
ELS Publishing Mechatronics Tech.

Article | Received 15 June 2023; Accepted 7 August 2023; Published 17 August 2023
https://doi.org/10.55092/mt20230002

Improved adaptive-critic-based dynamic event-triggered
control for non-affine systems

Zihang Zhou1,2,3,4, Ao Liu1,2,3,4, and Ding Wang1,2,3,4,*
1Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology,
Beijing 100124, China
3Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China
4Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China

* Correspondence author; E-mail: dingwang@bjut.edu.cn.

Abstract: In this paper, by employing a recurrent neural network and a critic neural network
(CNN), we design an improved dynamic event-triggered controller for a class of non-affine
continuous-time nonlinear systems. To address the transformation of the robust-optimal
control problem, an additional utility function reflecting the disturbance is introduced. Besides,
a system identifier is utilized for reconstructing the non-affine dynamics to generate an affine
model. For reducing the waste of communication resources, a dynamic event-triggered
control strategy is developed to replace the traditional time-based structure and improve static
event-triggered control design. In addition, we develop an enhanced CNN weight updating
law, which allows for greater flexibility in the process of weight selection compared to the
conventional approach. The dynamic event-triggered controller is designed by using the CNN
framework. Finally, a simulation of a modified torsional pendulum system is performed to
demonstrate the effectiveness of the constructed method.

Keywords: adaptive critic learning; dynamic event-triggered control design; neural networks;
non-affine dynamics; robust-optimal control; system identification

1. Introduction

Real-world controlled systems are often subject to environmental changes, external distur-
bances, and modeling errors, which can significantly impact the system stability and per-
formance. As a result, achieving stabilization is crucial for the controller. To address this
challenge, advanced techniques such as adaptive critic learning (ACL) have been developed to
obtain approximate solutions of Hamilton-Jacobi-Bellman (HJB) equations, which are often
too complex to be solved analytically [1–8]. ACL offers a notable advantage in effectively
avoiding the “curse of dimensionality”, which has traditionally plagued dynamic programming
methods. Over the years, ACL has been applied in various fields, including tracking control
design, adaptive optimal control design, differential games, and robust control successfully [9–
14]. Recent development in adaptive and learning approaches has greatly expanded the scope
of research in robust control. One of the most promising areas of research is the integration
of optimal control and robust stabilization, which has attracted significant attention in recent
years. The benefits of this approach are twofold: it not only ensures robustness in the presence
of uncertainties and disturbances but also optimizes the control performance. In recent years,
the combination of ACL design and traditional robust control has emerged as a promising
approach to achieve both robustness and performance optimization. In [15], the connection
between optimal control design and robust control problem was demonstrated. This led to the
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development of an improved robust control design approach that combines advanced ACL
with the traditional robust control method presented by Wang et al. [16]. However, there
is still a need to further research to explore the design method of the robust controller for
non-affine systems.

ACL is a control method that combines the principles of reinforcement learning, optimal
control, and neural networks (NNs). NNs are an essential component of the ACL technique.
They are used to approximate cost functions and control policies of the system. Different types
of NNs are frequently used in ACL, including back-propagation NNs, feed-forward NNs, and
recurrent NNs (RNNs), and so on. These NNs are simple but powerful tools for learning and
controlling complex systems, especially in the presence of large amounts of data. The use of
NNs in ACL opens up new opportunities for advanced control methods to expand the range
of applications, including robotics, manufacturing, and aerospace engineering [17, 18]. In
[19], an actor-critic NN was proposed to address the optimal control issue for continuous-
time (CT) systems. However, in most cases, critic NNs (CNNs) are more convenient than
actor-critic NNs for approximating nonlinear systems, as the former requires only one network
to approximate both the cost function and the control law. For example, a critic NN was
employed to approximate the cost function and the control law in [20]. This approach showed
superior performance compared to other control methods in a simulation of a double inverted
pendulum system. By using a single critic network, the computational burden can be reduced.
Furthermore, the selection of initial weights is needed to investigate. Therefore, an improved
critic network control strategy is established in this paper.

In practical applications, non-affine nonlinear plants are commonly encountered chal-
lenges due to their complex dynamics. The control law of an affine system can be represented
directly, allowing for the construction of an optimal feedback controller. As a result, research
efforts have mainly focused on affine systems. For instance, in the context of discrete-time
nonzero-sum games based on nonlinear affine systems, the design of feedback controllers
was explored by using off-policy integral reinforcement learning strategies [21]. Additionally,
an adaptive critic approach with a novel event-based condition was proposed for CT affine
nonlinear systems [22]. However, it is important to note that dynamics encompass both affine
and non-affine systems. Non-affine systems have more general dynamical expressions and
require corresponding feedback solutions. Several research methods based on ACL have been
developed for non-affine systems, including robust stabilization through system identification
techniques [23]. Nonetheless, few of authors consider the event-triggered control strategy for
non-affine systems to reduce more communication and computational overhead.

The triggering mechanism allows for a significant reduction in communication and com-
putational overhead, which is particularly important in resource-constrained systems. Several
different triggering mechanisms have been proposed, such as time-based and event-based.
Time-based methods use a predefined time interval to determine when to transmit control
signals, while event-based methods use the deviation of system variables from their set-points
to trigger transmission. One of the primary advantages of event-triggered control strategies
(ETCSs) is the reduction in communication and computational overhead. This reduction
results in lower energy consumption, longer system lifetimes, and increased system efficiency.
Moreover, the use of ETCSs can improve the robustness of controlled systems by allowing
them to adapt to changes in the environment, disturbances, and uncertainties. Overall, the
development and application of ETCSs have attracted significant attention in recent years due
to their potential for addressing numerous which are difficult to deal with by using traditional
time-triggered control strategies. In [24], Yang et al. addressed the issue of nonlinear systems
with asymmetric input constraints and proposed an adaptive-critic-based static event-triggered
H∞ control method. While static event-triggered control strategies (SETCSs) can reduce
redundant transmission and the number of updating steps effectively, it is important to ac-
knowledge that SETCSs still have room for improvement. Additionally, in [25], the concept
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of an internal dynamic variable was proposed to enhance ETCSs. This approach, called the
dynamic event-triggered control strategy (DETCS), utilizes an internal signal that can be
non-monotonic and help improve the control performance. Recently, there has been a growing
interest in the study of DETCSs. The DETCS has gained attention due to their potential
of improving the control performance and reducing resource utilization in feedback control
systems. By adjusting the triggering conditions dynamically, the DETCS can achieve a balance
between control accuracy and communication/computation costs. In [26], a model-based
dynamic event-triggered transmission strategy was proposed for linear systems. It provides a
framework for designing intelligent and adaptive communication protocols in control systems,
allowing for more efficient utilization of network resources and improved overall system
performance. However, few DETCSs are used to study the non-affine nonlinear systems. It is
the driving force behind this study. Thus, in this paper, we develop a novel DETCS for a class
of non-affine systems. Besides, we consider the improved weight tuning rule and design the
DETCS for reducing the communication and computational overhead.

The technical note is organized as follows. In Section 2, we provide a comprehensive
discussion on the non-affine disturbed system and present the transformation of the robust-
optimal control problem. In Section 3, the system identifier is constructed based on the RNN.
In Section 4, we design the static and dynamic event-triggered optimal controllers. In Section
5, we design the improved weight tuning rule and realize event-triggered controllers based
on the CNN. Moveover, the stability of the close-loop system is proved. In Section 6, a
simulation example is used to show the effectiveness of the established method. In Section 7,
the conclusion of the paper is presented.

Notations: R denotes the set of all real numbers. Rn, Rm, and Rϒ represent the Euclidean
space which are n-dimensional, m-dimensional, and ϒ-dimensional. Rn×n, Rm×m, and Rϒ×m

indicate n×n real matrices, m×m real matrices, and ϒ×m real matrices respectively. ∥·∥
represents the vector norm or the matrix norm. C(Ω) is the set of admissible control laws
on Ω. ∇(·) denotes the gradient computation and T is the transpose operation. λmin(·) is the
minimal eigenvalue of a matrix.

2. Design basis for robustness guarantee

Consider a category of CT nonlinear non-affine plants as

ẋ(t) = An(x(t),u(t)), x(0) = x0, (1)

where x(t) ∈Rn is the state vector and u(t) ∈Rm is the control matrix. An(·, ·) is the unknown
infinitely differentiable function, which is assumed to be Lipschitz continuous on the set
Ω ⊂ Rn containing the origin An(0,0) = 0, and x(0) is the initial value of the state. Assume
the system (1) is controllable.

It is worth noting that disturbances exist widely in practical applications. If the system (1)
is affected by disturbances, it can be written as

ẋ = An(x,u)+d(x), (2)

where d(x)∈Rn represents the unknown perturbation term with d(0) = 0, and ∥d(x)∥ ≤ λd(x)
with λd(0) = 0. Note that x(t) and u(t) can be briefly written as x and u.

Then, we delve into the robust-optimal problem transformation. To construct the infinite
horizon integral cost function for the nominal system (1), we can proceed as follows:

J (x) =
∫

∞

t
(U(x(τ),u(τ))+Ud(x(τ),u(τ)))dτ,J (0) = 0 (3)

where U(x,u)≥ 0 is the basis utility term with U(0,0) = 0, and Ud(x,u)≥ 0 is the additional
utility denoting the perturbation.
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We select an admissible control law u(x) to derive the nonlinear Lyapunov equation as

0 =U(x,u)+Ud(x,u)+(∇J (x))TAn(x,u), (4)

The Hamiltonian function is

H(x,u(x),∇J (x)) =U(x,u)+Ud(x,u)+(∇J (x))TAn(x,u). (5)

Thus, the definition of the optimal cost function can be described as

J ∗(x) = min
u(x)∈C(Ω)

∫
∞

t
(U(x(τ),u(τ))+Ud(x(τ),u(τ)))dτ. (6)

Then, we can have the corresponding HJB equation

0 = min
u(x)∈C(Ω)

H(x,u(x),∇J ∗(x)), (7)

where u∗(x) denotes the optimal control law, and it represents

u∗(x) = arg min
u∈C(Ω)

H(x,u(x),∇J ∗(x)). (8)

This difficulty is compounded for non-affine systems since expressing the optimal solution
directly is extremely difficult. Furthermore, the specific form of Ud(x) is often unknown. We
use u∗(x) as the optimal control law and add an additional utility term Ud(x)

Ud(x) =
1
4
(∇J ∗(x))T

∇J ∗(x)+λ
2
d (x). (9)

It is important to note that Ud(x) plays a significant role in the theoretical interpretation of
optimal-robust problems transformation, despite the fact that the optimal cost function is not
known beforehand. Moreover, the positive definite form of Ud(x) facilitates easy determination
of asymptotic stability. In practice, estimated values can be used during implementation.

Theorem 1 Considering the cost function (3) and utility term (9), we can ensure robust
stability for the disturbed system (2) by using the optimal feedback control law u∗(x), which
guarantees asymptotic stability.

Proof. Suppose Ld(t) is a Lyapunov function and set J ∗(x) = Ld(t). Then we can obtain
the derivative L̇d(t) = dLd(t)/dt as

L̇d(t) =(∇J ∗(x))T [An(x,u∗(x))+d(x)]

=− 1
4
(∇J ∗(x))T

∇J ∗(x)−λ
2
d (x)−U(x,u∗(x))+(∇J ∗(x))Td(x). (10)

For ∥d(x)∥ ≤ λd(x), we have

L̇d =−λ
2
d (x)+dT(x)d(x)−U(x,u∗(x))−

[
1
2

∇J ∗(x)−d(x)
]T[

1
2

∇J ∗(x)−d(x)
]

≤−U(x,u∗(x)). (11)

Based on U(x,u∗(x))≥ 0, the conclusion that L̇d ≤ 0 is clear. Since U(x,u∗(x))> 0 for all
x ̸= 0, we can infer that L̇d < 0. This finding confirms that the closed-loop system exhibits
asymptotic stability, thus completing the proof. ■

Indeed, the optimal control solution for the nominal system is crucial in ensuring the
robustness of nonlinear systems with disturbances. In the subsequent section, we present the
design of a system identifier utilizing a RNN based on this theoretical framework.
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3. Recurrent-Neural-Network-Based system identifier design

For the nominal plant of the non-affine system (1), it can be learned in an affine norm as

ẋ(t) = A (x(t),u(t)). (12)

In order to simplify the mathematical model and enhance computational efficiency, we have
developed an RNN-based system identifier to learn the unknown dynamics of the nonlinear
system. By employing the RNN framework proposed in [27], we can reformulate the original
system (1) as

An(x,u) = wr1x+wr2δr(x)+wr3 +Cu+ er(t), (13)

where δr(x) = tanh(DTX) is the activation function with D ∈ Rϒ×n, and X is explained in
(14). wr1 ∈ Rn×n, wr2 ∈ Rn×n, and wr3 ∈ Rn are ideal weight matrices, C ∈ Rn×m is the ideal
control coefficient matrix, and er(t) ∈Rn is the approximate NN error vector. The operation is
denoted as

X = Ξ(Xm) =

ϒ︷ ︸︸ ︷[
χ

T
m , ...,χ

T
m

]T
∈ Rϒ, (14)

where Xm = x⊗ Iq, Iq is the identity matrix, “⊗ ” represents the Kronecker product. Besides,
by using the reconstructed model (13), the nominal non-affine system (1) can be formulated in
the following affine form:

ẋ = An(x,u) = f (x)+Cu, (15)

The utility term is selected as U = xTQx + uTRu for simplicity, where Q and R are all
positive definite matrices with suitable dimensions. Thus, the optimal control law is u∗(x) =
(−1

/
2)R−1CT∇J ∗(x). The corresponding approximation of (13) is

˙̂x = ŵr1x̂+ ŵr2 tanh
(

D̂TX̂
)
+ ŵr3 +Ĉu+ ε x̃, (16)

where x̂ ∈ Rn is the estimated state, Ĉ is the estimated control coefficient matrix with respect
to weights, and ŵr1, ŵr2, ŵr3, X̂ and D̂ are estimated matrices with same dimensions as (13).
Note that ε x̃ is the robust feedback term, where ε is a designed parameter, and x̃ = x− x̂ is the
state identification error with ˙̃x = ẋ− ˙̂x.

Theorem 2 As to the established identifier model (13), the estimated weight matrices are
trained as

˙̂wr1 = a1x̃x̂T, (17)
˙̂wr2 = a2 tanh(D̂TX̂)x̃T, (18)
˙̂wr3 = a3x̃, (19)

˙̂C = a4x̃uT, (20)
˙̂D = a5x̃x̃T, (21)

where aiv > 0 is the learning rate, iv = 1,2,3,4,5, and the corresponding identification error
is asymptotically stable.

Remark 1 The relevant proof here has been presented in [27], and we do not provide any
further proof.
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From Theorem 2, the identifier (16) is asymptotically stable under learning laws (17)–(21).
When x̃ tends to 0, ˙̂wri with i = 1,2,3, ˙̂C, and ˙̂D can tend to 0. Consequently, the nominal
model of (1) after sufficient learning process can be written as follows:

˙̂x = ŵr1x̂+ ŵr2 tanh(D̂TX̂)+ ŵr3 +Ĉu. (22)

The above expression (22) can be more simple as

ẋ = f̂ (x)+Ĉu, (23)

where f̂ (x) = ŵr1x̂+ ŵT
r2 tanh(D̂TX̂)+ ŵr3. Thus, with the obtained reconstruction model,

further analysis can be carried out accordingly. For ease of understanding, we simplify its
expression to ẋ = f (x) +Cu in the following section. According to this expression, the
Hamiltonian function (5) becomes

H(x,u(x),∇J (x)) =U(x,u)+Ud(x,u)+(∇J (x))T( f (x)+Cu). (24)

4. Event-Triggered optimal control design

Considering the limitation of computation and communication bandwidths, the ETCS is
developed. {c j}∞

j=0 is a monotonically increasing sequence of triggering instants, where c j
is the jth consecutive sampling instant with j ∈ N. Then, the output of the sampled-data
component is a sequence of the sampled state represented as x(c j)

∆
=

⌢x j for all t ∈ [c j,c j+1).
We define the error function between the current state and the sampled state as

e j =
⌢x j − x,∀t ∈ [c j,c j+1). (25)

Through a zero-order hold, we obtain that u(x(c j)) = u(⌢x j)
∆
= µ(

⌢x j),∀t ∈ [c j,c j+1). The
sampled state becomes

ẋ = f (x)+Cµ(
⌢x j),∀t ∈ [c j,c j+1). (26)

Then, the optimal control law based on events is

µ
∗(

⌢x j) =−1
2

R−1CT
∇J ∗(

⌢x j). (27)

Stemmed from the event-based optimal control law (27), the Hamiltonian function is

H(x,µ∗(
⌢x j),∇J ∗(x))

=Ud + xTQx+(∇J ∗(x))T f (x)−1
2
(∇J ∗(x))TCR−1CT

∇J ∗(
⌢x j)

+
1
4
(∇J ∗(

⌢x j))
TCR−1CT

∇J ∗(
⌢x j). (28)

In order to further proceed, it is necessary to make an assumption that has been used in
[11]

Assumption 1 Assume that the control law u(x) satisfies Lipschitz continuity, which means
∥u(x) −µ(

⌢x j)
∥∥≤ Kue

∥∥e j
∥∥ holding, where Kue is a positive constant.

Theorem 3 Assuming that Assumption 1 is satisfied, the application of the event-triggered
control law given by the equation (27), along with the cost function (3), ensures the stability
of the controlled system. The static event-triggered condition can be expressed as∥∥e j

∥∥2 ≤
(1−θ 2

1 )λmin(Q)∥x∥2 +(1−2∥r∥2)λ 2
d (x)

2∥r∥2K2
ue

∆
= ∥eTs∥

2, (29)

where θ1 > 0, r =
√

R, and eTs is the SETC threshold.
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Proof. For demonstrating that µ∗(
⌢x j) is a solution to the robust stabilization problem, the

Lyapunov function is selected as LeT (t) = J ∗(x). On the basis of the definition of J ∗(x),
∀x ̸= 0,J ∗(x)> 0, and J ∗(0) = 0, it can be concluded that LeT (t) is positive definite. By
taking the derivative of the Lyapunov function LeT (t) along the trajectory of the system (2)
and the disturbed nominal dynamics ẋ = f (x)+Cu+d(x), we can obtain that

L̇eT (t) = (∇J ∗(x))T( f (x)+Cµ
∗(

⌢x j)+d(x)). (30)

Then, according to the time-based optimal law u∗(x) =−(1
/

2)R−1CT∇J ∗(x) and the Hamil-
tonian function (24), we can derive that

(∇J ∗(x))T f (x) =−Ud(x)− xTQx+u∗TRu∗. (31)

Combining the time-based u∗(x) and (31), (30) can be rewritten as

L̇eT (t) =−xTQx−Ud(x)− (µ∗(
⌢x j)+d(x))TR(µ∗(

⌢x j)+d(x))+π
T
e Rπe, (32)

where πe = u∗−µ∗(
⌢x j)−d(x). Then, πT

e Rπe = (rπe)
T(rπe) = ∥rπe∥2. Considering ∥d(x)∥≤

λd(x) and Assumption 1, we can obtain that

π
T
e Rπe ≤ ∥r∥2∥∥u∗(x)−µ

∗(
⌢x j)−d(x)

∥∥2 ≤ 2∥r∥2(K2
ue
∥∥e j

∥∥2
+λ

2
d (x)). (33)

Moreover,

L̇eT (t)≤−λmin(Q)∥x∥2 −λ
2
d (x)+2∥r∥2(K2

ue
∥∥e j

∥∥2
+λ

2
d (x))

=−(1−θ
2
1 )λmin(Q)∥x∥2 −θ

2
1 λmin(Q)∥x∥2 +2∥r∥2K2

ue
∥∥e j

∥∥2
+(2∥r∥2 −1)λ 2

d (x).
(34)

Therefore, if the SETC rule (29) holds, L̇eT (t)≤−θ 2
1 λmin(Q)∥x∥2<0,∀x ̸= 0 is true. Then,

conditions for Lyapunov local stability theory can be satisfied. We can have the conclusion
that the closed-loop system achieves asymptotic stability. ■

In this paper, it needs to introduce an internal dynamic variable η(x), which can be used
to improve the effect of the SETCS. We define that

η̇(x) = (1−θ
2
1 )λmin(Q)∥x∥2 +(1−2∥r∥2)λ 2

d (x)−2∥r∥2K2
ue

∥∥e j
∥∥2 −αη(x), (35)

where η(x)≥ 0. α ∈ R is the additional designed positive parameter.

Theorem 4 Theorem 2 guarantees asymptotic stability of the closed-loop system. Additionally,
the dynamic event-based control condition for the system (1) can be expressed as follows:∥∥e j

∥∥2 ≤ η(x)

2αd∥r∥2K2
ue

+∥eTs∥
2 ∆
= ∥eTd∥

2, (36)

where αd ∈ R is the designed parameter of the internal dynamic variable η(x) and eTd is the
DETC threshold.

Proof. The proof procedure for this result is similar to Theorem 3. We select a Lya-
punov function LeTd

(t) = J ∗(x)+η(x), and use the conclusion established in Theorem 3 to
demonstrate

L̇eTd
(t)≤−Ud(x)− xTQx− η̇(x)+2∥r∥2(K2

ue

∥∥e j
∥∥2

+λ
2
d (x))

≤−αη(x)−θ
2
1 λmin(Q)∥x∥2. (37)

Note that L̇eTd
(t)< 0 and η(x) converges to the origin, satisfying conditions for Lyapunov

local stability theory. Then, the proof is completed. ■

Remark 2 When αd tends to +∞, the static event-triggered control threshold (29) can be
regarded as a limited case of the condition (36).
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5. Event-Triggered Critic-Neural-Network-Based control implementation

5.1. Weight learning rule of the critic network

The optimal cost function J ∗(x) is reconstructed on a compact set Ω using a-hidden-layer
NN with nc neurons as

J ∗(x) = wT
c δc(x)+ ec(x), (38)

where wc ∈Rnc represents the ideal unknown weight vector, δc(x)∈Rnc denotes the activation
function vector, and ec(x) ∈ R is the reconstruction error. Then, we obtain the gradient vector
∇J ∗(x) = (∇δc(x))Twc +∇ec(x). The optimal cost function is approximated as

Ĵ ∗(x) = ŵT
c δc(x), (39)

where ŵc ∈Rnc is the estimated weight vector, and ∇Ĵ ∗(x) = (∇δc(x))Tŵc. The approximate
event-based optimal control law becomes

µ̂
∗(

⌢x j) =−1
2

R−1CT(∇δc(
⌢x j))

Tŵc. (40)

Thus, the Hamiltonian function (24) is changed into

Ĥ(x, µ̂∗(
⌢x j), ŵc) =U(x, µ̂∗(

⌢x j))+Ud(x)+ ŵT
c ∇δc(x)( f (x)+Cµ̂

∗(
⌢x j))

∆
= εh. (41)

The object of training the weight ŵc is to minimize Ec = 0.5ε2
h . One needs an initial admissible

control law to begin the process of learning, but the search for such a controller is challenging.
To overcome this difficulty, an assumption can be made, and an extra term can be introduced
to enhance the learning process.

Assumption 2 Let JL(x) be a continuously differentiable Lyapunov function candidate that
satisfies a certain formula [28]. It is relevant to the nominal form (23), the feedback control
law u∗(x), and the corresponding Hamiltonian function (24) of the system (1).

J̇L(x) = (∇JL(x))T( f (x)+Cu∗(x))< 0. (42)

By selecting a positive definite matrix K ∈ R2n×2n, it is possible to ensure that the
inequality

(∇JL(x))T( f (x)+Cu∗(x)) =−(∇JL(x))TK ∇JL(x)≤−λmin(K )∥∇JL(x)∥2 (43)

holds. It is noteworthy that during implementation, JL(x) can be obtained by selecting an
appropriate polynomial of the state vector, such as JL(x) = 0.25xTx.

In this paper, we adopt an improved weight leaning law, which is presented below:

˙̂wc =−ς
ℑ

(1+ℑ)2
∂Ec

∂ ŵc
+

1
2

αL∇δc(x)CR−1CT
∇JL(x)

=−ς
σℑ

(1+ℑ)2 (U(x, µ̂∗(
⌢x j))+Ud(x)+σ

Tŵc)+
1
2

αL∇δc(x)CR−1CT
∇JL(x), (44)

where ς ∈ (0,1) denotes the learning rate, σ = ∇δc(x)( f (x)+Cµ̂∗(
⌢x j)) is an nc-dimensional

column vector. Let σTσ = ℑ. It is obviously that ℑ > 0. αL represents the adjusting rate for
the additional stabilizing term. Compared to the conventional updating rule, a more robust
structure is introduced with two adjustable learning rates ς and αL in the improved tuning law
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(44). As a result, we can tackle practical control tasks based on their engineering intuition and
experience.
If we define the weight error vector as w̃c = wc − ŵc, then it follows that ˙̃wc =− ˙̂wc. Further
details are provided as follows:

˙̃wc =ς
ℑ

(1+ℑ)2
∂Ec

∂ ŵc
− 1

2
αL∇δc(x)CR−1CT

∇JL(x)

=− ς
σℑ

(1+ℑ)2 (σ
Tw̃c −ϖ)− 1

2
αL∇δc(x)CR−1CT

∇JL(x), (45)

where ϖ =−(∇ec(x))T( f (x)+Cµ̂∗(
⌢x j)) is the residual error. The next section is based on

the improved weight tuning law to realize the design for event-based controllers. The relevant
proof is provided in the next section.

5.2. Static Event-Triggered Neural-Network-Based controller design

Then, we make the following assumption, which is used in [29].

Assumption 3 The gradient of the activation function is Lipschitz continuous such that
∥∇δc(x)−∇δc(

⌢x j)∥ ≤ Kδc

∥∥e j
∥∥, where Kδc > 0. The gradient of the activation function, the

gradient of the reconstruction error, and the residual error are all bounded, i.e., ∥∇δc(x)∥≤ λ1,
∥∇ec∥ ≤ λ2, and |ϖ |< λ3, where λim > 0, im = 1,2,3.

Theorem 5 Based on Assumption 3, the closed-loop system is asymptotically stable and the
corresponding weight error is uniformly ultimately bounded(UUB). The static triggering rule
based on the critic network can be denoted as

∥∥e j
∥∥2 ≤

(1−θ 2)λmin(Q)∥x∥2 +
∥∥rµ̂∗(

⌢x j)
∥∥2

ξs1Kδc∥ŵc∥2 +
(∇Ĵ ∗(x))T∇Ĵ ∗(x)

4ξs1Kδc∥ŵc∥2

∆
= ∥êTs∥

2, (46)

and the inequality of the weight error is

∥w̃c∥>

√
ξs3

ξs2
, (47)

where ∥êTs∥ is the SETC threshold based on the critic network, θ ∈ (0,1) is a de-
signed parameter to adjust the triggering condition, ξs1 = (1

/
2)∥r∥2∥∥R−1

∥∥2∥C∥2,

ξs2 = ℑλmin(σσT)
/

2(1+ℑ)2 −2ξs1λ 2
1 , and ξs3 = ςℑλ 2

2

/
2(1+ℑ)2 +2ξs1λ 2

2 .

Proof. We choose a Lyapunov function Ls(t) = Ls1(t)+Ls2(t)+Ls3(t). More details
are as follows:

Ls1(t) = J ∗(x),

Ls2(t) = J ∗(
⌢x j),

Ls3(t) =
1

2ς
w̃T

c w̃c +
αL

ς
JL(x). (48)

It is noteworthy that the considered system is an impulsive system. During the time interval
t ∈ [c j,c j+1), no events are triggered. Instead, events are only triggered at t = c j+1. Case 1:
For t ∈ [c j,c j+1), events are not triggered. Calculating the time derivative of Ls along the

9
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trajectory, we can find that

L̇s1 = (∇J ∗(x))T( f (x)+Cµ̂(x̂ j)),

L̇s2 = 0,

L̇s3 =
1
ς

w̃T
c ˙̃wc +

αL

ς
(∇JL(x))Tẋ. (49)

For the term L̇31(t), based on (24) and the optimal control law u∗(x), it becomes

L̇s1(t) =− 1
4
(∇Ĵ ∗(x))T

∇Ĵ ∗(x)−λ
2
d (x)− xTQx+u∗T(x)Ru∗(x)−2u∗T(x)Rµ̂

∗(
⌢x j)

≤− 1
4
(∇Ĵ ∗(x))T

∇Ĵ ∗(x)−λ
2
d (x)− xTQx−∥rµ̂(

⌢x j)∥2 +∥r∥2∥u∗(x)− µ̂
∗(

⌢x j)∥2.

(50)

We continue to analyse the term ∥u∗(x)− µ̂∗(
⌢x j)∥2. The estimated time-based control optimal

control law with regard to the approximated cost function is

u∗(x) =−1
2

R−1CT((∇δc(x))Twc +∇ec(x)). (51)

Besides, we have∥∥u∗(x)− µ̂
∗(

⌢x j)
∥∥2

≤ 1
2

∥∥∥R−1CT((∇δc(
⌢x j))

T − (∇δc(x))T)ŵc

∥∥∥2
+

1
2

∥∥∥R−1CT((∇δc(x))Tw̃c +∇ec(x))
∥∥∥2
. (52)

Then, according to Assumption 3, we can derive

∥∇δc(x)−∇δc(
⌢x j)∥2 ≤ K2

δc

∥∥e j
∥∥2
, (53)∥∥∥(∇δc(x))Tw̃c +∇ec(x)

∥∥∥2
≤ 2(λ 2

1 ∥w̃c∥2 +λ
2
2 ). (54)

The term L̇s1(t) can be written as

L̇s1(t)≤− 1
4
(∇Ĵ ∗(x))T

∇Ĵ ∗(x)−λ
2
d (x)−λmin(Q)∥x∥2 −∥rµ̂

∗(
⌢x j)∥2

+
1
2
∥r∥2∥R−1∥2∥C∥2(K2

δc

∥∥e j
∥∥2∥ŵc∥2 +2λ

2
1 ∥w̃c∥2 +2λ

2
2 ). (55)

Considering (45), the term Ls3 becomes

L̇s3 =− w̃T
c σℑσTw̃c

(1+ℑ)2 +
w̃T

c σℑϖ

(1+ℑ)2 −
w̃T

c αL∇δc(x)CR−1CT∇JL(x)
2ς

+
αL(∇JL(x))

T

ς
ẋ

≤ ℑ

2(1+ℑ)2 (ϖ
2 − w̃T

c σσ
Tw̃c)−

w̃T
c αL∇δc(x)CR−1CT∇JL(x)

2ς
+

αL(∇JL(x))
T

ς
ẋ.

(56)

10
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According to Assumptions 2, 3, and (23), we can derive

L̇s3 ≤
ℑ

2(1+ℑ)2 (λ
2
3 −λmin(σσ

T)∥w̃c∥2)+
αL(∇JL(x))

T

ς
( f (x)+Cu∗(x))

+
αL(∇JL(x))

TCR−1CT∇ec(x)
2ς

≤ ℑ

2(1+ℑ)2 (λ
2
3 −λmin(σσ

T)∥w̃c∥2)− αL

ς
λmin(K )∥∇JL(x)∥2

+
αL

2ς
∥∇JL(x)∥∥C∥2∥∥R−1∥∥λ2, (57)

where λmin(σσT)> 0, and λmin(·) denotes the minimal eigenvalue of a matrix. Furthermore,
we have

L̇s =
3

∑
is=1

.
L sis

≤−λ
2
d (x)−θ

2
λmin(Q)∥x∥2 −∥rµ̂

∗(
⌢x j)∥2 +

αL

2ς
∥∇JL(x)∥∥C∥2∥∥R−1∥∥λ2

+
1
2
∥r∥2∥R−1∥2∥C∥2(K2

δc

∥∥e j
∥∥2∥ŵc∥2 +2λ

2
1 ∥w̃c∥2 +2λ

2
2 )−

1
4
(∇Ĵ ∗(x))T

∇Ĵ ∗(x)

+
ℑ

2(1+ℑ)2 (λ
2
3 −λmin(σσ

T)∥w̃c∥2)− αL

ς
λmin(K )∥∇JL(x)∥2

− (1−θ
2)λmin(Q)∥x∥2

∆
= πLs. (58)

If the SETC rule (46) and the weight-estimated error inequality (47) are satisfied, consider the
following inequality:

∥∇JL(x)∥ ≥
∥C∥2∥∥R−1

∥∥
2λmin(K )

, (59)

(58) becomes L̇s ≤−θ 2λmin(Q)∥x∥2. It can be easily found that L̇s < 0,∀x ̸= 0.

Case 2: Performing the different operation to the Lyapunov function, we obtain

∆Ls(t) = L3(
⌢x j+1)−L3(x(c−j+1)) = ∆Ls1(t)+∆Ls2(t)+∆Ls3(t). (60)

Based on the analysis of Case 1, it can be concluded that L̇s(t) < 0 for all t ∈ [c j,c j+1).
Moreover, the following result holds:

∆Ls1(t) =J ∗(
⌢x j+1)−J ∗(x(c−j+1))≤ 0, (61)

∆Ls2(t) =J ∗(
⌢x j+1)−J ∗(

⌢x j), (62)

∆Ls3(t) =
1

2ς

(
w̃T

c (
⌢x j+1)w̃c(

⌢x j+1)− w̃T
c (x(c

−
j+1))w̃c(x(c−j+1))

)
+

αL

ς

(
JL(

⌢x j+1)−JL(x(c−j+1))
)

≤0. (63)

For ∆Ls2(t), we have ∆Ls2(t)≤−K1(
∥∥e j+1(c j)

∥∥), where K1(·) is a class-κ function [30]
and e j+1(c j) =

⌢x j+1 −
⌢x j. It can be observed that the Lyapunov function decreases mono-

tonically for all times equal to c j+1. By considering the triggering condition (46) and the

11
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estimated error inequality (47), it can be concluded that the impulsive system in closed loop
is asymptotically stable. Furthermore, the critic network’s weight estimation error is UUB.
Therefore, it concludes that the proof is completed. ■

5.3. Dynamic Event-Triggered Neural-Network-Based controller design

Based on the CNN, the internal dynamic variable can be denoted as

η̇(x) =−αη(x)+(1−θ
2)λmin(Q)∥x∥2 +

1
4
(∇Ĵ ∗(x))T

∇Ĵ ∗(x)+λ
2
d (x)

+
∥∥rµ̂

∗(
⌢x j)

∥∥2 −ξs1Kδc∥ŵc∥2∥∥e j
∥∥2
. (64)

Theorem 6 The dynamic event-triggered control rule based on the critic network, incorporat-
ing Theorem 5, and the internal variable η(x), ensure asymptotic stability of the closed-loop
system and the error. Moreover, the weight error is guaranteed to be UUB. Its rule is defined
as ∥∥e j

∥∥2 ≤ η(x)

αdξs1Kδc∥ŵc∥2 +∥êTs∥
2 ∆
= ∥êTd∥

2, (65)

where ∥êTd∥ is the DETC threshold based on the critic network.

Proof. We select a Lyapunov function Ld(t) = Ls +η(x). Based on (64) and Theorem 5, it
can be concluded that

L̇d = L̇s + η̇(x)

≤ πLs −αη(x)+(1−θ
2)λmin(Q)∥x∥2 +λ

2
d (x)+

∥∥rµ̂
∗(

⌢x j)
∥∥2 −ξs1Kσc∥ŵc∥2∥∥e j

∥∥2
.

(66)

From inequalities (47) and (59), (66) becomes

L̇d ≤−αη(x)−θ
2
λmin(Q)∥x∥2. (67)

It can be obtained that L̇d < 0,∀x ̸= 0. Therefore, the proof is ended. ■

Remark 3 The occurrence of Zeno behavior, caused by the accumulation of events resulting
from zero inter-execution time, cannot be ignored in the event-triggered control strategy.
However, this issue can be prevented by ensuring that the minimum sampling time remains a
positive constant, away from zero. In our study, by satisfying Assumption 4, we can ensure
that the minimum sampling time is always greater than zero. This proof is similar to the one
found in [31], which guarantees the exclusion of Zeno behavior.

Remark 4 By comparing the SETCS with the DETCS, several conclusions can be drawn.
Firstly, unlike the SETC rule, the DETC rule involves a differential equation. Secondly, the
DETC rule takes into account not only the current values of the state x and the error e j, but
also the previous values. Finally, the DETC threshold includes a dynamic variable, which
distinguishes it from the SETC threshold that is solely dependent on time-varying factors.

Table 1. Values of the Torsional Pendulum System.

Parameter Meaning Value
J Rotary inertia 1kg ·12

M Mass of the pendulum bar 1/3kg
g Gravitational acceleration 9.8m/s2

l Length of the pendulum bar 3/2m
fd Friction factor 0.2

12
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6. Simulation

Consider a modified torsional pendulum disturbed system as{
ẋ1 = x2 +d(x)
ẋ2 =

1
J (u−Mgl sin(x1 +u)− fd ẋ1).

(68)

Values are referred to Table 1. Thus, it can be written as

ẋ =
[

x2
−4.9sin(x1 +u)−0.2x2 +u

]
+

[
d(x)

−0.2d(x)

]
, (69)

where the state vector x = [x1,x2]
T ∈ R2, the control input u ∈ R. Firstly, we need to carry

on the system identification experiment. The initial value x0 = [1,−0.5]T. We choose a1 =
1.25,a2 = 1.5,a3 = a4 = 1.75,a5 = 0.25, and m = 1 for learning the dynamics. From Figure
1, the convergence process of identifier weight is displayed. It is obvious that the training
effect is good. Final convergence values of weight matrices are shown in Table 2. It can be
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Figure 1. Convergence process of identifier weights.

observed that the identification error tends to zero value after a sufficient tuning state in Figure
2. Figure 3 is the 3D-view of the convergence process of x̃1 and x̃2, which can show changes
more intuitively. Figure 4 shows the process of the system identification, where x1,x2 denote
real states and x̂1, x̂2 represent approximate states. Note that our research object is a nominal
system without the perturbed term at this step. Then, we use the affine model obtained after
the RNN training to proceed to the next step.

13
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Table 2. Values of RNN Weight.

Weights Values
ŵr1 −0.1927 0.9943 −2.1329 −0.4462
ŵr2 0.0050 −0.4285 −0.1453 1.5774
ŵr3 0 0
Ĉ −0.3125 −0.4927
D̂ 0.0463 −1.9525 −0.9491 −0.0831
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Figure 2. Identification error.

In this step, we conduct the ETC experiment. The CNN weight vector is ŵc =

[ŵc1, ŵc2, ŵc3]
T and the activation function is δ (x) = [x2

1,x1x2,x2
2]

T. Set the learning rate
ς = 0.2, the designed parameter θ = 0.02, the adjusting rate αL = 0.05, JL(x) = 0.25xTx,
internal dynamic variable parameters α = 0.05,αd = 0.2, the initial value η(0) = 0, and
Kδc = 11. The learning process of the critic network lasts for 300 s. The probing noise is active
during the beginning 250s. Figure 5 shows the convergence of critic network weights. We set
up a comparative experiment and select four different initial values of critic network weights.
It is obvious that the final convergence values almost remain consistent. We select the initial
value of critic network weights as zero. The critic network weight vector gradually tends to
[9.300,3.162,0.527]T after 200s. Subsequently, the data is fed into the dynamic variable (64)
and triggering condition (65), and the resulting responses in the learning stage are illustrated
in Figure 6. In this paper, we set 3000 samples. Figures 7 and 8 show the dynamic sampling
period and triggering counts of the DETCS. Through calculation, it is determined that the
dynamic triggering control law employs 614 samples. Figure 9 shows the spending samples of
the SETCS, and its number is 1480. Obviously, the dynamic event-triggered controller costs
fewer samples.

Then, we evaluate the robust stabilization of the system by using the approximate optimal
control rule (40) with the disturbed term d(x) = 0.5x1 cos(x2 − 1). We proceed to the next
step with the trained critic network weights. The initial value of the state is x0 = [1,−0.5]T.
The state trajectory is shown in Figure 10, and its 3D visualization is presented in Figure
11. It is evident that the system exhibits the good robustness. Figure 12 depicts the control
inputs obtained from the DETC and the time-triggered control formulations and Figure 13
illustrates the dynamic triggering condition employed in the control implementation. It is
worth noting that the DETC input shows smaller fluctuations compared to the time-triggered

14
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Figure 3. Identification error (3D-view).
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Figure 4. Learning process of the identification system.
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(c) ŵc0 = [−0.25,−0.25,−0.25]T
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Figure 5. Convergence of critic network weights.
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Figure 6. Response of the dynamic variable.

16



Mechatronics Tech. Article

0 50 100 150 200 250 300

Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

S
a

m
p

lin
g

 p
e

ri
o

d

Figure 7. Dynamic sampling period.

control input. Moreover, the DETC input is only updated when the triggering condition is
satisfied, resulting in lower updating frequency than the time-triggered control input. This
reduces the computational load and communication burden between the controller and plant,
which is an advantage in practical implementation. All these figures demonstrate the good
effectiveness of the developed control.

7. Conclusion

This paper presents an improved DETCS for a class of CT non-affine nonlinear systems
based on the CNN. We convert the robust control problem to an optimal control problem and
construct a dynamic event-based controller with an internal dynamic variable, building on
a static event-triggered controller. The DETC rule is updated only when the corresponding
threshold condition is violated. Based on the critic network, we design an improved weight
training rule to replace the traditional law to relax the selection range of initial values and
design the dynamic event-based controller. At the same time, we demonstrate the stability
of the closed-loop system. Finally, the feasibility and superiority of the designed scheme
are demonstrated through a simulation experiment. It is worth noting that the paper mainly
focuses on non-affine systems with matched uncertainties. Therefore, the design of DETCS
for non-affine systems with general unmatched uncertainties requires further investigation.
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Figure 11. State trajectories (3D-view).
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