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Highlights:

• A novel prediction framework based on probabilistic models is proposed.

• Quantile regression incorporates and quantifies prediction uncertainty.

• Multi-horizon prediction is implemented in the presented framework.

• Industrial experiments have validated and verified the performance.

Abstract: Paste-filling is a crucial process in the mining industry. Traditional sensor devices often
overlook model errors and struggle to measure the certainty of key quality variables. This study
addresses these challenges by proposing a novel efficient data-driven quantile regression forecasting
framework, DDQRF, to predict the concentration of deep cone thickeners. Conventional methods rely on
normal regression models, minimizing residual mean square error to estimate underflow concentration,
resulting in inaccuracies due to residual error accumulation in recursive strategies. Specifically, complex
high-quality feature representation is essential for accurate prediction models, particularly for multiple
horizon predictions necessary for hierarchical optimal control. The presented framework introduces direct
data-driven regression prediction, leveraging temporal machine learning models to extract features
effectively. Unlike probabilistic Bayesian models, our approach offers efficient implementation and
deployment, utilizing prediction intervals to quantify forecast uncertainty. In addition, the proposed
model directly predicts multiple horizons, contrasting with traditional recursive single-point forecasting,
offering enhanced training and memory efficiency. These characteristics are validated through industrial
experiments on a deep cone thickener, comprehensively comparing performance with state-of-the-art
counterparts.
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1. Introduction

The extraction of resources is a cornerstone of modern civilization, serving as a catalyst for societal
progress, with the mining industry playing a central and indispensable role in this pursuit. Raw mining
materials are essential to a wide range of applications, cutting across numerous sectors [1], including
critical industries such as aerospace and medicine, further emphasizing the multifaceted importance of
mining [2–4]. However, despite its pivotal contribution, the mining sector faces significant challenges.
Chief among these is the precise regulation of underflow concentration—a critical quality parameter that
directly influences the paste-filling process [5]. Accurate measurement of this concentration is hindered
by several factors, including prohibitive device costs, complex coupling effects, and substantial time
delays [6]. Maintaining a consistent and accurate underflow concentration is crucial for the robustness
of paste-filling operations, as deviations can lead to imbalances and mud oscillations within thickeners.
As a result, effective control of the cone thickener system (CTS) is vital to monitor paste extraction
concentration and mitigate potential safety risks [7]. Given the mechanical complexities of CTS, reliable
prediction of underflow concentration serves as a prerequisite for implementing effective control measures.
In addition, keeping the underflow concentration within a narrowly defined dynamic range is essential to
prevent blockages or crushing while meeting the stringent quality demands of the paste-filling process.

The accurate underflow concentration is of critical importance in CTS. However, traditional time
series forecasting models primarily focus on yt+1 subject to recent history y : t =(yt , ,y0) [8]. Among these,
the Box-Jenkins methodology, including ARIMA models [9], is a widely used point-estimation approach
that employs historical data points in a recursive autoregressive framework for multi-horizon forecasting.
Nonetheless, real-world forecasting often entails higher complexity, with time series exhibiting long-term
dependencies between inputs and outputs [10]. Additionally, accurate estimation of prediction intervals is
crucial for quantifying forecast uncertainties and optimizing control performance in decision-making,
particularly for multistep, long-horizon predictions [11]. To tackle these challenges, a variety of modern
techniques have been proposed, each addressing specific aspects of the forecasting problem [12].

Quantile uncertainty prediction serves as a pivotal approach in time series forecasting, particularly
for applications requiring precise estimation of prediction intervals and robust decision-making. Unlike
traditional point prediction methods that estimate the conditional mean of a target variable, quantile
prediction focuses on estimating specific conditional quantiles of the target distribution. This approach
provides a comprehensive representation of forecast uncertainties by generating prediction intervals at
desired confidence levels. By learning to predict these quantiles directly, quantile regression eliminates
the need for strong distributional assumptions, offering greater flexibility and applicability across diverse
datasets [13]. Such predictions are particularly beneficial in scenarios with asymmetric costs associated
with under- and over-prediction, as they enable more informed and risk-aware control strategies. Moreover,
the ability to quantify uncertainty through prediction intervals enhances the reliability of forecasts in
industrial systems, where maintaining operational consistency and safety is paramount. Consequently,
quantile-based uncertainty prediction has emerged as a robust tool for advancing predictive analytics in
complex, data-driven environments [14].

Most neural network-based approaches for time series forecasting adopt the recursive strategy [15],
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where the model predicts yt+1 based on history y:t and iteratively updates this estimate to forecast
longer horizons. However, this recursive approach can suffer from error accumulation, particularly when
employing Recurrent Neural Networks (RNNs), as the model relies on its own predictions rather than
actual data during inference [16]. By contrast, the direct strategy predicts yt+k directly from y:t for each k,
reducing bias, improving stability, and enhancing robustness against model misspecification [17]. Recent
studies comparing multi-step forecasting strategies with neural networks highlight the efficacy of the
direct multi-horizon approach, where the model is trained to predict a multivariate target (yt+1; ·;yt+k),
thereby mitigating error accumulation while ensuring parameter efficiency. In decision-making contexts
with asymmetric costs for over- and under-prediction, probabilistic forecast models that estimate the full
conditional distribution p(yt+k |y:t ) are preferable to point forecast models that predict only the conditional
mean E(yt+k |y:t ). Traditionally, for real-valued time series, probabilistic models assume Gaussian error
distributions or stochastic processes for residual series εt = yt − ŷt . However, quantile regression has
gained prominence in scenarios where the prediction of specific quantiles is necessary for minimizing
losses and quantifying uncertainties [13, 14]. This method learns to predict conditional quantiles y(q)t+k |y:t

of the target distribution without assuming specific distributional forms, enabling accurate probabilistic
forecasts with precise prediction intervals. As a result, quantile regression is increasingly recognized as a
robust approach for prediction calibration.

Direct data-driven control algorithms utilize input-output data to design control strategies, integrating
parameter identification with model-based control. In industrial cone thickener systems, several
challenges underscore the need for a multi-horizon quantile strategy driven by direct data [7]. These
challenges include:

(1) The difficulty of measuring historical underflow concentration distributions, which limits the
applicability of traditional Bayesian probabilistic predictors.

(2) The necessity for consistent operation and production in the paste-filling process, which demands
accurate underflow concentration forecasts. Reliable forecasts enable precise control, enhance
efficiency, and mitigate costs and safety hazards.

(3) The challenge of obtaining a comprehensive mathematical model of the CTS for implementing
model-based methods, making data-driven approaches more viable. Recent advancements in direct
data-driven prediction techniques offer promising solutions to address these challenges [18–20].

Building on the previous analysis, the time series prediction of the CTS underflow concentration is
critical yet remains insufficiently explored. In this work, a consistent underflow concentration prediction
method based on deep LSTM and quantile regression is proposed. The motivation is that the underflow
concentration prediction is generated using a data-driven multi-horizon forecasting mechanism with
uncertainty quantification. The key contributions of this study are as follows:

• Novel architecture: Unlike the traditional time series prediction models [21, 22], which predict yt

given recent history yt−1,yt−2, . . . ,y0, this study proposes a new prediction model architecture that
implements direct data-driven multi-horizon prediction.

3



Mechatronics Tech. Article

• Quantified uncertainty: Distinct from previous deterministic prediction methods [7, 23–25], this
quantile regression model incorporates and quantifies prediction uncertainty.

• Learning capacity and robustness: The presented framework fully leverages the learning capacity
of temporal machine learning models and the robustness of probabilistic models to uncertainty.
Unlike traditional Bayesian probabilistic models, this study introduces a novel Gating Recurrent
Network (GRN) for encoder representation, characterized by its ease of use and implementation.

• Industrial application: This study represents the inaugural effort to tackle the challenge of
predicting underflow concentration within an industrial CTS system. The proposed model provides
substantial insights, serving as a critical reference for control strategies.

The proposed method’s feasibility and effectiveness are demonstrated through a real-world industrial
application for CTS, supported by core model verification and validation. The paper is structured
as follows: Section 2 presents the foundational work, covering problem formulation, multi-horizon
forecasting, and underflow probabilistic prediction. Section 3, Section 4, and Section 5 discuss the
prediction approach, convergence analysis, and experimental studies, respectively. Finally, Section 6
provides the conclusion.

2. Preliminary foundations

The deep thickener system is the central element of the industrial paste-filling process. Furthermore, it
supplies the essential components required to construct the proposed probabilistic, multi-horizon prediction
framework. Notably, these components include the LSTM unit and the recurrent gating mechanism.

2.1. CTS description

As shown in Figure 1, A deep understanding of the CTS is crucial for subsurface paste filling, ensuring
consistent concentration levels for underground mining operations. Maintaining an appropriate
subterranean concentration is essential, as excessive concentration can result in pipe blockages, while
insufficient concentration compromises the quality of the backfill paste, posing significant safety hazards.
Consequently, developing an efficient model to predict underflow concentrations for CTS is vitally
important. The CTS processes a low-concentration crude slurry flow (about 20%–30%), combining it
with a flocculant to improve settling and aid in collecting dissolved particles in a mud bed. The system
generates a properly concentrated feed flow from the bottom, while clean water from the overflow
pipe is recycled for reuse. The primary control objective of the CTS is to maintain a consistent and
precise underflow concentration, a critical parameter for evaluating the effectiveness and efficiency of
the underground paste-filling process. To predict the underflow concentration, time-series architectures
can leverage prior knowledge and historical data, enabling accurate and reliable forecasting to support
operational safety and efficiency.
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Figure 1. Deep Cone Thickener Unit.

Figure 2. Specification of Process Variables
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2.2. Multi-horizon forecasting problem statement

In this section, a new sequence-to-sequence direct data-driven framework that generates multiple horizon
quantile forecasts with uncertainty consideration for the industrial CTS is presented. In addition, the
traditional multi-horizon forecast problem is shown in Figure 3. It is represented as:

p(yt+k,i, · · · ,yt+1,i | y:t,i,x
(h)
:t,i ,x

( f )
t:,i ,x

(s)
i ), (1)

where y·,i represents the ith time series to be predicted, while x(h):t,i denotes historical temporal covariates,

x( f )
t:,i contains future information, and x(s)i includes static, time-invariant features. Each time series serves

as an individual input for a sequential neural network, such as an RNN or CNN.
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Figure 3. Illustration of multi-horizon forecasting.

2.3. Related counterparts

All the previous time series prediction methods can be summarized and classified into the following two
categories, deterministic models, probabilistic models with a statistical viewpoint, or recursive single-point
prediction, and multi-horizon strategy.

Deterministic models: RNNs and CNNs are two kinds of basic units for the time-series models [26].
Quantile time series modeling with deep learning has been applied in [13]. Zhang et al. discussed the
comparative study for the time-series RNN model [27]. Some other univariate and multivariate attention
models are also discussed in [23, 28, 29]. Recently, Huang et al. evaluated various multi-step strategies
applied to a multi-layer perceptron, highlighting the effectiveness of the direct data-driven approach [30].
Probabilistic models: Regarding probabilistic prediction with encoder-decoder models, a popular
prediction method, DeepAR, a Seq2Seq architecture, was proposed [31]. DeepAR is similar to a
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neural network that predicts Gaussian parameters and such a strategy. Zhang et al. investigated the latent
adversarial regularized autoencoder for the high-dimensional probabilistic time prediction, however, it
also requires computing the output distribution [32]. Koo et al. designed a quantile autoregressive neural
net for the stretching application [33]. The quantile idea is used into these presented models.

LSTM is a type of model designed to retain historical data, effectively circumventing the long-term
dependency challenges often encountered in RNNs [34]. This capability is facilitated by a memory
gate that preserves information from prior contexts. At its core, the basic LSTM unit features three
gates—input, output, and forget gates—that collectively protect and manage the cell state, ensuring the
selective retention and updating of information. An advanced LSTM configuration encompasses four
interacting layers, including repeating modules, which further refine its processing capabilities. These layers
enable the LSTM to adeptly toggle between gates, establishing a durable temporal memory that mitigates the
issue of vanishing gradients, thus enhancing the model’s ability to learn from long sequence data.

Denote the historical vector x(t) and the hidden state h(t−1), and the previous inputs c(t−1). Then, the
forget gate is:

f (t) = σ(Wf · [ht−1,xt ]+b f ) (2)

The gate of input and new candidate vectors are formulated:

it = σ (Wi · [ht−1,xt ]+bi) ,

C̃t = tanh
(
W(C) · [ht−1,xt ]+bC

)
.

(3)

The new state of an LSTM cell is updated by

Ct = ft ∗Ct−1 + it ∗C̃t . (4)

The output can be given by
ot = σ (Wo [ht−1,xt ]+bo) ,

ht = ot ∗ tanh(Ct) .

Here, σ denotes the activation function, typically the Sigmoid function, while tanh represents the
nonlinear tangent activation. The symbol ∗ indicates point-wise multiplication. Parameters Wc, Wo, and
Wi correspond to the associated weights, whereas bi, bc, and bo represent the respective biases. A variant
of bidirectional LSTM is presented in Figure 4.

2.4. Underflow concentration multi-horizon prediction

In CTS, concentration is intertwined with numerous other variables [35]. Figure 2 presents all potential
variables within the CTS system. In practice, the myriad of interdependent variables and the often opaque
nature of their relationships with the target variable complicate the identification of relevant predictors.
Furthermore, establishing the appropriate prediction horizon and the extent of historical observations
required poses additional challenges. To address these complexities, a coefficient corelation analysis
was conducted to identify key variables in the cone thickener production process. The selection of vital
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variables is a pivotal step in constructing a data-driven prediction model. Through mechanical analysis,
mud height and pressure were identified as significant factors due to their nonlinear correlations with the
target variable and were thus incorporated into the model. Building upon the foundation laid by [35], the
final input variables for the model include mud pressure, mud height, the most recent feed flow rate, the
flow rate of the highest volume, underflow density, and historical underflow concentration. Consequently,
this sets the stage for multi-horizon prediction of underflow concentration in CTS systems.

p(yt+k,i, · · · ,yt+1,i | y:t,i,x
(h)
:t,i ,x

( f )
t:,i ,x

(s)
i )

= p(yt+k,i, · · · ,yt+1,i | ⟨Ci(t),Qi(t),F(t),Co(t),Qo(t)⟩)

= p(yt+k,i, · · · ,yt+1,i | W ·NN
L

∑
i=1

〈
yi,y′i

〉 (6)

where NN represents the neural network-based predictor, W is the corresponding weights. The input
variables are denoted by the matrix [Ci,Qi,F ,Co,Qo]. However, prediction intervals is very insightful for
the control and operation. So, Equation (6) with quantile addition can be rewritten as:

p(yt+k,i, · · · ,yt+1,i | y:t,i,x
(h)
:t,i ,x

( f )
t:,i ,x

(s)
i ,q)

= p(yt+k,i, · · · ,yt+1,i | ⟨Ci(t),Qi(t),F(t),Co(t),Qo(t)⟩,q)

= p(yt+k,i, · · · ,yt+1,i | W ·NN
L

∑
i=1

〈
yi,y′i

〉 (7)

which implements the predicted qth quantile of the k-step-ahead forecast at instant t.
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3. Methodology

The primary objective of this segment is to address the challenge outlined in (7), which entails determining
the optimal weights for the data-driven model through the training process, given all the input data. This
process aims to accurately generate the quantile underflow concentration output. Detailed descriptions of
the proposed model are given as following sections, encompassing the encoder representation, the specially
designed Gated Recurrent Network (GRN), and the decoder output, respectively.

3.1. Encoder representation
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Figure 5. Flowchart of the proposed DDQRF.

As shown in Figure 5, the original data is preprocessed into three subsequent data, the static metadata,
past inputs and the known future inputs. The static metadata is calculated by

c =Cov(XL+k, ...,X2L+k) = E[(Xi −µXi)(X j −µX j)], i ̸= j (8)

where µXi and µX j are the different expectations for the static metadata.
The past inputs and future inputs are both transformed to the LSTM, inherited by the Gate mechanism

and normalization term, then the output of the first LSTM encoder would be

φ(X ,c) = LST M(W,X ,c) (9)
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Then the final output after the gate mechanism and layer normalization is described as

a = LayerNorm(GLU(φ(X ,c))) (10)

3.2. Gated recurrent network

Motivated by the nonlinear representability ability of neural networks, a new architecture is proposed as
the building block of the proposed framework. The GRN takes the secondary inputs that extract from the
LSTM encoders a and static covariate c as the inputs, then yields:

GRN(a,c) = Norm(a+GLU(η1))

η1 = W1η2 +b1

η2 = ELU(W2a+W3c+b2)

GLU(γ) = σ(W4γ +b4)⊙ (W5γ +b5)

(11)

where ELU is the exponential kernel. b is the bias of the ELU.

3.3. Quantile decoder

As presented in previous work, the underflow concentration is continuous and is linked to the previous
representation of the characteristics. In the designed framework, the decoder representation is given as:

ϕ(X ,a,c) = LayerNorm(GLU(ξ )) (12)

The decoder representation gives the high-level features of the underflow concentration prediction.
In the top layer, the model generates the prediction intervals by generating various simultaneous quantiles.
Probabilistic quantile forecasters are activated by the temporal decoder representation:

ŷ(q, t,k) =Wqϕ̂(X ,a,c)+bq (13)

where k is the horizons in the future, Wq ∈ R1×L, bq ∈ R is the bias for the different quantile q. In the
training, the objective is to minimize the total quantile loss Lq:

Lq(y, ŷ,q) = q(y− ŷ)++(1−q)(ŷ− y)+ (14)

where (·)+ = max(0, ·). When q = 0.5, the Lq is simply the mean absolute error (MAE). Let τ be the
maximum number of forecast horizons, M be the matrix of quantiles of interest, then the τ ×M matrix
Ŷ=

[
ŷ(q)t+k

]
k,q

is the output of a parametric model g(y:t ,x,θ), for example an RNN. ∑t ∑q ∑k Lq(yt+k, ŷ
(q)
t+k)

is the model loss, where t iterates through all forecast creation times (FCTs). In the underflow concentration
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prediction, the loss function would be the joint quantile loss, which is summed across all the outputs:

L (N ,W) = ∑
yt∈N

∑
q∈M

k=τ

∑
k=1

Lq(y, ŷ,q)
N k

(15)

where N is the domain field of all the data-driven training data. W is the corresponding weights. M is
the quantile hyperparameter list that is manually denoted, in our experiment, M = [0.1,0.5,0.9]. The
definition of (.)+ is given by (.)+ = max(0, .). Finally, the prediction framework presented is formulated
and an intuitive demonstration is given in Figure 3.

4. Convergence analysis

The mean squared error (MSE) loss function is:

MSE(y, ŷ) :=
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

When the residuals’ mean ε := y− ŷ is zero, minimizing this loss function results in estimating the
conditional mean Ŷ = E(Y |X).

Quantile regression modifies the MSE loss function to estimate conditional quantiles instead of
means. The core idea is to transform quantile estimation from a sorting problem into a probability
estimation. For example, for q ∈ (0,1), the check function is defined as follows:

ρq(x) :=

x(q−1) if x < 0

xq otherwise
(17)

the associated mean quantile loss is given by

MQL(y, ŷ) :=
1
n

n

∑
i=1

ρq (yi − ŷi) (18)

The aim is to find ŷ that minimizes

E
[
ρq(Y − ŷ)

]
= (q−1)

∫ ŷ

−∞

f (t)(t − ŷ)dt +q
∫

∞

ŷ
f (t)(t − ŷ)dt

= q
∫ ŷ

−∞

f (t)(t − ŷ)dt −
∫ ŷ

−∞

f (t)(t − ŷ)dt

= q
∫ ŷ

−∞

f (t)tdt − ŷq
∫ ŷ

−∞

f (t)dt −
∫ ŷ

−∞

f (t)tdt

+ŷ
∫ ŷ

−∞

f (t)dt = q
∫ ŷ

−∞

f (t)tdt − ŷq−
∫ ŷ

−∞

f (t)tdt + ŷF(ŷ)

11
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where f is the PDF of Y . Differentiate with respect to ŷ and set the expression equal to zero then

0 =−q− ŷ f (ŷ)+F(ŷ)− ŷ f (ŷ) = F(ŷ)−q (19)

showing that ŷ ∈ F−1 (q), i.e. that it is indeed a qth quantile.

5. Case study

In the evaluation design, different ablation studies are conducted. The first-class competitors are those
deterministic recursive methods, which include the ARIMA, LSTM, and RNN. The other counterparts
are those probabilistic strategy methods, such as DeepAR, and the Bayesian methods. The evaluation
index RMSE can be given as:

RMSE =

√
1
N

N

∑
i=1

(
⌢y

i
t − yi

t)
2

(20)

In addition, MAE is identified as another evaluation index that yields:

MAE =
1

Nu

Nu

∑
i=1

|⌢yt − yt | (21)

The experimental setup mirrors that described in the reference by [21] with respect to the DualLSTM
framework. The dropout rate is configured at 0.3, the state size is determined to be 160, and the prediction
horizon is established at 20 time steps. For model training, the Adamdelta optimizer is employed for
weight adjustments and for calculating the gradient descent of the loss function. The network’s architecture
encompasses an input layer, which can be comprised of RNN, LSTM, or bidirectional LSTM (BiLSTM)
units, each with 128 hidden neurons. This layer is followed by a fully-connected layer featuring 64
neurons, and culminates in an output layer with a single neuron. A Gated Recurrent Network (GRN)
model is also developed, featuring a dense architecture. Recognizing the impact of training epochs on
prediction accuracy, the ablation study adjusts the number of iterative epochs in a progressively increasing
sequence: [1, 5, 10, 50, 100, 150, 200, 500, 800, 1000], while maintaining all other hyperparameters at
their original settings.

5.1. Validation and verification result analysis

To fulfill the validation and verification process, the LSTM and GRN are selected as the comparison
benchmarks. The ablation study results are summarized in Figure 6. Figure 6a compares the different
regressors with different quantiles. The observation underflow concentration is fully bounded by the
upper and lower boundary, the Regressor 1 (green dash line) and Regressor 3 (the dotted line). It
demonstrates that the proposed framework correctly predicts the underflow concentration in multiple
horizons. On the other hand, Regressor 2 (the blue dot line), also the mean probabilistic prediction follows
the actual underflow concentration value timidly, which means that the proposed method achieves a great
performance. Similar characteristics are also discovered in the subsequent series, the presented method
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implements a satisfactory prediction performance. Compared to the presented approach, the LSTM, the black
line in Figure 6a, shows an apparent residual error between the prediction and observation. Figure 6b show
that the GRN and LSTM usually underestimate the underflow concentration, while the proposed Regressor
2 got the superior performance. Figure 6c also shows that in time instant t = 1000, the actual underflow
concentration is around 65%, while the LSTM predicted value is 60%, such a prediction residual degrades
the LSTM model’s performance. Figure 6b verified the initial performance of those different methods, as
shown in interval [880,980], the proposed three quantile regressors achieve accurate prediction, while
the LSTM and GRN caused inaccurate underflow concentration prediction, with almost 15% and 10%
residual errors, respectively.
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Figure 6. The proposed model for industrial underflow prediction results; (a)-(d) are different
prediction intervals, respectively.

Regarding verification, the method introduced has been implemented in the CTS system. Figure 7
presents the application performance of the proposed quantile forecaster. Figures 7a–7d describe 4
different industrial applicative series. The main feature is that all the observations are bounded by an 80%
prediction interval, which is computed by the prediction upper boundary (q = 0.9) and lower boundary
(q = 0.1). The proposed regressor covers the observation very well, even in some abrupt oscillation
intervals, such as in an interval [900,1000]. However, the proposed method also shows a weakness,
which is the ability to cucumber the situation of a single outlier, the intuitive point is shown in Figure
7a, around instant t = 220, and Figure 7d, instant t = 3500. This outcome is justified given that the
accuracy surpasses that of other contemporary approaches, which demonstrate inferior capabilities in
handling outliers. Moreover, within practical applications, a singular outlier does not constitute the
primary concern that requires prioritization.

The more detailed ablation study results are given in Figure 7. An increasing epoch with different
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quantiles is conducted while keeping other hyper-parameter fixed. Figure 7 gives the intuitive result
presentation of the MSE, associated with the bar, and RMSE with lines. Compared to q = 0.1 and q = 0.9,
q = 0.5’s performance outperforms others, with the lowest MSE and RMSE. It also shows that when
the epoch is set as 100, associated with quantile coefficient q = 0.5, the lowest MSE 0.662, is obtained.
Therefore, as fully explored, for the deployment verification, the optimal epoch is set as 100. When the
epoch is set as 50, the q = 0.1 and q = 0.9 achieves the highest RMSE, 0.824 and 0.827, respectively,
while the q = 0.5 is 0.814. The result explores the optimal hyper-parameters for the proposed framework.

Table 1 gives the comparison of the different competitors, which covers the deterministic methods
SVR [23], MPA-RNN [28], SS-PdeepFM [29], DSTP-RNN [36] and other probabilistic approaches
DualLSTM [21], DeepAR [31]. The recursive point strategy DA-RNN [37], DA-LSTM [26]. The
proposed method is scope of multi-horizon, and probabilistic. Compared to the basic LSTM, the GRN
improves the prediction ability. While the GRN’s feature learning ability is also limited. Therefore, the
proposed method has a lower MSE and RMSE, compared to its own basic benchmarks. Despite relying on
a singular feature, the proposed method successfully incorporates these benefits.

Regarding verification, the method introduced has been implemented in the CTS system. Figure 7
presents the application performance of the proposed quantile forecaster. Figures 7a–7d describe
4 different industrial applicative series. The main feature is that all the observations are bounded
by an 80% prediction interval, which is computed by the prediction upper boundary (q = 0.9) and
lower boundary (q = 0.1). The proposed regressor covers the observation very well, even in some
abrupt oscillation intervals, such as in an interval [900,1000]. However, the proposed method also
shows a weakness, which is the ability to cucumber the situation of a single outlier, the intuitive
point is shown in Figure 7a, around instant t = 220, and Figure 7d, instant t = 3500. This outcome
is justified given that the prediction accuracy of the proposed method surpasses that of other
contemporary approaches, which demonstrate inferior capabilities in handling outliers. Moreover, within
practical applications, a singular outlier does not constitute the primary concern that requires prioritization.
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Figure 7. The proposed DDQRF model for industrial underflow prediction results. The
subfigure is the different time series and all the results are conducted on the Testing metadata.

The more detailed ablation study results are given in Figure 7. An increasing epoch with different
quantiles is conducted while keeping other hyper-parameter fixed. Figure 8 gives the intuitive result
presentation of the MSE, associated with the bar, and RMSE with lines. Compared to q = 0.1 and q = 0.9,
q = 0.5’s performance outperforms others, with the lowest MSE and RMSE. It also shows that when
the epoch is set as 100, associated with quantile coefficient q = 0.5, the lowest MSE 0.662, is obtained.
Therefore, as fully explored, for the deployment verification, the optimal epoch is set as 100. When the
epoch is set as 50, the q = 0.1 and q = 0.9 achieves the highest RMSE, 0.824 and 0.827, respectively,
while the q = 0.5 is 0.814. The result explores the optimal hyper-parameters for the proposed framework.
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Figure 8. The error performance comparison (RMSE and MAE) for the different methods in an
increasing epoch. Specifically, the quantiles of our proposed method are based on 0.1, 0.5, and
0.9, respectively. The rmse legend for quantile q = 0.5 is marked with red, q = 0.9 is marked in
a blue triangle, and q = 0.1 is marked in a black rectangle.

Table 1 gives the comparison of the different competitors, which covers the deterministic methods
SVR [23], MPA-RNN [28], SS-PdeepFM [29], DSTP-RNN [36] and other probabilistic approaches
DualLSTM [21], DeepAR [31]. The recursive point strategy DA-RNN [37], DA-LSTM [26]. The
proposed method is scope of multi-horizon, and probabilistic. Compared to the basic LSTM, the GRN
improves the prediction ability. While the GRN’s feature learning ability is also limited. Therefore, the
proposed method has a lower MSE and RMSE, compared to its own basic benchmarks. Despite relying
on a singular feature, the proposed method successfully incorporates these benefits.
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Table 1. Evaluation indexes for the different competitive prediction methods. Compared
to the existing state-of-the-art deterministic approaches, our proposed benchmark implements
probabilistic data-driven forecasting, and also multiple horizon prediction.

Categories Methods RMSE MAE

Deterministic RNN 0.6712 ± 0.0124 0.3488 ± 0.0082

GRN 0.4634 ± 0.0078 0.2499 ± 0.0345

LSTM 0.7533 ± 0.0030 0.5119 ± 0.0079

SVR 0.8133 ± 0.0002 0.6003 ± 0.0013

BiLSTM 0.8091 ± 0.0092 0.6083 ± 0.0118

GSTAE 0.7735 ± 0.0068 0.5296 ± 0.0097

SS-PdeepFM 0.7650 ± 0.0036 0.5206 ± 0.0073

Probabilistic DualLSTM 0.7985 ± 0.0116 0.5847 ± 0.0164

DeepAR 0.7571 ± 0.0033 0.5235 ± 0.0092

Suggested 0.6654 ± 0.0021 0.631 ± 0.0013

Recursive point strategy ARIMA 0.7515 ± 0.0034 0.2074 ± 0.0072

LSTM-DeepFM 0.7497 ± 0.0026 0.5091 ± 0.0071

MPA-RNN 0.7515 ± 0.0034 0.2074 ± 0.0072

DA-RNN 0.851 ± 0.0029 0.2322 ± 0.0052

DA-LSTM 0.851 ± 0.0029 0.2322 ± 0.0052

Attention 0.9086 ± 0.0021 0.2445 ± 0.0031

Multiple horizon strategy DeepAR 0.9086 ± 0.0021 0.2445 ± 0.0031

DSTP-RNN 0.8496 ± 0.0051 0.2254 ± 0.0042

Suggested 0.6654 ± 0.0021 0.631 ± 0.0013

6. Conclusion

This study introduces a high-efficiency, key-quality model for predicting underflow concentration in
deep cone thickener systems, aiming to overcome the challenges associated with underflow prediction in
industrial CTS facilities. It unveils a pioneering approach to soft sensing of underflow concentration in the
industrial paste filling process through probabilistic methods. Markedly, this research is the first to apply
probabilistic forecasting of underflow concentration, offering an alternative to the existing deterministic
approaches. Furthermore, it distinguishes itself from the probabilistic Bayesian networks by proposing a
novel quantile regression framework equipped with multi-horizon forecasting capabilities. This model
sets a benchmark for similar process industries, providing a readily adaptable and utilizable solution. The
proposed method leverages the nonlinear mapping capabilities of time sequence models alongside the
uncertainty quantification of probabilistic models. Validation and verification experiments conducted
within an industrial CTS context have demonstrated its superior performance compared to existing
methods. Future research will concentrate on addressing the instability caused by outliers, as highlighted
in previous discussions. Exploring and integrating algorithms that mitigate the impact of outliers in our
probabilistic regression forecasting model represents a promising avenue for further investigation.
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