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Abstract: Hand movement disorders caused by neurological diseases like brachial plexus 

injuries significantly impact daily activities of patients. Compared with the upper-limb 

rehabilitation that is focused on the large movements of joints, the rehabilitation of the hand 

movements that are dexterous remains challenging due to its exceptional flexibility. This 

article aims to reviewing the latest research on the system and related strategies for hand 

movement rehabilitation. Firstly, the development on the cutting-edge sensing technologies, 

actuator-driven rehabilitation equipment and hand movement pattern recognition algorithms, 

all contributing to the design of the hand movement rehabilitation system, are introduced. 

Secondly, the various rehabilitation strategies, including the active rehabilitation, passive 

rehabilitation, and guided rehabilitation that are tailored for patients with different disability 

levels at varying rehabilitation stages, are reviewed. Furthermore, the limitations of current 

methods and techniques are discussed and future research directions are put forward.  

Keywords: Hand movement rehabilitation; rehabilitation equipment; sensing technology; 

pattern recognition algorithm; rehabilitation strategy 

1. Introduction 

Nervous system diseases, such as stroke and brachial plexus injury, can result in unilateral or 

bilateral upper limb movement dysfunction, significantly impacting daily life of patients. In 

comparison to the arm with other parts of the upper limb that primarily serve to transfer the 

hand between positions in space for a wide range of movement, the hand is more flexible and 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Mechatronics Tech   Review 

 2 

thus dexterous, primarily responsible for intricate movements like grasping, pinching and 

manipulating objects [1]. Therefore, the recovery of the hand movement function poses 

greater challenges and thus requires more attention of study. 

Over the past decade, the development of hand rehabilitation equipment that utilizes 

external robotic assistance and wearable equipment technology have drawn great research 

interest, with the main purpose of restoring the hand grasping ability [2,3]. However, because 

the hand motor impairment varies among patients at different illness stages, it is of significant 

to develop and adopt different rehabilitation strategies based on the degree or type of the 

specific motor impairment of the targeting patient [4]. For instance, patients with severe 

injuries would benefit from the robot-assisted approach that provides auxiliary force. While 

patients with milder motion-related injuries should be focused on the motor nerve recovery, where 

the guided rehabilitation approach with no direct supply of auxiliary force is more suited [5]. 

Nowadays, the study on the hand movement rehabilitation has become a hot research 

and development topic, and considerable progress has been made. Many related review 

articles introduce the recent development of commercial hand rehabilitation equipment and 

Do-It-Yourself (DIY) devices [6-8]. Although commercial products boast usable devices 

with system design, it is still necessary to timely review the latest academic findings to further 

stimulate innovation in the research field. Thus, this review article offers a comprehensive 

survey of the hand rehabilitation technology in the academic field instead of the commercial 

field, discussing the benefits, drawbacks, and prospects of various hand movement 

rehabilitation equipment and related strategies. 

 

 

Figure 1. Main research contents of this review article. 

As illustrated in Figure 1, the review content is organized as follows: Section 2 

summarizes the recent developments of the hand rehabilitation system, which includes the 

key hardware of the sensing technology for hand movement monitoring and the hand 

rehabilitation equipment for hand movement actuation and the key software regarding the 

machine learning-based algorithms for hand movement recognition. Section 3 discusses the 
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research on the hand rehabilitation strategies, including the active rehabilitation, the passive 

rehabilitation, and the guided rehabilitation. Section 4 outlines the future research prospects 

by highlighting the emerging research directions in hand rehabilitation. Finally, Section 5 

concludes the whole article. 

2. Development of hand movement rehabilitation system 

Typically, a comprehensive hand movement rehabilitation system comprises three key 

components, i.e., the hand movement monitoring by various sensors, the rehabilitation 

equipment for hand movement actuation, and the hand movement pattern recognition by 

some strategic algorithm. The hand movement monitoring acquires the real-time movement 

information of the hand, while the rehabilitation equipment performs the rehabilitation 

progress of the hand movement. The hand movement information is firstly analyzed by using 

the pattern recognition algorithm, upon which the control signals are decided to guide the 

actual motion of the hand rehabilitation equipment. The recent development of technologies 

regarding these three parts is summarized below. 

Notably, this section also summarizes the latest soft gripper devices. Although it does 

not directly contribute to a patient's hand motor rehabilitation, it can replace the patient's hand 

in performing grasping movements during rehabilitation 

2.1. Sensing technology for hand movement monitoring 

The monitoring of the hand movement status enables the capture of the current static position 

or dynamic gesture of the targeting hand, which is typically achieved using advanced 

wearable sensors. Intuitively, the vision-based sensors were firstly used for detection of the 

hand movement, which as a non-contact approach has been dedicated by considerable 

amount of efforts [9-11], but its practical adoption by patients is still challenging due to 

factors such as low sensitivity, light influence and privacy concerns, particularly in the 

context of hand movement rehabilitation, which requires the distinguishment of small 

difference in position and gesture. Up to date, the accurate hand movement detection mostly 

employs various kinds of wearable sensors in a close contact with the hand. Besides, sensors 

can also be implanted in the human body for the detection purpose, but despite of such 

specific application, they are not covered by this review article due to their intrinsic non-

invasive nature [12]. Figure 2 shows the several types of sensors integrated on the glove or 

directly mounted on human arm for the wearable hand movement monitoring and their 

corresponding wearing positions. 
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Figure 2. Different types of sensors integrated on glove or mounted on arm for hand 

movement monitoring: (a) IMU [13] Copyright© 2021, Elsevier; (b) strain sensor [14] 

Copyright© 2019, Springer Nature; (c) flex and force sensor [15] Copyright© 2021, 

IEEE; (d) sEMG sensor [16] Copyright © 2022, IEEE; (e) EIT sensor [17] Copyright© 

2016, Publication History; (f) ultrasound sensor [18] Copyright © 2022, IEEE. 

2.1.1 Mechanical sensor 

The mechanical signal is the most direct result by hand motion and thus its acquisition is 

extensively utilized for hand movement monitoring. The commonly used mechanical sensing 

techniques include the detection of inertial, strain and flexibility on different parts of the hand. 

The inertial sensing device is particularly based on the inertial measurement unit (IMU), 

and exhibits high sensitivity in the hand movement detection. Two approaches can be 

employed to detect the hand movement by using the IMUs. The original sensing information 

from the IMU includes the 3-axis accelerometer information and the 3-axis gyroscope 

information, and sometimes the 3-axis magnetometer information. As shown in Figure 2a, 

based on such information, the first approach is to employ the machine learning algorithms 

to determine the current gesture or movement state of the hand [13]. The second approach 

involves direct calculation of the current joint bending angle through the quaternion 

algorithm, enabling the assessment of the current state of the hand [19] . Currently the most 

commonly used way is to place multiple IMUs on each finger and the back of the hand for a 

comprehensive hand movement monitoring [20]. However, this method also takes the 

influence of the wrist movement into account on the hand movement monitoring, so the body 

movement such as arm swing can introduce inevitable but significant interference to the hand 

movement monitoring. 

The strain sensing devices mainly work on the piezoresistive, capacitive and piezoelectric 

sensing principles, and can be easily integrated on the human palms [15] (Figure 2c) and even 

between fingers [21] to detect the hand movement. It is important to note that this sensing 

approach is non-susceptible to interference from the movement of human body or arm swing, 
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which is advantageous over the IMUs. By sensing mechanism, the commonly used strain 

sensing devices can be categorized into the piezoresistive, capacitive, and piezoelectric types [22]. 

Piezoresistive sensors work on the measurement of resistance change due to the mechanical 

deformation, and are relatively simple to manufacture with easy circuit design for signal 

acquisition, but they are generally sensitive to environmental temperature variations (i.e., 

sensing performance drifting upon temperature change). Capacitive sensors work on the 

measurement of capacitance change due to the distance change between two electrodes over 

one dielectric layer upon pressing, and offer a better temperature stability, but they suffer 

higher output impedance by environmental electromagnetic wave or human body paradise 

capacitance noise and thus require more complex design of the signal acquisition circuit. 

Piezoelectric sensors work on the produced voltage in response to applied mechanical 

stresses derived from the oriented dipoles in the intrinsic piezoelectric material, and are 

highly suitable for measuring quick dynamic responses, but they are not used for the static 

measurements. Given that the temperature of human body is very stable for a healthy person 

and for the design simplicity and cost reduction consideration, piezoresistive sensors are 

mostly in the research [23]. 

The flexibility sensing devices work on the resistance change of the sensor upon bending [24], 

which can be detected by designing a simple impedance voltage divider circuit and using 

digital-to-analog conversion. Similar to the IMUs, the flex sensor can also be used to measure 

the current bending angle of the finger through calculation of the raw sensing data, because 

the change of the resistance during the finger bending process shows a well linear relationship 

with the actual bending angle and can be expressed by a determined formula [25]. However, 

the flex sensors are usually long in shape, which makes them suitable for detecting finger 

bending but not effective in capturing the abduction-adduction movement between adjacent fingers. 

2.1.2 Electrical sensor 

The brain utilizes electrical current of pulse signals that act on the skeletal muscles to 

communicate with the hand, resulting in changes of muscle volume and internal impedance. 

This working mechanism enables the execution of course or precise movement of the hand. 

Surface electromyography (sEMG) is a typical electrical signal to record the electrical 

activity of skeletal muscles [26]. Notably, sEMG is non-invasive and only requires adhesive 

electrodes that are able to be attached on the surface of skin to detect the EMG signals [27]. 

The effectiveness of sEMG signals in monitoring human activities has been successfully 

demonstrated in various practical applications, including the prosthetic and exoskeleton 

control [28,29], gesture recognition [16,30], gait analysis [31,32] and muscle fatigue 

assessment [33,34]. However, when using the sEMG detection equipment, insufficient 

contact between the electrodes of sensors and the skin of human body would introduce 

additional noise. Although wet adhesive electrodes are commonly used to mitigate such 

interference issue, they often leave the gel residue on the skin. On the other hand, dry 

electrodes are free of the sticky residue issue but may experience interface slippage, 

particularly in the unsupervised environment, leading to the movement artifact or noise [35]. 
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To address the abovementioned issues, an appropriate and continuous preload must be 

applied to the electrode, typically achieved through the design of a tighter external package 

or a pressure-adjustable package [36]. In addition, sEMG sensors have the limitation in 

recording deep muscle activity, which poses challenges in distinguishing the motion of 

individual muscle. 

Similarly, electrical impedance tomography (EIT), a non-invasive technique that 

reconstructs the internal conductivity distribution of an object from the voltage collected by 

external electrodes, has recently been effectively applied in the hand movement monitoring [37]. 

The advantages of the EIT approach include high temporal resolution, no radiation and low 

cost. But its drawbacks are also obvious, such as low spatial resolution, especially near the 

center of the targeting position [26]. On the other hand, researchers used to believe that the 

resistance impedance was a two-dimensional (2D) problem that is merely based on the ring 

arrangement of electrodes, but the latest finding implies that its actual distribution is more 

complicated that is a three-dimensional (3D) problem. So further research is still needed [38]. 

2.1.3 Acoustic sensor 

It is known that the formation of gesture results in different acoustic behaviors at the relevant 

muscles or joints. This acoustic property can be collected by means of ultrasound imaging 

and bone conduction to analyze the movement of the hand. Ultrasound imaging can provide 

real-time dynamic information of the internal tissue of the relevant movement position of 

human body. Compared with sEMG sensors, it can not only collect the information of the 

superficial muscles, but also acquire the information of the deep muscles [39]. In addition, 

ultrasound imaging has the advantage of high spatial-temporal resolution (25-204 Hz and 

0.5-5 mm) [40], which can detect the changes in muscle thickness, cross-sectional area, and 

contraction angle, and thus has been widely used in gesture recognition [41,42] and prosthetic 

control [43]. For the hand movement monitoring, the most commonly used ultrasound modes 

include A-mode (the one-dimensional (1D) mode, which provides the echo amplitude 

information) [44], B-mode (the 2D mode, which provides the grayscale images of tissue or 

organ sections) [45], and M-mode (the movement mode, which has a higher scanning 

frequency) [46]. However, the ultrasound imaging technique also has some disadvantages, 

such as the need for gel to connect the sensor with the skin to facilitate the ultrasound imaging 

and artifacts that are caused by the arm movement. 

The vibrations of bones in body caused by human motion activity also transmit sound 

signals. The bone conduction sensing equipment, as an acoustic-based equipment, often 

consists of a vibrator and a receiver. The vibrator provides external vibration as an active 

device, and the receiver can convert the vibration signal of the bone into an electrical signal 

to perform the function of signal collection. However, the bone conduction sensing technique 

has not been widely used in the practical application of hand movement monitoring due to 

the low precision of pattern recognition [47]. 
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Table 1 summarizes the sensing technologies based on different types of sensor devices 

that are discussed above, and appropriate sensing technology should be selected based on 

their sensing characteristics according to the actual application needs. 

Table 1. Sensing technologies based on different types of sensor devices. 

Sensing 

technology 
Source Year Sensor device 

Wearing 

position 
Application direction 

Mechanical 

signal-based 

J. Li [48] 2021 IMU Fingers 
Hand movement 

rehabilitation 

B. S. Lin [19] 2017 IMU Fingers 
Evaluation of hand 

movement status 

Y. F. Dong 

[24] 
2021 Flex sensor Fingers Gesture recognition 

S. Sundaram 

[15] 
2021 

Flex sensor and 

strain sensor 

Fingers and 

between fingers 

Hand movement 

rehabilitation 

Electrical 

signal-based 

Z. C. Tang 

[29] 
2022 

sEMG and 

Gyroscope 
Arm Prosthetic control 

T. Y. Pan [16] 2022 sEMG Arm Gesture recognition 

M. Nawaz [37] 2022 EIT Wrist Gesture recognition 

Acoustic 

signal-based 

Z. X. Lu [44] 2022 Ultrasound sensor Arm Gesture recognition 

J. N. Li [46] 2022 Ultrasound sensor Arm 
Hand Movement 

Monitoring 

2.2. Hand rehabilitation equipment for hand movement actuation 

 

Figure 3. Three drive types of hand rehabilitation equipment: (a-c) tendon-cable drive [49-

51]: [49] Copyright© 2022, IEEE, [50] Copyright© 2021, Elsevier, [51] Copyright© 2023, 
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IEEE; (d-f) connecting-rod drive [52-54]: [52] Copyright© 2019, IEEE, [53] Copyright© 

2020, American Society of Mechanical Engineers, [54] Copyright© 2020, Applied Sciences; 

(g-i) pneumatic drive [55-57]: [55] Copyright© 2022, IEEE, [56] Copyright© 2022, IEEE, 

[57] Copyright© 2020, IEEE. 

The hand movement rehabilitation equipment is another important component of the upper 

limb rehabilitation system. In the past decade, the advanced upper limb rehabilitation 

equipment both in academic and commercial market has achieved a great growth. Compared 

with the other parts of upper limb such as the elbow and arm, the hand as well as the fingers 

are required to perform finer movements. Therefore, the fine actuation of the hand movement 

rehabilitation equipment is important and is challenging from research and development 

point of view. According to the drive type of the hand rehabilitation equipment, it can be 

divided into three categories, i.e., the tendon cable drive, the connecting rod drive, and the 

pneumatic drive. Figure 3 shows the three drive types of hand rehabilitation equipment that 

has been recently developed and reported in literature. 

2.2.1 Tendon-cable drive 

The exoskeleton-assisted rehabilitation equipment driven by tendon cables mainly uses 

motors to provide the torque and shorten the length of the cables to generate the tension. This 

working mechanism also leads to its main drawback of realization of only one-way finger-

bending movement, and the return movement of the fingers needs to be achieved by patients 

or additional design of return-movement structure is needed [15]. In addition, the friction loss 

between the tendon cable and its external spool is inevitable, which is another issue. Recently 

several types of hand rehabilitation equipment based on the tendon-cable-driven mechanism 

have been developed. As shown in Figure 3b, Alnajjar et al. [50] proposed a tendon-cable-

driven hand rehabilitation device, which was powered by a control box worn on the patient's 

forearm and used the dual linear actuators to enable the flexion motion of the index and 

middle fingers. To realize the return motion of the finger bending, an adjustable flexible 

rubber rope was used with design simplicity and weight reduction of the finger return 

structure. Yang et al. [49] proposed a portable cable-actuated exoskeleton glove and 

practically demonstrated its performance through clinical tests on nine patients with tendon 

injuries. Similarly, Haarman et al. [51] proposed a lightweight and compact exoskeleton 

structure to assist stroke patients in the training of the grasping motion. 

2.2.2 Connecting-rod drive 

The link structure is also employed in the structural design of the hand rehabilitation 

equipment. This rehabilitation equipment often relies on the external motors to provide 

power. To reduce the overall weight, lightweight materials are often used to fabricate the 

connecting rods through the 3D printing or similar technique. The main advantage of the 

hand rehabilitation equipment based on the link structure is that it can make the specified 

joints of the hand move in a precise manner through complex kinematics analysis. However, 
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the connecting rod structure has limitation of large volume, which is challenging to achieve 

a compact structure of the whole equipment. In addition, the assembly of multiple motors on 

the wearable device for the purpose of overall size reduction and structural design simplicity 

would increase the overall weight of the equipment. Recently several types of hand 

rehabilitation equipment based on the connecting-rod-driven mechanism have been 

developed. As shown in Figure 3d, Hong et al. [52] proposed an underactuated hand 

exoskeleton to assist patients in training of the grasping motion. This mechanism consisted 

of an underactuated finger for grasp movement generation, a spherical four-bar linkage for 

power transmission, and a passive thumb link with a flexure hinge structure. Xia et al. [58] 

designed a hand exoskeleton system, which could realize 10 active degrees of freedom and 

provide an effective way for patients to recover at home. 

2.2.3 Pneumatic drive 

The pneumatic rehabilitation equipment utilizes compressed air as a power source. The main 

advantage is that the body of the equipment worn on the hand is relatively light, which is 

very important for long-term continuous treatment of patients. In addition, different 

functions, such as bending, expansion and contraction, and twisting, can be realized by 

optimizing the structural design of the air chamber. Furthermore, the pneumatic actuation 

generally does not cause devastating damage to the opponent during the recovery process. 

The disadvantage is that external equipment such as the air pumps and pressure tanks that 

requires sufficient external space is needed. In addition, the force provided to assist 

rehabilitation is often small, so it is usually used for the patients who still have some certain 

hand motion functions rather than the severely disabled patients. Recently several types of 

hand rehabilitation equipment based on the Pneumatic-driven mechanism have been 

developed. Guo et al. [55] proposed a soft pneumatic glove for hand function rehabilitation 

after stroke, and used a gas pressure sensor to monitor the movement status of the hand 

rehabilitation system in real time. Through a long-term comparison test with the conventional 

treatment and the robot-assisted treatment, the effectiveness of the proposed hand 

rehabilitation equipment was demonstrated. Gerez et al. [57] reported an exoskeleton glove 

actuated by a hybrid pneumatic and tendon-cable actuation. The glove was able to assisting 

the gripping motion, and its efficacy was demonstrated through the experiments of bending 

profile, force application, and grip quality evaluation. 

It is worth mentioning that the hydraulic-driven hand rehabilitation equipment has also 

been developed [59,60], but due to the factors such as space, weight, and cost, it has not been 

widely used in the field of hand rehabilitation. 

Some recently proposed hand rehabilitation devices with different drive types have been 

summarized in Table 2. 

  



Mechatronics Tech   Review 

 10 

Table 2. Comparison of hand rehabilitation devices with different drive types in recent years. 

Source Year Force Transmission Driving Modes Exoskeleton End-Effector 

L. Yang [49] 2022 Cable Motor drive √ - 

F. Alnajjar [50] 2021 Cable Motor drive √ - 

C. J. W. Haarman [51] 2023 Cable Motor drive √ - 

F. Ennaiem [61] 2023 Cable Motor drive - √ 

M. B. Hong [52] 2019 Link Spring √ - 

T. Vanteddu [53] 2020 Link Motor drive √ - 

G. Carbone [54] 2020 Link Motor drive √ - 

A. Molaei [62] 2022 Link Motor drive - √ 

N. Guo [55] 2022 Flexible pipe Pneumatic √ - 

Y. L. Han [56] 2022 Flexible pipe Pneumatic √ - 

L. Gerez [57] 2020 Flexible pipe Pneumatic √ - 

 

2.3. Hand movement pattern recognition algorithm 

In recent years, the pattern recognition algorithms have drawn extensive attention for the 

research on the hand movement monitoring. The role of pattern recognition algorithms in the 

field of hand rehabilitation is generally to monitor hand movements and recognize patients' 

subjective movement intentions. Although pattern recognition is not necessary for 

rehabilitation systems, it is currently a hot research topic related to hand movement 

rehabilitation. The application of the hand movement monitoring includes prosthetic control [63], 

sign language recognition [64] and hand rehabilitation [65]. The pattern recognition of hand 

movement monitoring can be divided into the traditional machine learning algorithm and the 

deep learning algorithm. 

The traditional machine learning algorithm generally has three steps, i.e., data 

preprocessing, feature extraction, and model building. For data preprocessing, information 

acquired by different types of sensors often has different data intensities. Therefore, the 

scalability of the data from different types of sensors needs to be considered. In this regard, 

the Max-min and z-score are the most widely used normalization algorithm, although these 

two methods inevitably weaken the differences in signals [66]. In addition, the data 

segmentation is another important step in recognition of the hand motion, and the feature 

extraction can be performed based the continuous data stream after segmentation. Although 

a method to dynamically segment the entire gesture formation process has been proposed [67], 

this method is often time-consuming. Therefore, to meet the real-time requirement for the 

data segmentation, a sliding data window is often established, and continuous data windows 

usually need a certain overlap rate (usually 50% is adopted) [25,68]. 

Manually extracting features is the next crucial step in the traditional machine learning, 

often performed in the time or frequency domain. Typical time domain features include 

mean, variance, maximum, root mean square, skewness, and kurtosis. Common frequency 

domain analysis methods, such as power spectral density, continuous wavelet transform, and 

discrete Fourier transform, have been widely used in the movement monitoring [69,70]. It is 

important to note that even though numerous features can be extracted from the continuous 

data streams, it does not mean the more the better. Many correlated features would increase 
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the computational cost and even lead to the curse of dimensionality. Therefore, dimensionality 

reduction techniques have gained attention in recent years for feature extraction in the human 

activity recognition, particularly for the recognition of hand movements [71,72]. 

The commonly used traditional machine learning algorithms for the hand movement 

monitoring include Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Decision 

Tree (DT), Multi-Layer Perceptron (MLP), and Random Forest (RF) [73]. It is worth noting 

that the classification performance of different algorithms for different gesture datasets is 

different. Therefore, multiple machine learning algorithms should be compared at the same 

time when performing the gesture pattern recognition, to get an optimal one. For instance, 

the performance of SVM and kNN are compared for gesture recognition using a capacitive 

sensor setup [74], and the performance of a system for Brazilian sign language recognition 

is compared with up to five traditional machine learning algorithms [25]. 

It is worth mentioning that the performance mostly relies on the manually extracted 

features, which requires significant expertise of the operator. In comparison, the deep 

learning algorithm can fit the features according to the input data and get the corresponding 

output without manual feature extraction and selection. The deep learning algorithm based 

on the convolutional neural networks (CNN) is a commonly used method for hand movement 

monitoring [75]. For controlling the robotic hand in a rehabilitation setting based on the 

movement intention, a model combining the CNN and attention mechanism (named CNN-

Attention) was proposed [76], which showed high performance in continuously estimating 

the direction of the human hand movement. To facilitate the gesture recognition during the 

rehabilitation training, Li et al. [77] proposed an improved multi-channel convolutional 

neural network (IMC-CNN). By collecting sEMG signals, the classification accuracy of the 

10 common gestures could reach up to 97.5%. Algorithms based on the recurrent neural 

networks (RNN) are usually used to process the timing-related information for the realization 

of the hand movement pattern recognition. For instance, Barron et al. [78] explored the 

performance of the RNN-based gesture recognition method in the electromechanical control 

of the upper limb prostheses, and the results showed that its performance was higher than 

that of the linear discriminant analysis (LDA) and MLP. A deep neural network that 

combines the convolutional layers with long short-term memory (LSTM) (named LSTM-

CNN) was proposed by Xia et al. [79], the recognition accuracy on three public datasets was 

greater than 90% with verification, which showed good robustness and human activity 

pattern recognition performance. 

Additionally, some template matching algorithms have also been proposed due to their 

small size with potential to be independent of the host system [80,81]. A hyper-dimensional 

computing algorithm has been recently reported, which does not depend on the host system 

and can directly perform the model training and updating on the external devices [30]. These 

studies have facilitated the shift of hand movement pattern recognition from the host system 

dependency to reliance on the wearable embedded electronic systems. 
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2.4. Soft gripper devices 

In this study, soft gripper devices are also summarized since they can replace the grasp ability 

of patients during their rehabilitation process. Compared to traditional rigid grippers, soft 

gripper devices can adaptively grip objects of different sizes or shapes through flexible 

grippers or joints. 

Cable-based underdriven soft grippers are currently the most widely researched in the 

academic field, and generally include cable-driven flexible joints as well as soft end-

effectors. Compared to other soft grippers, the principle of cable-driven gripping is closer to 

that of the human hand. Although bending and even continuous bending can be well realized 

due to the structural properties of cables, the complex structural design and control of 

torsional motion remains a challenge. On the other hand, cable-driven devices have 

drawbacks in gripping flat structured objects since it is difficult to wrap the object 

completely. Figure 4a shows an underdriven robotic hand claw possessing a three-finger 

structure proposed by Lee et al. [82]. The proposed device can realize the grasping motion 

by means of a servomotor driving cables distributed along the finger-like structure. Recently, 

a new cellular mechanical metamaterial architecture has also been proposed and combined 

with cables to realize the grasping motion of the robotic hand [83]. 

 

 

Figure 4. Typical different types of soft gripper equipment: (a,b) cable-based [82,83]: 

[82] Copyright© 2020, IEEE, [83] Copyright© 2023, IJB; (c,d) pneumatic-based 

[84,85]: [84] Copyright© 2023, Elsevier, [85] Copyright© 2022, Elsevier. 

Pneumatic-based soft gripping devices mostly use contraction or expansion brakes to 

realize bending motions. Although some structural designs are capable of torsion but are 

seldom used in soft gripper design. For example, Wu et al. [84] designed a pneumatic soft 
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finger structure with a composition of three independently actuated segments, which 

overcame the shortcomings of the traditional single-cavity soft finger structure with poor 

stability. The study produced an anthropomorphic hand with 15 degrees of freedom and 

tested it performing various gestures and piano playing tasks. The exploration of bionic 

gripping structures in nature has also received attention. Inspired by the Venus flytrap, Xiao 

et al. [85] proposed a soft pneumatic gripper hand with a large contact area, which can 

provide a human hand-like envelope and holding pattern. 

Additionally, some soft grippers based on dielectric elastomers [86,87], shape memory 

alloys [88,89] and shape memory polymers [90] have been proposed, but the applications are 

not widespread. 

3. Hand movement rehabilitation strategies 

The hand movement disorders caused by stroke or other neurological diseases require a 

comprehensive and prolonged rehabilitation process. Different degrees of injury or stages of 

rehabilitation often necessitate different rehabilitation strategies. The rehabilitation strategy 

can be categorized into three types, i.e., the passive rehabilitation strategy, the active 

rehabilitation strategy, and the guided rehabilitation strategy. 

3.1. Passive rehabilitation 

For patients with severe loss of hand movement ability, the basic functions such as hand 

grasping are often completely lost. In this case, the exoskeleton equipment or the end effector 

equipment must be used on patients to perform the hand rehabilitation. 

It is important to note that the rehabilitation of the hand at this stage is often repeated in 

accordance with the prescribed motion path. The treatment plan must be customized by 

professional therapists based on the specific situation of each individual patient. This type of 

treatment, in which the therapist or rehabilitation system provides the rehabilitation program, 

is called the task therapy. For patients with affected finger extension and gripping difficulties, 

Gasser et al. [91] designed an assisted rehabilitation equipment and experimentally verified 

that the device could actually enhanced the grasping ability of the patient’s hand. Guo et al. [92] 

designed a low-cost exoskeleton rehabilitation equipment for patients with hand movement 

disorders, and used the topology optimization to complete the lightweight design of the hand 

rehabilitation robot. Although this rehabilitation method has been widely used in hand 

movement rehabilitation, it largely limits the active movement intention. 

Furthermore, the majority of hand orthosis-based rehabilitation approach can be 

categorized as the passive rehabilitation. These devices are typically employed for patients 

with severe hand movement impairments and do not consider the patient's individual 

movement intention. As shown in Figure 5, Orthodontic devices typically lack power 

components and instead rely on structural design to harness the patient's manual dexterity [93]. 

Ates et al. [94] proposed an orthosis that encompasses both the wrist and fingers, offering 

antegrade assistance to aid patients in overcoming the excessive hand flexion. For patients 

with severe hand movement injuries caused by stroke, Yurkewich et al. [95] proposed a hand 
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straightener glove that provides a wearable and comfortable solution for neuromuscular 

recovery related to finger movement. 

Nevertheless, while orthoses offer an effective hand rehabilitation strategy, they often 

restrict the complete range of hand movement, preventing patients from achieving 

rehabilitation based on their voluntary motor intentions. 

 

Figure 5. Different typical orthosis designs [94-96]: [94] Copyright© 2017, Autonomous 

Robots, [95] Copyright© 2020, Journal of Neuro Engineering and Rehabilitation, [96] 

Copyright© 2023, IEEE. 

3.2. Active rehabilitation 

Patients with moderate impairment of hand movement or those in the intermediate stage of 

rehabilitation typically possess some level of voluntary hand movement ability and can 

perform basic actions such as grasping. During this stage, patients often employ the active 

rehabilitation strategy to engage in the rehabilitation exercises. 

Active rehabilitation strategy can be divided into the active adjuvant therapy and the 

active resistance therapy. Actually, no clear boundary exists between the active adjuvant 

therapy and the passive therapy, because both provide a certain amount of auxiliary force for 

the movement of the hand [97]. Xiao et al [98] designed an exoskeleton structure that 

combined a rotary-spatial-spatial-rotary (RSSR) mechanism with a double-parallelogram 

mechanism. This rehabilitation equipment utilized the surface electromechanical sensors to 

capture the movement intention to assist the hand movement. The active resistance therapy, 

which involves presenting challenging tasks to patients during the rehabilitation exercise, 

typically entails applying resistance force in the direction of finger rehabilitation instead of 

providing assistance force [6]. 

During the active rehabilitation, the hand has a certain ability to move independently, 

and does not need to rely entirely on the treatment plan designed by professional therapists. 

Therefore, the mirror therapy, in which the affected side is rehabilitated by imitating the 

movement of the healthy side, is proposed, and applied in the treatment strategy. Unlike the 

task therapy, the mirror therapy incorporates the subjective motion intention of the patients. 

For instance, Chen et al. [15] introduced a flexible and wearable hand rehabilitation system 

for patients with hand paralysis. The system captured the movement data from the healthy 

hand and utilized the pattern recognition algorithm to guide the movement of a motor-driven 

equipment on the affected hand, thereby conducting the mirror therapy process. Similarly, 
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for the home-based rehabilitation, Yang et al. [99] proposed a system that mirrors the 

rehabilitation of the affected hand by collecting movement information of the unaffected 

hand and transmitting it to an exoskeleton device. 

Active rehabilitation therapy provides an effective rehabilitation plan for patients with 

certain hand movement abilities. In contrast to passive rehabilitation strategies, active 

rehabilitation therapy focuses more on the patient's subjective motor intentions. However, 

both above schemes directly or indirectly provide force for hand movements to assist in 

patient rehabilitation. While this method is effective, it may not be the optimal solution for 

patients with minor hand movement injuries or those in advanced stages of rehabilitation [100]. 

3.3. Guided rehabilitation 

Patients in the advanced stage of hand movement rehabilitation or those with mild symptoms, 

typically do not require external robotic equipment for assistance in their rehabilitation. 

During this stage, a wearable guided rehabilitation equipment is enough to help the patients 

perform the effective rehabilitation exercises. 

As shown in Figure 6, guided rehabilitation strategy mainly includes four methods, i.e., 

vibration stimulation, electrical stimulation, force feedback and audiovisual feedback. The 

vibrohaptic-based devices, representing the typical mechanical haptic technique, can deliver 

comfortable tactile feedback to the skin where it is attached. The real tactile perception could 

be achieved by adjusting the vibration frequency of the mounted vibrotactile actuators on 

skin [101]. The rehabilitation method utilizing the vibrotactile stimulation strategy was also 

proposed and validated for the hand movement impairment in the stroke patients [102]. In 

order to achieve the tactile feedback on the finger parts, a loop that could provide both the 

vibratory and thermal feedback was proposed [103]. Although this work is not directly 

applicable to the rehabilitation therapy, the guided rehabilitation strategy based on the 

vibration approach provides an encouraging idea. On the other hand, the electrical stimulation 

exhibits characteristics of high resolution and fast response. The working principle involves 

stimulating the human body through electrodes placed on the upper limb. Although it does 

not provide direct and comfortable feedback compared with the vibrotactile approach, it has 

also been accepted by the subjects [104]. 

Force feedback primarily comprises pressure and shear force feedback, can provide 

patients with a natural feeling when touching objects. Han et al. [105] introduced a micro 

dielectric fluid sensor for pressure feedback with attributes of high strain and rapid response. 

Its operation involves applying voltage to elongate and create protrusions on a silicone film, 

thus delivering pressure feedback. Similarly, a pressure feedback device that relies on balloon 

inflation to apply pressure to the skin directly below was proposed by Molina et al. [106], 

providing continuous tactile feedback to the wearing forearm. Shear force feedback is 

commonly achieved via direct skin contact, involving skin traction or torsion. Pan et al. [107] 

used wrist tactile perception to develop a real-time skin stretching feedback device worn on 

the dorsal side of the wrist, offering individuals extra sensory input for balance training. 
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Above-mentioned guided rehabilitation devices often rely on wearable devices to 

provide feedback through direct or indirect contact with the skin of the hand. Audiovisual 

feedback methods, especially those based on virtual reality systems, encourage patients' 

engagement in rehabilitation training. Colomer et al. [108] introduced a cost-effective, 

portable virtual reality rehabilitation system. This system can provide customized training 

for arms, hands, and fingers by combining virtual environments with tangible objects, and 

providing audio-visual feedback based on the patient's performance in the virtual 

environment. The interaction between natural gestures and immersive virtual reality 

environments simulates real-life interactions, benefiting the rehabilitation of patients’ motor 

nerves and muscles. Juan et al. [109] proposed a complete set of virtual reality applications 

that assist patients in rehabilitation through three series games, allowing patients to detach 

from a large amount of medical equipment and tedious rehabilitation exercises. 

It is worth noting, the thermal stimulation, which can provide a distinctive thermal 

sensation and can also serve as an effective guided modality. Nonetheless, its utilization has 

been limited due to the slow heating and cooling process, resulting in limited adoption range [110]. 

 

 

Figure 6. Typical guided rehabilitation strategy related equipment: (a-b) Vibration Stimulation 

[103,111]: [103] Copyright©2022, Nature Communications, [111] Copyright© 2021, Journal 

Neuroengineering and Rehabilitation; (c-d) Electrical Stimulation [104,112]: [104] Copyright© 

2019, Applied Bionics And Biomechanics, [112] Copyright© 2017, Scientific Reports; (e-f) 

Force Feedback [105,107]: [105] Copyright© 2020, IEEE, [107] Copyright© 2017, IEEE; (g-

h) Audiovisual Feedback [108,109]: [108] Copyright© 2016, Journal of NeuroEngineering and 

Rehabilitation, [109] Copyright© 2023, Virtual Reality. 

Table 3 summarizes the comparison of these three rehabilitation strategies in aspects of 

application range, application stage, rehabilitation equipment and their working characteristics. 
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Table 3. Comparison of different modes of hand exercise rehabilitation. 

Rehabilitation 

strategy 

Application 

range 

Application 

stage 

Rehabilitation 

equipment 

Working 

characteristic 

Passive 

rehabilitation 

With severe loss of 

hand motion 

function 

Early stage of 

rehabilitation 

Exoskeletons, 

orthotics, etc. 

Provide external force 

to assist hand 

movement, mainly task 

therapy 

Active 

rehabilitation 

With small hand 

motion function 

Mid stage of 

rehabilitation 

Exoskeletons, end 

effectors, etc. 

Provide external force 

to assist or resist hand 

movement 

Guided 

rehabilitation 

With basic hand 

motion function 

Late stage of 

rehabilitation 

Vibration motors, 

virtual reality, etc. 

Do not directly provide 

assistance 

 

4. Emerging research directions 

Hand motor rehabilitation systems and associated rehabilitation strategies have been 

reviewed and summarized in previous sections, respectively. In this section, emerging 

research directions for hand rehabilitation devices are given. This mainly includes the 

research of advanced functional materials, large-scale sensor array technology and fine-

grained hand movement rehabilitation equipment (Figure 7). 

 

 

Figure 7. Emerging research directions of the hand movement rehabilitation equipment. 

4.1. Advanced functional materials for sensing and actuation 

With the development trend of miniaturization and intelligentization of the overall hand 

movement rehabilitation equipment, new requirements are put forward for the sensors that 
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are integrated in the full system. Material is an important factor affecting the performance of 

sensors, and many studies have focused on the research of new types of sensors based on 

advanced functional materials, which exhibit the comprehensive merits of flexibility, 

elasticity and robustness as well as high sensitivity and wide measurement range to capture 

information related to a broad aspects of finger bending [113], pressure [114], temperature [115] 

and other parameters. 

In addition, new flexible actuation technologies, particularly those utilizing artificial 

muscles, have the potential to replace the conventional rigid motor-driven systems or space-

consuming pneumatics, representing a promising way for the development of next-generation 

driving approach. Nevertheless, the utilization of artificial muscles for the rehabilitation 

equipment that is intimate with human skins is still limited due to their ultrahigh voltage 

requirement, which would arise the safety concern [116,117]. 

4.2. Large-scale sensor array technology 

The human hand possesses the remarkable dexterity, and the advent of large-scale array 

sensing technology holds the potential for effective acquisition of the comprehensive hand 

movement information through wearable devices. It has been reported that the integration of 

548 low-cost sensors into a large-scale sensor array for smart object recognition during the 

human hand grasping operation [14]. However, the hardware complexity associated with this 

large-scale array sensing approach confines numerous studies to the high-performance 

laboratory computers. In addition, the large-scale array sensing matrix inevitably introduces 

crosstalk among individual sensors, which manifests as noise that often retains the same 

characteristics as the original sensing signal. This issue makes it challenging to eliminate the 

interference by using the conventional filtering technique [118], which further puts forward 

new requirements for the large-scale array sensing technology. 

4.3. Fine-grained hand movement rehabilitation equipment 

Despite the progressive development of the hand movement rehabilitation equipment, there 

are still challenges in realizing the hand rehabilitation with fine movements. For instance, for 

the finger bending rehabilitation, the focus is often limited to the positional movement of the 

fingertip or the overall grasping ability, while overlooking the movement of individual joints [119]. 

For an advanced rehabilitation system, it is necessary not only to focus on the rehabilitation 

of the whole finger, but also to be able to individually train each finger joint. 

Moreover, the human hand also exhibits the abduction-adduction movement between 

adjacent fingers in addition to the flexion-extension movement [13], which puts forward 

higher requirements for the development of fine-grained hand rehabilitation equipment. The 

strategy of placing IMU schemes in the fingers has achieved the recognition of the finger 

abduction-adduction movement [120]. The ultrasonic finger motion perception and 

recognition system based on Channel Impulse Response (CIR) has also achieved high-precision 

hand motion recognition [121]. But such kind of research is rare and needs further investigation. 
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5. Conclusion 

The development of the hand rehabilitation equipment that utilizes external robotic assistance 

and wearable equipment technology have drawn great research interest and gained a great 

progress. This review article firstly introduces the latest finding in the hand movement 

rehabilitation system, which covers the advanced sensing technologies, new driving 

mechanisms and related hand movement pattern recognition algorithms. Patients with 

different disability levels at varying rehabilitation stages should employ tailored 

rehabilitation strategies to attain the optimal rehabilitation outcome. Subsequently, a 

comprehensive review was conducted on three typical rehabilitation strategies, including 

active rehabilitation, passive rehabilitation, and guided rehabilitation. Then, corresponding 

application scope and latest research results were provided. Finally, the development 

prospects of hand motion rehabilitation equipment are anticipated. Sensor design based on 

advanced materials, large-scale sensor array technology, and fine-grained hand motion 

monitoring technology will become hot research topics in the academic field. 
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