      | N = 39 03.35, E = 113 39.26  | Rhyolite                              | $2518\pm10 \; \text{Ma}$                    | LA-ICP-MS | Sun et al. (2019)          |
| WT-1/2A    | N = 38 52.75, E = 113 18.14  | Meta-basatic andesite                 | $2557\pm10~Ma$                              | LA-ICP-MS | Gao and Santosh (2019)     |
| 12WT76-1   | N = 38 57.77, E = 113 21.71  | Meta-basatic andesite                 | $2706 \pm 17 \ Ma\& \ 2548 \pm 11 \ Ma$     | LA-ICP-MS | Liu et al. (2016)          |
|            |                              | Meta-igneous and metasedime           | ntary rocks                                 |           |                            |
| 19 WT-71   | N = 38 53 3, E = 113 41 0    | Amphibolite                           | $2087\pm33~Ma$                              | LA-ICP-MS | This study                 |
| 95-PC-60   | -                            | Granite                               | $2084\pm16\ Ma$                             | SHRIMP    | Wilde et al. (2005)        |
| WT1001     | N = 38 49.95, E = 113 44.73  | Biotite-quartz schist                 | $2663 \pm 2$ Ma                             | LA-ICP-MS | Chen et al. (2015)         |
| 12WT20-1   | N = 39 00.0, E = 113 44.73   | Garnet two-mica quartz schist         | $2498\pm34\ Ma$                             | LA-ICP-MS | Lin <i>et al.</i> $(2016)$ |
| 12WT13-1   | N = 39 12.29, E = 113 31.01  | Biotite feldspar quartz schist        | $2706\pm25$ Ma & $2526\pm29$ Ma             | MC-ICP-MS | Liu ei <i>ui</i> . (2010)  |
| 12WT38-1   | N = 39 05.74, E = 113 35.25  | Biotite quartz schist                 | $2698\pm18$ Ma & $2518\pm8$ Ma              |           |                            |
| 12WT51-1   | N = 39 12.06, E = 113 27.45  | Sericite quartz schist                | $2678\pm\!\!21$ Ma & $2533\pm\!10$ Ma       |           |                            |
| WT-1/1E    | N = 38 55.35, E = 113 18.02  | Greenstone                            | $2663 \pm 2 \; Ma \; \& 1845 \pm 190 \; Ma$ |           |                            |
| WT-1/2B    | N = 38 55.35, E = 113 18.14  | BIF intercalated with the felsic tuff |                                             |           | Gao and Santosh (2010)     |
| WT-1/3     | N = 38 55.35, E = 113 18.15  | BIF                                   | $2585 \pm 14 \ Ma \ 2471 \pm 46 \ Ma$       | LA-ICP-MS |                            |
| WT-1/5     | N = 38 55.35, E = 113 18.16  | Phyllite                              | $2594 \pm 14 \; Ma$                         |           |                            |
| GSM-1      | N = 39.01.76 E = 113.39.66   | Meta Igneous                          | $2560 \pm 62$ Ma                            | LA-ICP-MS | Sun et al. (2019)          |

# Supplementary Table 5. Cont.

| Rock Type                       |              |              | Tho                  | leiitic bas | alt               |              |              |              |              |              |       |          |          | Meta-            | basalt     |                  |           |              |       |       |       |
|---------------------------------|--------------|--------------|----------------------|-------------|-------------------|--------------|--------------|--------------|--------------|--------------|-------|----------|----------|------------------|------------|------------------|-----------|--------------|-------|-------|-------|
| References                      |              | (W           | ang <i>et al</i> . : | 2004, Liu   | <i>et al</i> , 20 | 16)          |              |              |              |              |       | (Wang et | al. 2004 | , Polat <i>e</i> | t al. 2005 | 5, Liu <i>et</i> | al, 2016) |              |       |       |       |
| Sample<br>Number                | 12WT66-<br>1 | 12WT15-<br>1 | 12WT4<br>7-1         | WS68        | WS73              | 12WT14-<br>1 | 12WT55-<br>1 | 12WT70-<br>1 | 12WT68-<br>1 | 2002-86      | TK16  | WS100    | WS54     | WS28             | WS122      | WS36             | WS129     | 12WT08-<br>1 | WS109 | WS104 | WS74  |
| SiO <sub>2</sub>                | 49.8         | 48.7         | 48.7                 | 50.8        | 48.7              | 53.2         | 50.4         | 49.6         | 50.4         | 47.7         | 49.3  | 48.2     | 50.2     | 49.5             | 49.7       | 49.7             | 50.0      | 51.4         | 48.6  | 45.8  | 51.5  |
| TiO <sub>2</sub>                | 0.9          | 0.9          | 1.4                  | 0.8         | 1.2               | 1.2          | 1.0          | 0.9          | 0.9          | 0.6          | 1.0   | 1.3      | 0.6      | 0.9              | 1.4        | 0.9              | 0.9       | 0.4          | 0.8   | 1.9   | 0.6   |
| Na <sub>2</sub> O               | 2.2          | 2.2          | 4.1                  | 1.2         | 2.1               | 2.6          | 2.1          | 2.2          | 1.9          | 0.1          | 0.1   | 1.6      | 1.9      | 1.9              | 2.8        | 1.1              | 1.8       | 2.7          | 2.6   | 4.3   | 1.8   |
| TFe <sub>2</sub> O <sub>3</sub> | 13.6         | 12.7         | 9.7                  | 15.2        | 10.8              | 14.8         | 14.9         | 13.4         | 13.9         | 15.3         | 14.3  | 15.6     | 10.9     | 13.7             | 17.4       | 13.7             | 13.6      | 8.4          | 9.6   | 14.6  | 8.5   |
| Al <sub>2</sub> O <sub>3</sub>  | 14.3         | 13.5         | 14.3                 | 14.3        | 15.2              | 15.3         | 12.3         | 14.1         | 13.6         | 14.4         | 14.6  | 13.5     | 14.2     | 13.7             | 14.4       | 13.5             | 13.6      | 12.3         | 15.7  | 17.9  | 16.8  |
| MnO                             | 0.2          | 0.2          | 0.2                  | 0.2         | 0.3               | 0.1          | 0.2          | 0.2          | 0.2          | 0.3          | 0.2   | 0.2      | 0.2      | 0.2              | 0.2        | 0.3              | 0.2       | 0.2          | 0.2   | 0.2   | 0.2   |
| MgO                             | 7.0          | 6.5          | 8.2                  | 7.8         | 7.2               | 7.1          | 5.6          | 6.9          | 6.9          | 9.6          | 7.8   | 7.1      | 8.9      | 6.5              | 7.3        | 7.5              | 7.1       | 7.7          | 8.4   | 6.8   | 6.2   |
| CaO                             | 10.0         | 8.8          | 5.8                  | 10.6        | 11.5              | 0.6          | 7.9          | 9.8          | 10.3         | 9.9          | 9.8   | 8.7      | 11.1     | 11.2             | 9.2        | 10.8             | 10.9      | 9.4          | 10.3  | 3.9   | 11.6  |
| K <sub>2</sub> O                | 0.2          | 0.0          | 0.3                  | 0.4         | 0.2               | 0.1          | 1.0          | 0.4          | 0.4          | 1.8          | 2.8   | 0.4      | 0.2      | 0.4              | 0.2        | 0.7              | 0.4       | 0.1          | 0.2   | 0.2   | 0.4   |
| P <sub>2</sub> O <sub>5</sub>   | 0.1          | 0.1          | 0.1                  | 0.1         | 0.1               | 0.1          | 0.1          | 0.1          | 0.1          | 0.5          | 0.2   | 0.1      | 0.1      | 0.1              | 0.1        | 0.1              | 0.1       | 0.0          | 0.1   | 0.3   | 0.0   |
| L.O.I                           | 1.0          | 5.7          | 6.8                  | 2.3         | 1.6               | 5.0          | 3.4          | 1.7          | 1.2          | 0.9          | 2.6   | 4.2      | 2.6      | 3.0              | 1.8        | 2.3              | 1.8       | 7.2          | 1.8   | 5.3   | 1.8   |
| Total                           | 99.3         | 99.2         | 99.4                 | 103.6       | 98.9              | 100.0        | 98.9         | 99.4         | 99.6         | 100.9        | 102.6 | 100.7    | 100.8    | 101.0            | 104.6      | 100.5            | 100.4     | 99.6         | 98.3  | 101.1 | 99.4  |
| Sc                              | 43.8         | 51.3         | 42.3                 |             |                   | 32.6         | 51.0         | 48.4         | 58.5         |              |       |          |          |                  |            |                  |           | 62.0         |       |       |       |
| V                               |              |              |                      |             |                   |              |              |              |              |              |       |          |          |                  |            |                  |           |              |       |       |       |
| Cr                              | 180.0        | 218.0        | 220.0                | 159.0       | 303.0             | 24.4         | 82.6         | 162.0        | 109.0        | 207.0        | 211.0 | 109.0    | 238.0    | 127.0            | 169.0      | 118.0            | 68.0      | 109.0        | 323.0 | 294.0 | 257.0 |
| Mn                              |              |              |                      |             |                   |              |              |              |              |              |       |          |          |                  |            |                  |           |              |       |       |       |
| Со                              | 58.1         | 44.0         | 49.3                 |             |                   | 37.0         | 57.6         | 54.2         | 66.0         | 35.0         | 38.0  |          |          |                  |            |                  |           | 36.6         |       |       |       |
| Ni                              | 107.0        | 92.3         | 143.0                | 115.0       | 205.0             | 23.4         | 61.6         | 85.3         | 63.1         | 63.0         | 97.0  | 84.0     | 136.0    | 51.0             | 65.0       | 60.0             | 46.0      | 92.8         | 122.0 | 160.0 | 190.0 |
| Cu                              | 144.0        | 131.0        | 17.1                 |             |                   | 8.5          | 108.0        | 100.0        | 108.0        | 1            | 52.0  |          |          |                  |            |                  |           | 56.3         |       |       |       |
| Zn                              | 115.0        | 113.0        | 138.0                |             |                   | 140.0        | 117.0        | 162.0        | 124.0        | 114.0        | 68.0  |          |          |                  |            |                  |           | 96.3         |       |       |       |
| Ga                              | 17.3         | 17.0         | 16.9                 |             |                   | 22.7         | 17.7         | 17.4         | 18.8         |              |       |          |          |                  |            |                  |           | 10.8         |       |       |       |
| Rb                              | 4.6          | 0.3          | 5.1                  | 13.0        | 5.0               | 1.4          | 49.2         | 6.2          | 3.3          | 11.0         | 2.0   | 11.0     | 2.0      | 7.0              | 4.0        | 18.0             | 8.0       | 2.7          | 5.0   | 3.0   | 12.0  |
| Sr                              | 113.0        | 125.0        | 114.0                | 194.0       | 119.0             | 33.9         | 198.0        | 105.0        | 159.0        | 48.0         | 187.0 | 306.0    | 108.0    | 127.0            | 149.0      | 143.0            | 147.0     | 131.0        | 104.0 | 87.0  | 122.0 |
| Y                               | 19.3         | 20.8         | 17.7                 | 15.5        | 13.8              | 26.7         | 24.4         | 21.6         | 24.1         | 16.0         | 17.4  | 25.4     | 11.8     | 20.0             | 28.9       | 18.1             | 19.5      | 8.9          | 19.8  | 11.4  | 11.1  |
| Zr                              | <u>4</u> 5.7 | 46.9         | 39.2                 | 34.0        | 34.0              | 121.0        | 50.2         | 52.1         | 57.2         | <u>15</u> .0 | 25.0  | 43.0     | 4.0      | 52.0             | 85.0       | 10.0             | 46.0      | 16.8         | 39.0  | 6.0   | 37.0  |

Supplementary Table 6. Geochemistry data of previous studies from the Wutai complex, North China Craton.

Supplementary Table 6. Cont.

| Rock Type        |              |              | Tho                 | eiitic basa | ılt                |              |              |              |              |         |      |          |          | Meta-            | basalt     |                 |           |              |       |       |       |
|------------------|--------------|--------------|---------------------|-------------|--------------------|--------------|--------------|--------------|--------------|---------|------|----------|----------|------------------|------------|-----------------|-----------|--------------|-------|-------|-------|
| References       |              | (W           | ang <i>et al. 2</i> | 2004, Liu   | <i>et al</i> , 201 | 16)          |              |              |              |         |      | (Wang et | al. 2004 | , Polat <i>e</i> | t al. 2005 | , Liu <i>et</i> | al, 2016) |              |       |       |       |
| Sample<br>Number | 12WT66-<br>1 | 12WT15-<br>1 | 12WT4<br>7-1        | WS68        | WS73               | 12WT14-<br>1 | 12WT55-<br>1 | 12WT70-<br>1 | 12WT68-<br>1 | 2002-86 | TK16 | WS100    | WS54     | WS28             | WS122      | WS36            | WS129     | 12WT08-<br>1 | WS109 | WS104 | WS74  |
| Nb               | 2.3          | 1.9          | 2.8                 | 2.0         | 1.3                | 4.7          | 2.2          | 2.2          | 2.5          | 1.7     | 1.7  | 3.3      | 1.1      | 2.2              | 2.9        | 2.0             | 1.8       | 0.7          | 0.9   | 2.5   | 2.3   |
| Mo               | 0.1          | 0.1          | 0.1                 |             |                    | 0.1          | 0.1          | 0.1          | 0.2          |         |      |          |          |                  |            |                 |           | 0.1          |       |       |       |
| Cs               | 1.0          | 0.1          | 0.4                 |             |                    | 0.1          | 4.3          | 0.1          | 0.1          |         |      |          |          |                  |            |                 |           | 0.1          |       |       |       |
| Ba               | 38.0         | 4.4          | 34.8                | 159.0       | 23.0               | 14.4         | 464.0        | 28.2         | 36.8         | 78.0    | 41.0 | 46.0     | 15.0     | 70.0             | 47.0       | 102.0           | 141.0     | 18.7         | 23.0  | 68.0  | 102.0 |
| La               | 2.5          | 2.1          | 2.8                 | 2.1         | 1.3                | 2.7          | 3.1          | 2.8          | 5.5          | 3.1     | 2.8  | 4.0      | 1.5      | 5.2              | 4.3        | 4.5             | 4.4       | 1.0          | 2.3   | 3.6   | 3.0   |
| Ce               | 7.2          | 6.5          | 7.5                 | 6.1         | 5.5                | 6.2          | 8.6          | 7.9          | 13.4         | 7.4     | 7.7  | 11.7     | 4.3      | 12.4             | 12.2       | 11.4            | 11.3      | 2.6          | 6.2   | 8.8   | 6.9   |
| Pr               | 1.1          | 1.0          | 1.2                 | 1.0         | 1.0                | 0.8          | 1.3          | 1.2          | 1.9          | 1.1     | 1.2  | 1.8      | 0.7      | 1.8              | 2.1        | 1.6             | 1.6       | 0.4          | 1.0   | 1.3   | 0.9   |
| Nd               | 5.7          | 5.3          | 5.9                 | 5.1         | 6.1                | 3.8          | 6.6          | 6.6          | 9.2          | 5.4     | 6.0  | 9.1      | 3.7      | 8.2              | 10.0       | 8.0             | 7.3       | 2.0          | 5.7   | 6.7   | 4.8   |
| Sm               | 2.0          | 1.9          | 2.1                 | 1.7         | 2.3                | 1.1          | 2.6          | 2.2          | 2.6          | 1.9     | 1.9  | 2.9      | 1.1      | 2.5              | 3.4        | 2.4             | 2.1       | 0.7          | 2.1   | 1.9   | 1.4   |
| Eu               | 0.8          | 0.8          | 1.0                 | 0.7         | 0.9                | 0.4          | 0.9          | 0.9          | 1.0          | 1.1     | 0.7  | 1.0      | 0.5      | 0.8              | 0.8        | 0.8             | 0.7       | 0.4          | 0.9   | 0.6   | 0.6   |
| Gd               | 2.9          | 2.7          | 3.1                 | 2.4         | 2.9                | 2.0          | 3.2          | 3.3          | 3.6          | 2.5     | 2.6  | 4.1      | 1.7      | 3.5              | 4.6        | 3.2             | 3.1       | 1.1          | 3.2   | 2.1   | 1.8   |
| Tb               | 0.5          | 0.5          | 0.6                 | 0.5         | 0.5                | 0.5          | 0.6          | 0.6          | 0.6          | 0.4     | 0.5  | 0.8      | 0.4      | 0.7              | 0.8        | 0.6             | 0.5       | 0.2          | 0.6   | 0.4   | 0.3   |
| Dy               | 3.5          | 3.3          | 3.5                 | 3.0         | 3.1                | 3.8          | 4.0          | 3.8          | 4.1          | 2.9     | 3.2  | 5.0      | 2.3      | 4.5              | 5.5        | 3.8             | 3.8       | 1.4          | 4.2   | 2.4   | 2.1   |
| Ho               | 0.7          | 0.7          | 0.7                 | 0.7         | 0.6                | 0.9          | 0.9          | 0.8          | 0.9          | 0.6     | 0.7  | 1.0      | 0.5      | 0.9              | 1.2        | 0.8             | 0.9       | 0.3          | 0.9   | 0.5   | 0.5   |
| Er               | 2.2          | 2.3          | 2.1                 | 1.9         | 1.8                | 3.0          | 2.6          | 2.5          | 2.7          | 1.8     | 2.0  | 2.8      | 1.5      | 2.7              | 3.3        | 2.5             | 2.2       | 0.9          | 2.5   | 1.5   | 1.5   |
| Tm               | 0.3          | 0.3          | 0.3                 | 0.3         | 0.3                | 0.4          | 0.4          | 0.3          | 0.4          | 0.3     | 0.3  | 0.5      | 0.2      | 0.4              | 0.5        | 0.3             | 0.3       | 0.1          | 0.4   | 0.2   | 0.2   |
| Yb               | 2.1          | 2.2          | 1.9                 | 2.2         | 1.5                | 2.9          | 2.6          | 2.4          | 2.6          | 1.6     | 1.9  | 2.8      | 1.5      | 2.8              | 3.3        | 2.3             | 2.4       | 0.9          | 2.8   | 1.1   | 1.6   |
| Lu               | 0.3          | 0.3          | 0.3                 | 0.4         | 0.2                | 0.4          | 0.4          | 0.3          | 0.4          | 0.3     | 0.3  | 0.4      | 0.2      | 0.4              | 0.5        | 0.4             | 0.4       | 0.1          | 0.4   | 0.2   | 0.3   |
| Hf               | 1.6          | 1.5          | 1.6                 | 1.3         | 1.5                | 3.8          | 1.8          | 1.7          | 1.9          |         |      | 1.5      | 0.3      | 2.1              | 2.6        | 0.5             | 1.5       | 0.6          | 1.4   | 0.3   | 1.2   |
| Та               | 0.2          | 0.1          | 0.2                 | 0.2         | 0.1                | 0.4          | 0.2          | 0.2          | 0.2          | 0.1     | 0.1  | 0.2      | 0.1      | 0.2              | 0.2        | 0.2             | 0.1       | 0.1          | 0.0   | 0.2   | 0.2   |
| Pb               | 1.2          | 3.2          | 2.1                 |             |                    | 0.7          | 4.4          | 9.4          | 1.4          |         |      |          |          |                  |            |                 |           | 11.0         |       |       |       |
| Th               | 0.3          | 0.3          | 0.2                 | 0.2         | 0.1                | 2.1          | 0.4          | 0.3          | 0.5          | 0.2     | 0.2  | 0.3      | 0.1      | 0.5              | 0.2        | 0.4             | 0.1       | 0.3          | 0.2   | 0.2   | 0.3   |
| U                | 0.1          | 0.1          | 0.1                 | 0.0         |                    | 0.6          | 0.2          | 0.2          | 0.2          | 0.1     | 0.0  | 0.1      | 0.0      | 0.1              | 0.1        | 0.1             | 0.1       | 0.1          | 0.0   | 0.1   | 0.0   |