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Abstract: In this work, we design an energy management strategy (EMS) for hybrid electric
vehicles (HEVs) using a deep reinforcement learning (DRL) algorithm. Specifically, this
paper introduces a soft actor-critic (SAC)-based EMS, tailored for devising optimal energy
distribution for HEVs. The proposed SAC-based approach is useful for addressing inherent
drawbacks that exist in many DRL methods such as slower convergence rate, discretization
error, as well as suboptimal solutions. The designed SAC algorithm presents a self-adaptive
efficiency in executing continuous decision-making policies through the balance of
exploration and exploitation using an entropy-based action selection method and an
entropy-added reward function. Extensive experiments are carried out to demonstrate the
merits of the adaptive SAC algorithm over the widely adopted Q-learning (QL),
deep-Q-network (DQN), and deep deterministic policy gradient (DDPG) approaches on fuel
economy and battery charge sustainability. An unknown driving cycle is also employed to
show the adaptability feature of the proposed scheme, revealing fuel savings of 6.26%, 3.01%,
and 2.03% over the QL-based, DQN-based, and DDPG-based methods, respectively.

Keywords: adaptive energy management; hybrid electric vehicle; deep reinforcement learning
algorithm; soft-actor-critic algorithm

1. Introduction

The increase in global energy demand and the environmental impacts of fossil fuels are
bringing the need for more sustainable transportation solutions [1, 2]. Hybrid electric vehicles
(HEVs) stand out as an innovative technology that responds to this need with their potential to
increase energy efficiency and reduce carbon emissions [3]. HEVs operate by using an internal
combustion engine and an electric motor together, thus benefiting from the advantages of both
power sources [4]. The electric motor, especially at low speeds or in urban driving, reduces
both fuel consumption and carbon emissions. In situations requiring high speeds, the internal
combustion engine steps in and provides power support. With these features, HEVs reduce
energy costs and provide a transportation alternative with a lower carbon footprint, making
significant contributions to environmental sustainability [5, 6, 7].

Energy management strategy (EMS) in HEVs is of critical importance to minimize fuel
consumption and to extend battery life. EMS aims to optimize power distribution between
vehicle’s internal combustion engine and electric motor, thus ensuring efficient use of both
sources [8, 9]. However, energy management in HEVs presents several challenges due to
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their complex structures. It is necessary to effectively manage the power transfer between
internal combustion engine and electric motor and to ensure the right balance between the
two energy sources. In addition, constantly changing driving conditions such as speed, road
slope, and traffic density require the EMS to make dynamic decisions in real-time. In order
to optimize energy use and maintain battery health under varying conditions, more advanced
and intelligent EMSs are required. Under an inefficiently-designed EMS, decreased vehicle
performance and shortened battery life may occur [10, 11].

One of the innovative approaches that has emerged in energy management in recent years
is the utilization of reinforcement learning (RL) techniques [12]. RL is a machine learning
method that allows a system to develop the best action strategy by learning from its responses
under different situations [13]. This technique is a valuable tool in complex systems, as it
offers the ability to make decisions in real-time under dynamic and
uncertain environments [14]. However, traditional RL methods can be limited with
high-dimensional and continuous action fields [15, 16]. At this point, RL techniques
combined with deep learning, forming deep reinforcement learning (DRL) overcomes the
limitations of traditional RL and offers higher efficiency and flexibility [17, 18]. Wang et al.
study the potential of electric vehicles to reduce carbon emissions in transportation networks
and contribute to the energy grid with the vehicle-to-grid technique using a multi-agent RL
method. The study shows that carbon reduction is achieved by eco-routing in transportation
and energy networks [19]. Wang et al. develop a deep deterministic policy gradient
(DDPG)-based multi-agent reinforcement learning algorithm to optimize active and reactive
power control and voltage regulation services. Conducted simulations achieve a significant
superiority in terms of speed and reward [20]. In this context, in the study by Chen et al., an
EMS is developed by combining model predictive control (MPC) with a double Q-learning
algorithm to optimize power allocation for plug-in HEV (PHEV). Simulation results show
that the strategy provides superior fuel economy by adapting to different battery charge
levels [21]. In the study of Tresca et al., a deep Q-learning (QL) algorithm is used to optimize
the energy management of diesel PHEVs. The study tests the CO2 emission reduction
performance of the algorithm in the WLTC cycle and various driving conditions and reveals
that it performs close to the dynamic programming (DP) optimization (7% difference) [22].
In the study of Zhu et al., the design of the energy management strategy for a mild hybrid
HEV greatly affects the potential fuel economy gains and the amount of calibration required
under driving routes. An automatic EMS development process is presented using a DRL
algorithm based on real-world routes to maintain the battery charge level when the driving
cycle is not known in advance, and this strategy is compared with dynamic programming and
adaptive energy consumption minimization strategy in [23]. Han et al. propose an eligibility
trace-based EMS, which is an extension of the QL algorithm, to improve fuel economy and
increase battery life for HEVs. The study increased the ability to adapt to various driving
conditions by using an eligibility trace algorithm, which provides online learning and an
adaptive environment model compared to traditional RL algorithms [24]. Ahmadian et al.
develop a QL-based EMS for series-parallel HEVs. The study achieves 1.25% fuel saving and
65% battery life increase under HWFET driving cycle and the ability to adapt to different
driving cycles is ensured [25]. In addition to these studies, the main methods in RL-based
HEV energy management strategies are summarized in Table 1, providing a comprehensive
comparison of recent studies.

Traditional algorithms have limitations such as optimal behavior execution under
environments with continuous and high-dimensional action fields. In the application of EMSs,
action fields are usually continuous and require continuous learning with a large dataset [39].
Moreover, QL and DQN may present instability in the learning process under uncertain and
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Table 1. Summary of RL/DRL-Based energy management strategies for HEVs

Author Method HEV
Type

Description

Lee et al.,
2020 [26]

Q-Learning Parallel
HEV

A RL strategy is compared with dynamic programming methods;
shown to be more suitable for time-varying control and boundary
conditions. Fuel efficiency under various driving cycles is
evaluated and convergence properties are tested through transfer
learning.

Xu et al.,
2022 [27]

Q-Learning Parallel
HEV

Adaptability of a Q-Learning-based supervisory control strategy
is investigated. The effect of driving cycle, vehicle load condition,
and road grade on fuel economy is analyzed, showing adaptability
and fuel economy compared to other methods.

Tang et al.,
2022 [28]

DQN Series
HEV

A DRL-based EMS using DQN for throttle control and gear
shifting is designed. A 0.55% reduction in fuel consumption and
high computational efficiency is achieved. Learning- and rule-
based control strategies are synchronized.

Zheng
et al.,
2022[29]

Q-Learning,
DQN, DDPG

Fuel
Cell
HEV

Q-Learning, DQN, and DDPG algorithms to FCHEV EMS are
applied. Fuel economy is improved while considering fuel cell
durability and algorithm performance. Convergence ability, fuel
economy, durability, and adaptability are compared.

Lian et al.,
2020 [30]

DDPG Parallel
HEV

A DDPG-based EMS supported by expert knowledge is applied.
Multi-objective energy management considering battery properties
and BSFC curves is addressed. Accelerated learning and improved
fuel economy demonstrate better performance and system stability
as compared to other methods.

Yazar et
al., 2023
[31]

Q-Learning,
DQN, DDPG,
TD3

Power-
Split
HEV

TD3 for HEV EMS is proposed and compared with Q-Learning,
DQN, and DDPG. Superior fuel economy, SOC sustainability, and
training stability across various driving cycles are achieved.

Lin et al.,
2022 [32]

Q-Learning Parallel
HEV

A Q-Learning-based EMS using Markov Chains for transition
probability is developed. EMS updates triggered by KL divergence
rates, and convergence improved with an Exploration Factor (EF).
Comparisons are carried out, showing significant improvements in
fuel economy and energy efficiency.

Liu et al.,
2023 [33]

Reward-
Directed
Policy
Optimization
(RDPO)

Power-
Split
HEV

A DRL-based EMS using NN-based multi-constraint optimization
and a rule-based restraint system is studied. RDPO is optimized for
fuel economy while avoiding irrational control signals, achieving
outstanding results under WLTC, NEDC, and CTUDC cycles.

Wang et
al., 2024
[34]

BO-SAC Parallel
HEV

A BO-SAC algorithm for EMS is proposed, enhancing stability
and robustness via Bayesian optimization and SAR co-design, with
over 3% energy consumption reduction across ten driving cycles.

Li et al.,
2022 [35]

SAC Parallel
HEV

A SAC-based EMS with automatic entropy tuning for energy
efficiency optimization and adaptability to driving cycles is
designed. Real vehicle data is utilized, achieving 4.37% energy
savings and maintaining SOC at reference levels.

Liu et al.,
2021 [36]

TD3 Power-
Split
HEV

A DRL-based EMS with a novel reward function that penalizes
irrational actions is proposed. TD3 achieves 10% faster
computation and 7.28% lower fuel consumption compared to
DDPG in complex tasks with physical constraints.

Liu et al.,
2024 [37]

SAC Parallel
HEV

A new auto-tune SAC algorithm is proposed to optimize the motor
torque and gear shifting in hybrid action fields. The proposed
algorithm has higher computational efficiency and lower energy
efficiency compared with TD3.

Liu et al.,
2025 [38]

ATSAC Light
Duty
HEV

A SAC-based EMS is proposed to improve generalization by
automatically tuning the parameters and synthesizing a specific
training cycle based on naturalistic driving big data. 52.32% higher
computational efficiency is achieved compared to SAC and TD3.
The synthetic cycle is found to reduce NTR by 18.37% compared
to WLTC, better reflecting real-world scenarios.
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variable environmental conditions, and this situation is insufficient to provide the desired
efficiency under objectives of fuel economy or battery performance [40]. In addition, DQN
may face overestimation or underestimation problems when using deep neural networks to
estimate the action-value function, which may cause fluctuations in the learning process [41].
The above limitations highlight the need for a more robust and generalizable algorithm for the
HEV EMS problem. A method that improves learning stability in the continuous action
domain, adapts to environmental changes and minimizes overestimation problems while
achieving high efficiency is necessary.

Considering these shortcomings, the soft actor-critic (SAC) algorithm stands out as
a promising solution for EMS design. SAC is useful for continuous action domains and
optimizes the balance of exploration and exploitation during action selection using an entropy-
based method with an entropy-added reward function. This allows the algorithm to encourage
exploration while increasing the stability at each step, thus obtaining more reliable results. The
entropy term allows uncertainty to be preserved during policy learning and helps the algorithm
to learn more general solutions by balancing both exploration and exploitation [42]. SAC
algorithm quickly adapts to environmental changes using its entropy-based reward function,
thanks to its twin critic structure. It minimizes overestimation problems and learns the most
appropriate strategy under constantly changing conditions; thus, it provides an effective
response to varying energy demands and battery levels [42].

Although there are studies of the SAC algorithm in the literature, the lack of
comprehensive research on the adaptability and efficiency of the SAC is the main motivation
of this research. In particular, we test the overall adaptability and stability performance of
SAC under different driving cycles, which is limited. Due to the features and limitations
mentioned above, this paper investigates the adaptiveness and efficiency of the SAC algorithm
for the HEV EMS problem. The main contributions of this work are twofold. First, an
exploration and exploitation-based adaptive SAC is designed for HEV energy management for
improved fuel economy and SOC charging sustainability. Second, we conduct comprehensive
experiments to show fuel economy and battery charge sustainability advantages using a total
of six driving cycles. An unknown driving cycle is employed to reveal adaptability and
efficient training. In this study, the SAC algorithm for the HEV energy management strategy
is optimized with an approach that considers the balance of exploration and exploitation. The
designed model uses a dual-critic mechanism and a target network update strategy to improve
the control performance of systems with continuous action space. In addition, the reward
function used in the energy management control has been customized to improve fuel
economy and ensure battery charging sustainability.

The rest of the paper is organized as follows. Section 2 introduces the study object of this
research along with the detailed description of the proposed scheme in 3. The experiments
and results discussion are demonstrated in 4. The conclusions and future research directions
are drawn in 5.

2. Vehicle model

In this study, a power-split HEV model that combines the advantages of parallel and series
structures is selected. Power-split hybrid systems are widely used in commercial vehicles due
to their flexibility and energy efficiency.

A planetary gear system is used as the drive train of the hybrid system in this study.
In the planetary gear system, the electric motor (EM) is connected to the carrier and the
generator (GEN) is connected to the sun gear. The ring gear serves as the final drive and
the power is shared between the EM and the ring gear. This structure allows the system to
efficiently share torques from different power sources. The structure and power flow directions
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of the planetary gear system are shown in Figure 1. The planetary gear kinematic equation is
expressed with the angular velocities of the sun gear, ring gear and carrier gear as follows:

Figure 1. Structure and lever diagram of the planetary gear system
equipped in a power-split HEV.

ωs(t) ·S+ωr(t) ·R = ωc(t) · (S+R) (1)

where, S and R represent the radius of the sun and ring gears, respectively. The angular
velocities of the sun, ring, and carrier gears are represented by ωs , ωr , and ωc , respectively.
The generator (GEN) can charge the battery using the power produced by the internal
combustion engine (ICE) or directly supply power to the electric motor (EM). The dynamics
of the power transmission system can be modeled as follows, assuming the inertia of the
pinion gears is negligible and the drive shafts are rigid:

JGENω̇GEN(t) = TGEN(t)+F ·S (2)

JICEω̇ICE(t) = TICE(t)−F · (S+R) (3)

JEMω̇EM(t) = TEM(t)−
Tsha f t(t)

g f
+F ·R (4)

where, JGEN , JICE , and JEM represent the moments of inertia of GEN, ICE, and EM,
respectively, while TICE = Tr, TGEN = Tg, and TEM = Tc denote the torques. F represents the
internal force in the pinion gears, g f is the final drive gear ratio, and Tsha f t is the torque on the
drive shaft. To simplify the dynamic equations, the inertia terms are set to zero and ignored.
Under this assumption, the rotational speed and torque requirements of EM are expressed as
follows:

ωEM(t) =
g f

Rwheel
V (t) (5)

mV̇ (t) =
Tsha f t(t)+Tgen(t)

Rwheel
−mgsin(θ(t))− 1

2
ρACdV 2(t)−Crmgcos(θ(t)) (6)

where, Rwheel represents the wheel radius, V the vehicle speed, m the vehicle mass, Tbrake
the brake torque, θ the road slope, 1

2ρACd the aerodynamic drag force, and Cr the rolling
resistance coefficient.

To achieve optimal power distribution, power is allocated between the internal combustion
engine and motor/generator units (M/G1 and M/G2) to minimize energy consumption at each
time step. Assuming the engine operates under optimal conditions and dynamic characteristics
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are neglected, the fuel consumption rate ṁ f uel and the efficiencies of M/G1 and M/G2 (ηM/G1
and ηM/G2) are derived from empirical data as functions of angular velocities and torques.

ṁ f uel(t) = Ψeng(ωeng(t),Teng(t)) (7)

ηM/G1(t) = ΨM/G1(ωM/G1(t),TM/G1(t)) (8)

ηM/G2(t) = ΨM/G2(ωM/G2(t),TM/G2(t)) (9)

where Ψeng, ΨM/G1, and ΨM/G2 represent empirical maps for the ICE, generator, and motor,
respectively. In a power-split HEV, the battery provides power or recovers energy through an
inverter. A basic resistance model is used to describe the battery characteristics. The state of
charge (SOC), representing battery charge sustainability, is calculated as follows:

˙SOC(t) =−Ibatt(t)
Qmax

(10)

Pbatt(t) =VocIbatt(t)− Ibatt(t)2Rbatt (11)

where Ibatt(t) is the battery current, Qmax denotes the maximum battery capacity, Pbatt(t)
represents battery power, Rbatt is the internal resistance, and Voc is the open-circuit voltage.
The terminal battery power requirement is expressed by the following equation:

Pbatt =
PM/G1(t)

(ηM/G1(t) ·ηinv(t))kM/G1(t)
+

PM/G2(t)

(ηM/G2(t) ·ηinv(t))kM/G2(t)
(12)

where PM/G1(t) and PM/G2(t) denote the shaft powers, and ηinv represents the
inverter efficiency.

ki(t) =

{
1 if Pi(t)> 0
−1 if Pi(t)< 0

for i = {M/G1,M/G2} (13)

where Pi(t) denotes the instantaneous power output of the motor/generator units (M/G1 and
M/G2). When Pi(t)> 0, the unit operates in motor mode, drawing power from the battery. In
contrast, when Pi(t)< 0, the unit operates in generator mode, regenerating power back to the
battery. Equations 1 to 13 describe the energy management-focused model used in this study.
The primary parameters of the power-split HEV are listed in Table 2.

Table 2. Main parameters of power-split hybrid electric vehicle [43].

Component Parameter Value

Internal Combustion Engine Type Four-cylinder in-line gasoline engine
Maximum power 57 kW @ 4500 RPM
Maximum torque 110 Nm @ 4500 RPM

Electric motor Type AC motor
Maximum power 35 kW @ 1040-5600 RPM
Maximum torque 30 kW @ 3000-5500 RPM

Battery Energy capacity 5 kWh/battery pack
Charging capacity 2.3 Ah/battery unit
Battery cell layout 110 serial x 6 parallel
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3. Reinforcement learning-based energy management strategy

Reinforcement learning is a machine learning method that supports the learning process of an
agent through its interactions within an environment. This learning process allows an agent to
discover through trial and error for steps it should take to achieve a certain goal. The main
goal of an RL agent is to obtain an optimal strategy that maximizes a certain goal through the
interactions between the agent and the environment. This strategy means choosing the most
appropriate action in each situation. The agent learns by experience which actions are more
beneficial under different situations, and thanks to these experiences, it tends to choose the
most useful action when faced with similar situations in the future. The biggest advantage
of RL is that it allows the agent to discover on its own without providing pre-determined
solutions [13, 44].

In the HEV energy management system, the RL mechanism aims to allocate the requested
power in the most efficient way by making an intelligent distribution among different power
sources to meet the power requirement of the vehicle. Here, the agent is the EMS itself and
makes decisions to optimize the power management of the vehicle. The agent efficiently
distributes the power requirement among energy sources such as engine, motor and battery,
which increases the energy efficiency of the vehicle and preserves the battery health [45].

RL problems are usually addressed within the framework of Markov decision process
(MDP), which models sequential decision processes under uncertainty. MDP forms the basic
theoretical basis of complex learning problems such as RL and DRL, and its goal is to develop
a strategy that will obtain the highest expected gain (reward) by learning from the interactions
between the agent and the environment. In this process, the agent evaluates the current
situation and discovers which action will maximize the reward. An MDP consists of four
basic components: While the state (S) represents the current conditions of the agent; action
Set (A) covers all possible actions that the agent can choose at that moment. Reward (R)
indicates the feedback or gain that the agent receives as a result of an action taken in a situation;
transition probability (P) expresses the probabilities that the agent will transition from one
state to another as a result of an action.

These components of MDP are as follows: The MDP is represented by these
fundamental components:

MDP = {S,A,R,P} (14)

In this study, to control the energy management system of a HEV, the agent observes
particular states related to the vehicle’s performance and energy efficiency, and selects the
appropriate action based on these observations. Here, the "states" (S) are defined as the torque
required to meet the vehicle’s power demand (Tdem) and the battery’s SOC. The Tdem varies
according to the vehicle load and driving conditions, while the SOC indicates the battery’s
health and remaining energy capacity. By considering them as two state variables, the agent
selects actions that optimize energy management, enhancing both the vehicle’s performance
and efficiency.

A = {Tm} (15)

In the RL model, the reward function plays a critical role as it determines how favorable
a particular action taken by the agent is in a given state. In this study, the reward function for
the energy management controller consists of two main components: the instantaneous fuel
consumption of the engine and the change in the battery’s SOC. These two components aim
to both maintain fuel efficiency and optimize the battery’s health. Therefore, the objective
function is then defined as the negative of the reward function as follows:
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R =−
[
α · ṁfuel(t)+β · (SOCref−SOC(t))2] (16)

where t represents the time step with the agent receives a new reward value at each time step.
α is the coefficient term for fuel consumption, determining the impact of fuel consumption on
the reward function. β is the weighting coefficient for the battery SOC variation, indicating
the influence of the difference between the reference SOC value SOCref and the current SOC
on the reward. SOCref is the reference state of charge of the battery, assumed to be kept as
60%, which represents the ideal SOC level to ensure optimal battery performance.

This function encourages the controller to choose the most appropriate control inputs to
maintain energy efficiency and battery charge level simultaneously. When the instantaneous
fuel consumption of the engine is reduced and the SOC value of the battery is kept close to the
reference value, the reward value is increased, so that the controller prefers this situation in
future decisions. This structure allows the controller to both optimize the vehicle’s performance
and manage energy in an efficient way. It encourages the controller to choose the most
appropriate inputs to maintain energy efficiency and battery health.

3.1. Soft actor-critic (SAC) algorithm

The The SAC is an algorithm that is widely used in the field of DRL, which offers effective
performance in continuous action spaces and stands out with its stable learning properties.
Unlike traditional DRLs, SAC optimizes the exploration-exploitation balance with entropy
regulation. Thus, it encourages agents to explore different actions and reduces the risk of
getting stuck in local maxima by offering a wider exploration space during the learning process.

The algorithm adopts a "soft" policy approach, thanks to the entropy term added to the
reward function, which maintains a certain degree of uncertainty and tries more diverse actions.
In this way, policies not only target the maximum reward, but also become more flexible and
durable during the exploration process.

SAC’s actor-critic structure allows it to optimize both policy learning (actor) and the
value function (critic) at the same time. This structure differs from algorithms such as QL
and DQN, which focus only on the action-value function. QL and DQN are more suitable for
discrete action domains and cannot show optimal performance in continuous action domains.
On the other hand, SAC uses the actor-critic architecture to directly learn policies in the
continuous action space of the actor and enables more precise decisions to be made in the
action space [46]. In the SAC algorithm, the value functions are estimated by two separate
critic networks using the twin critic structure. This prevents overestimation problems as
in DQN and allows more stable results in the estimates. In addition, the target smoothing
mechanism in SAC allows the actor to learn its actions more stably. SAC learns a more
reliable and flexible policy by maintaining a certain level of uncertainty for each action,
which provides a significant advantage under complex scenarios that require continuous
adaptation [47, 48].

The SAC algorithm also uses a double Q-function to increase stability. The double
Q-function structure prevents overestimation of target Q-values, increasing the reliability of
learning. At the same time, while updating the policy networks, the values obtained from
the Q-functions are taken as reference to ensure that the policy is directed correctly. The
framework of the SAC algorithm is given in Figure 2.
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Figure 2. SAC algorithm structure.

In the SAC algorithm, the target value of the Q-functions, y(r,s′,d), is calculated by
combining the reward obtained in the next state and the expected Q value of the policy. This
target value is used as a reference during the update phase to enable the Q-functions to make
more accurate predictions. Formulating the target value in this way in the SAC algorithm helps
to stabilize the learning process. The formula for calculating this target value is as follows:

y(r,s′,d) = r+ γ(1−d)
(

min
i=1,2

Qtarg,i(s′, ã)−α logπθ (ã|s′)
)

(17)

where, r is the received reward, γ is the discount factor, d is the indicator of the terminal state,
Qtarg,i represents the target Q-functions (indicating the double Q structure), ã∼ πθ (·|s′) is the
action sampled by the policy, and α is the entropy regularization coefficient. The entropy
term α logπθ (ã|s′) is added to the reward function to enhance the exploration capacity of
the policy.

Both Q-functions are updated by minimizing the squared difference between the predicted
Q value and the target Q value in order to ensure reliable learning in the SAC algorithm. This
update helps each Q-function better estimate the long-term reward expectation for each state-
action pair. Updating the Q-functions in this way enables a more accurate evaluation of current
and future rewards at each step. The update is performed using gradient descent, where the
expression

(
Qφi(s,a)− y(r,s′,d)

)2, known as the error term, is minimized. This error term
represents the difference between the predicted Q value and the target Q value, and the smaller
this difference, the higher the accuracy of the Q-functions.

This update process is carried out separately for each Q-function, and the parameters φi
of each function are optimized using gradient descent. The update rule is as follows:

φi← φi−ηQ∇φi

1
|B| ∑

(s,a,r,s′,d)∈B

(
Qφi(s,a)− y(r,s′,d)

)2 (18)
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where, ηQ is the learning rate, B is the mini-batch of sampled experiences, and Qφi represents
the Q-function parameters. This update rule reduces the discrepancy between the predicted and
target values for each Q-function, allowing the agent to make more accurate reward predictions
and contribute to learning the optimal policy.

The policy is updated based on the values obtained from the Q-functions, taking into
account the entropy regularization. The policy update rule is as follows:

∇θ J(θ)≈ ∇θ

1
|B| ∑s∈B

(
min
i=1,2

Qφi(s, ãθ (s))−α logπθ (ãθ (s)|s)
)

(19)

where, ãθ (s) is the action sampled by the policy in a given state, and the entropy term is used
to maintain diversity in the policy’s learning process. The target Q-functions are updated to
slowly track the main Q-functions. The update rule is as follows:

φtarg,i← ρφtarg,i +(1−ρ)φi (20)

where, ρ is the target smoothing coefficient.

Algorithm 1 Soft Actor-Critic
1: Input: Initial policy parameters θ , Q-function parameters φ1, φ2, empty replay buffer D
2: Set target parameters equal to main parameters: φtarg,1← φ1, φtarg,2← φ2
3: repeat
4: Observe state s and select action a∼ πθ (·|s)
5: Execute a in the environment
6: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
7: Store (s,a,r,s′,d) in replay buffer D
8: if s′ is terminal then
9: Reset environment state

10: end if
11: if it’s time to update then
12: for j in range (number of updates) do
13: Randomly sample a batch of transitions, B = {(s,a,r,s′,d)} from D
14: Compute targets for the Q-functions:

y(r,s′,d) = r+ γ(1−d)
(

min
i=1,2

Qtarg,i(s′, ã)−α logπθ (ã|s′)
)
, ã∼ πθ (·|s′)

15: Update Q-functions by one step of gradient descent:

∇φi

1
|B| ∑

(s,a,r,s′,d)∈B

(
Qφi(s,a)− y(r,s′,d)

)2 for i = 1,2

16: Update policy by one step of gradient ascent:

∇θ

1
|B| ∑s∈B

(
min
i=1,2

Qφi(s, ãθ (s))−α logπθ (ãθ (s)|s)
)

where ãθ (s) is a sample from πθ (·|s), differentiable with respect to θ via the reparameterization trick.
17: Update target networks:

φtarg,i← ρφtarg,i +(1−ρ)φi for i = 1,2

18: end for
19: end if
20: until convergence

In summary, the SAC algorithm combines entropy-regularized policy updates with stable
Q-function learning to achieve reliable performance in continuous action spaces. By balancing
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exploration and exploitation through entropy, SAC enables agents to learn robust policies that
adapt well to complex environments. This combination of soft policy learning and double
Q-function structure makes SAC a powerful tool in deep reinforcement learning, particularly
in tasks requiring stability and effective decision-making in high-dimensional state and action
spaces. The structure of SAC is presented in Algorithm 1.

4. Experiment results

This study performs a comprehensive analysis using traditional QL, DQN, and DDPG
algorithms to evaluate and compare the proposed SAC-based EMS performance. SOC
tracking, fuel consumption, and adaptiveness are evaluated under all four algorithms. The
study aims to reveal the performance of the EMS against the changes in speed and torque
demands and to analyze their performance under different settings. The hyperparameter
settings of the SAC-based EMS used in this evaluation process are meticulously selected to
stabilize the learning process of the model and to provide effective control. Critical
parameters such as learning rates, entropy target, and network structure support the successful
learning of the model under different driving cycles. Detailed hyperparameter settings of the
SAC algorithm are presented in Table 3.

Table 3. Hyperparameters of the SAC Algorithm.

Parameter Value

Simulation time T 7451 s
Sample time Ts 1 s
Episodes number M 500
Maximum steps per episode 7451
Actor learning rate 0.00001
Critic learning rate 0.0001
Discount factor γ 0.99
Entropy target -0.5
Score averaging window length 10
Stop training criteria Episode Reward
Stop training value ∞

A comprehensive driving cycle called “ALL-CYC” is employed by combining the widely
used driving cycles. This driving cycle includes six standard driving cycles: New European
Driving Cycle (NEDC), World Harmonized Light Vehicle Test Procedure (WLTP), Urban
Dynamometer Driving Cycle (UDDS), Highway Fuel Economy Test (HWFET), New York
City Cycle (NYCC) and LA92 cycle. NEDC is an old test procedure used especially in Europe
and simulates low-speed, low-acceleration driving conditions, generally representing urban
and light traffic driving scenarios [49]. WLTP, on the other hand, was developed based on more
realistic driving data, covers various driving conditions with varying speed and acceleration
profiles, and is currently accepted as the standard test procedure in many countries [50]. UDDS
is a cycle used in the USA to model urban traffic conditions and has a low-speed profile with
frequent stop-and-go movements [51]. HWFET is a cycle that represents highway driving and
generally reflects high-speed steady driving conditions, so it is used to evaluate fuel economy
[52]. NYCC tests low-speed driving performance by simulating heavy traffic conditions and
frequent stop-and-go driving specific to New York City [53]. LA92 represents the dynamic
structure of Los Angeles city traffic with complex speed changes and high acceleration [54].

The speed profile of this driving cycle is presented in detail in Figure 3, which shows the
speed changes in the segments corresponding to each standard cycle. In addition, the basic
features of the ALL-CYC cycle, such as distance, total time, average speed, and maximum
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speed, are summarized in Table 4. This comprehensive analysis allows for a more accurate
evaluation of parameters such as vehicle performance and fuel consumption under different
driving conditions, forming the ALL-CYC cycle.
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Figure 3. ALL-CYC Velocity Profile.

Table 4. Characteristics of driving cycles.

Driving Cycle Distance (km) Duration (s) Average Speed (km/h) Maximum Speed (km/h)
NEDC 11.0 1180 33.6 120
WLTP 23.3 1800 46.6 131
UDDS 12.0 1369 31.5 91

HWFET 16.5 765 77.8 97
NYCC 2.0 598 12.0 44
LA92 14.5 1435 36.4 106

The training results under the ALL-CYC driving cycle are examined in detail, presenting
the final SOC values and fuel consumption in Table 5, while the SOC graph is shown in
Figure 4. Note that we can capture all possible action spaces with ALL-CYC driving cycle
since it presents a high possibility of driving scenarios. The engine operating points are shown
in Figure 5. The color bar in the figures represents the brake specific fuel consumption (BSFC)
that shows the efficiency of the engine. BSFC is measured in g/s and shows the amount of fuel
consumed by the engine to produce a unit of power. Lower BSFC values (blue-green) indicate
high efficiency, while higher values (yellow-red) indicate low efficiency. The contours define
the BSFC regions, and the maximum torque curve defines the operating limits of the engine.
All algorithms generally try to minimize fuel consumption by operating the engine in low
BSFC regions. However, it is seen that the operating points of SAC are concentrated in low-
consumption regions and closer to the optimal BSFC curves. This shows that SAC minimizes
fuel consumption more effectively and adapts better to dynamic conditions. Moreover, there
are significant differences in the battery SOC control and fuel consumption performance under
different algorithms. The QL, DQN, and DDPG algorithms deviate significantly from the
reference SOC value of 60%. The QL algorithm achieves an end of SOC of 67.93%, while the
DQN algorithm remains at 65.63% and the DDPG algorithm remains at 63.82%. This shows
that all three algorithms tend to overcharge the battery, potentially causing unnecessary energy
consumption. Overcharging the battery can lead to a shortened battery life and increased
energy losses in the long term. On the other hand, the SAC algorithm exhibits a good
reference tracking performance, which is close to the reference SOC level with a value of
61.93%. This situation shows that SAC adapts better to driving conditions and can keep the
battery level in the optimal range thanks to its adaptive structure. This provides a critical
advantage in terms of both preserving battery health and adopting a balanced approach to
energy management. When evaluated in terms of fuel consumption, the SAC algorithm
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achieves the lowest fuel consumption value of 2.807 L and demonstrates superior performance
in terms of energy efficiency. In contrast, the QL algorithm shows inefficient energy usage due
to battery overcharging with 3.17% higher fuel consumption. The DQN algorithm shows a
moderate performance with 1.95% higher fuel consumption compared to SAC. In addition,
the DDPG algorithm shows a closer performance to SAC with a fuel consumption difference
of 1.13%. Overally, the SAC algorithm consumes 3.17% less fuel than QL, 1.95% less than
DQN, and 1.13% less than DDPG. These differences clearly show that the SAC algorithm
offers a more balanced and adaptive control strategy in terms of both energy management and
fuel efficiency. This improved control capability of SAC enables it to dynamically adapt to
different driving conditions and better optimize fuel consumption.

Table 5. Comparison of battery SOC and fuel consumption values of the
proposed RL/DRL-based approaches.

Algorithm End-of-cycle
SOC (%) Fuel Consumption (L) Fuel Consumption per

100 km (L/100 km)
Fuel Consumption

Difference (%)

QL 67.93 2.896 3.519 3.17
DQN 65.63 2.862 3.478 1.95
DDPG 63.82 2.839 3.449 1.13
SAC 61.93 2.807 3.411 -

Reward graphs obtained during the training process play a critical role in algorithm
performance evaluation. These graphs visualize how the algorithm learns the environment, its
learning speed and stability, and allow comparison of different methods. Figure 6 compares
the training results of QL, DQN, DDPG and SAC algorithms in the ALL-CYC driving
cycle and the obtained reward values. In the QL graph, it is seen that the reward values
are quite fluctuating throughout the training process. Low reward values are obtained at
the beginning, and although some improvements are recorded in the upcoming sections, the
overall performance exhibited an unstable structure. In the DQN graph, the reward values
became stable after approximately the 130th episode and exhibited a stable performance
during the subsequent training process. However, slight fluctuations are observed in some
sections. In the DDPG graph, it is observed that the reward values stabilize quickly and exhibit
a stable structure throughout the training process, but exhibit offsets. In the SAC graph, the
performance of the algorithm stands out clearly. In the training process, a stable and high
reward value is reached after approximately the 50th episode. The average reward value is
obtained in a fixed line and stability is preserved throughout the training process. This result
shows that the SAC algorithm can learn the optimal policy more efficiently and provide higher
performance compared to the other three algorithms.
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Figure 4. SOC graph in ALL-CYC driving cycle of RL/DRL-based
EMS models.
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Figure 5. Engine operating points for the ALL-CYC driving cycle.
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Figure 6. Training results for RL/DRL methods under ALL-CYC
driving cycle.
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In this section, the SAC algorithm is trained using the ALL-CYC driving cycle. ALL-
CYC includes a widely used and standard driving cycle. To evaluate the adaptiveness feature
of the proposed SAC-based EMS model, we use a completely different driving cycle, which is
not included in the ALL-CYC dataset. Adaptiveness is a vital feature of the SAC algorithm,
presenting good performance due to its ability to dynamically adapt to different environments
and conditions.

The FTP-75 (Federal Test Procedure 75) Driving Cycle is a test driving cycle used by the
U.S. Environmental Protection Agency to evaluate automobile emissions, fuel consumption,
and energy management strategies. It was developed specifically to simulate urban driving
conditions. This driving cycle covers a distance of approximately 17.7 km in a total time of
1875 seconds and has an average speed of 34.1 km/h. The speed profile of the FTP-75 driving
cycle is given in Figure 7.
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Figure 7. FTP-75 driving cycle velocity profile.

The training results under the FTP-75 driving cycle are examined in detail, demonstrating
the final SOC values and fuel consumption in Table 6, and the SOC graph is presented in
Figure 8. Additionally, the engine operating points are illustrated in Figure 9. Since the reward
definition includes fuel consumption minimization, we can see that the controllers aim to
run the engine in a fuel-efficient way, the SAC methods still outperform the other methods.
According to the table and SOC graph results, the SAC algorithm exhibits a more adaptive and
balanced performance in terms of both fuel consumption and SOC control. QL, DQN, and
DDPG algorithms result in a higher SOC level, which leads to overcharging of the battery; this
may cause energy losses and shorten the battery life. In contrast, the SAC algorithm obtains a
SOC level closer to the reference SOC value, ensuring that the battery is kept at the optimum
level. In terms of fuel consumption, SAC offers the lowest value (3,258 L/100 km), showing
6.26% less fuel consumption than QL, 3.01% less than DQN, and 2.03% less than DDPG.
This shows that the SAC algorithm dynamically adapts to different driving conditions and
optimizes energy efficiency.

Table 6. Comparison of battery SOC and fuel consumption values of the
proposed RL/DRL-based approaches under the FTP-75 driving cycle.

Algorithm End-of-cycle
SOC (%) Fuel Consumption (L) Fuel Consumption per

100 km (L/100 km)
Fuel Consumption

Difference (%)

QL 64,60 0.6152 3.462 6.26
DQN 63.33 0.5964 3.356 3.01
DDPG 62.85 0.5901 3.325 2.03
SAC 62.34 0.578 3.258 -
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Figure 8. SOC graph in FTP-75 driving cycle of RL/DRL-based EMS
models.
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(c) DDPG
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Figure 9. Engine operating points for the FTP-75 driving cycle.

5. Conclusion

In this study, a SAC-based EMS is presented for HEV energy management problem. Due to its
soft policy approach via an added entropy term during action selection in policy computation,
it maintains an improved performance under more diverse drive conditions. We train the SAC
actor-critic structure under a set of six driving cycles, demonstrating a good exploration and
exploitation feature in performance metrics assessment. A completely different driving cycle
is also utilized to light out the adaptiveness feature of the SAC-based EMS design. Specifically,
the fuel consumption and battery charge sustainability are evaluated against the QL-based
EMS, the DQN-based EMS, and the DDPG-based EMS benchmarks in the generalization of
the proposed SAC-based EMS. It is found that the SAC-based EMS outperforms in adaption
to dynamic driving conditions and improves the energy efficiency of HEV, thanks to its
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pursuit of maximum entropy feature for encouraging more exploration and obtaining more
stable training performance. These findings demonstrate that the SAC-based approach offers
significant advantages in EMS design. In the future, testing such approaches on large scales and
real-world applications will make significant contributions to the field of connected driving.
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