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Abstract: Path planning algorithms are indispensable for controlling micro-/nanorobots 

through complex and unknown environments in the biomedical and medical fields. With the 

tasks performed becoming more complex, higher-quality paths are required to avoid 

obstacles for ensuring the safe and efficient movement of micro-/nanorobots. A comparative 

analysis of path planning algorithms is conducted to elucidate the algorithm’s application and 

optimization for different environments. According to the environment modeling approach, 

existing path planning algorithms are classified into searching, sampling, and dynamic 

aspects. Searching path planning algorithms directly retrieve the global path possessing 

minimum cost from the modeled static waypoints. Sampling path planning algorithms 

employ randomly sampled waypoints within the target space, which eliminates the necessity 

for environmental modeling. Dynamic path planning algorithms utilize local paths to regulate 

the motion of micro-/nanorobots in real time. Deep learning networks based on big data will 

become an important research direction for the control and navigation of micro-/nanorobots. 

The advantages and limitations of path planning algorithms in varied spatial contexts are 

elucidated through detailed examples and descriptions, providing a comprehensive 

understanding of performance and applicability. This review underscores recent 

advancements in this emerging domain and stands as a testament to the dynamic landscape 

of micro-/nanorobotics and the continual pursuit of superior motion control solutions.  
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1. Introduction 

Micro-/nanorobots, a noteworthy sub-field of robotics, have shown great potential for 

applications in the biological and medical fields [1–7]. With micro-/nanorobots performing 

more delicate tasks, higher demands of path planning are required to generate a more efficient 
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path by interacting with the real world [8–10]. Path planning algorithms for micro-/nanorobots 

have applications in nanomanipulation [11,12], drug delivery [13,14], and non-invasive 

diagnosis [15,16], which are essential for determining the motion direction and for 

controlling the posture of micro-/nanorobots [17,18]. 

The complexities of the microscopic and in-body world increase the demands on the 

automated control of micro/nanorobots [19]. Deploying an optimal path planning algorithm 

is a key step to achieve sophisticated tasks, such as obstacle avoidance [20] and multi-robot 

cooperation [21]. Using optimal paths as the reference for navigation can significantly reduce 

collision risks and control complexity without human intervention [22]. 

The accurate control and trajectory tracking of micro-/nanorobots via optimized 

algorithms has become a central focus of contemporary research [23,24]. Researchers 

continually develop advanced methods to ensure that micro-/nanorobots can adapt to 

dynamic conditions [25–27]. The continued advancements in path planning algorithms are 

pivotal in unlocking the full potential of micro-/nanorobots. The published number of articles 

on path planning algorithms for micro-/nanorobots are shown in Figure 1. 

 

Figure 1. The number of papers related to path planning for micro-/nanorobotics. Data 

are collected from Google Scholar in August 2024 using search keywords: “path 

planning” and “micro-/nanorobotics”. 

This study reviews the path planning algorithms for micro-/nanorobots, providing a 

theoretical basis for future research directions and technological breakthroughs. The general 

process of path planning for micro-/nanorobots includes modeling the environment, 

generating paths, and modifying paths [28,29]. According to the environment modeling 

approach, existing path planning algorithms can be classified into three categories including 

searching path planning [30], sampling path planning [31], and dynamic path planning [32]. 

The tree classification schemes for path planning in micro-/nanorobots are shown in Figure 2. 
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Figure 2. The classified path planning algorithms for micro-/nanorobots. 

 

Figure 3. The characteristics of path planning algorithms for three different categories. 

(a) The retrieval grid with the ant colony algorithm for the searching path planning, 

reproduced from [33]. (b) The path tree of the Rapidly-exploring Random Tree for 

sampling path planning, reproduced from [34]. (c) The controlling workflow of 

reinforcement deep learning for dynamic path planning, reproduced from [35]. 
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Searching path planning models the navigable space using static waypoints [36]. The 

optimal path is calculated according to the designed cost function by searching static 

waypoints. Searching path planning algorithms have a simple arithmetic logic structure. 

Computational efficiency depends on the number of retrieved waypoints. 

Sampling path planning randomly places waypoints multiple times within the target area, 

which overcomes the limitations of static waypoints [37]. The optimal path is found according 

to trees or graphs connected by the sampled waypoints. The randomly sampled waypoints avoid 

modeling the environment, which greatly improves the efficiency of path planning. 

Dynamic path planning involves interacting with the surrounding environment to control 

the movement direction of micro-/nanorobots in real time [38]. The motion path of a 

micro-/nanorobot consists of step-by-step local paths generated by the dynamic path planner. 

This allows real-time control in complex dynamic environments. The characteristics of path 

planning algorithms are concurrently listed under different classifications in Figure 3. 

In the following, the state-of-the-art and development trends of path planning algorithms 

for micro-/nanorobots are discussed in detail. Then, the final section presents conclusions 

and opportunities for future research in this field. 

2. Searching path planning 

Searching path planning algorithms identify an optimal path that minimizes the cost function 

by traversing static waypoints, which are modeled from environmental data by grids [39] or 

pixels [40]. Static waypoints efficiently retrieve the optimal path in frequently updated 

environment maps [41]. The searching path planning algorithms include the Dijkstra 

algorithm [42], the A* algorithm [43], and the swarm intelligence algorithm [44]. 

2.1. Dijkstra algorithm 

The Dijkstra algorithm, a foundational method in searching path planning, was proposed by 

Dijkstra in [45], which can enable collision-free navigation for micro-/nanorobots in complex 

and dynamic environments [46]. After modeling static waypoints from the obtained 

environment data, an expanding circular search area is created with the starting point at the 

circle’s center. The static waypoints are retrieved to generate a graph ( , )G V E  for 

calculating the edge weights by the path cost function [41], where V  denotes a set of graph 

nodes as retrieved waypoints and E  represents a set of potential local paths for calculating the 

path cost. The lowest-cost node is recorded as a new leaf node until arriving at the target point. 

In [47], an autonomous navigation system based on the Dijkstra algorithm was proposed 

to control a microsphere vehicle through a nanoscale maze by a magnetic field generator. 

Real-time environmental images are acquired using a microscope charge-coupled device 

camera, and then the accessible space is extracted from the images via a coordinate system. 

The Dijkstra algorithm extends the leaf node with the lowest cost, thereby adjusting the 

traditional breadth-first search strategy [48]. By continuously comparing the costs of 

different paths, the algorithm ultimately searches for an optimal and collision-free route. 

Although real-time changes in the environment and multiple potential paths can impact 
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navigation, the Dijkstra algorithm adapts the path planning based on real-time data, allowing 

the robot to respond flexibly to dynamic environmental changes. 

To navigate the micro-/nanorobots to the goal point in the 2D space meanwhile to avoid 

obstacles in the moving path, Mobadersany et al. [49] applied the Dijkstra algorithm to 

navigate the micro-/nanorobots. To extend the navigation in 3D space, Vincent et al. [50] 

proposed a trajectory planning method for micro-manipulation based on a three-dimensional 

space matrix. This algorithm is mainly suitable for the presence of obstacles in the workspace. 

Obstacles along the path are marked by modifying the association matrix. 

The Dijkstra algorithm traverses all existing points to find the shortest path with the 

lowest cost value, featuring a straightforward operational logic. The time complexity of the 

Dijkstra algorithm is 2( )O n  [51], as it examines all static waypoints. Consequently, the 

calculation time to determine the shortest path increases exponentially with the number of 

nodes, resulting in low efficiency in dynamic environments. 

2.2. A star (A*) algorithm 

The A* algorithm is proposed by narrowing the search area based on the end-point 

information [52]. The cost function of the A* algorithm combines the heuristic cost and goal 

cost to calculate the shortest path from the static waypoints [53]. The fitness cost function 

significantly influences the selection of the best path. Distinct from the Dijkstra algorithm 

that uses global search, the heuristic function in the A* algorithm makes the path retrieval 

process more purposeful [54]. The cost function ( )f n  is expressed as: 

( ) ( ) ( )f n g n h n    (1) 

where n  is the position information of current waypoints. ( )h n  represents the heuristic 

function to calculate the distance from the nth  node to the goal node. ( )g n  represents the 

path function to calculate the goal cost from the start to the nth  node. 

To control the autonomous navigation of a peanut-like magnetic-drive swimming 

microrobot in a complex micro maze, Fan et al. [55] utilized the A* algorithm to generate 

the shortest and optimal path with defined start and endpoints. An extended algorithm and 

appropriate binarized environment maps were employed to deconstruct the loss function to 

ensure a safe distance between the microrobot and the wall. 

Path modification methods are proposed to improve the motion efficiency of 

micro-/nanorobots. Since, the optimal path calculated by the A* algorithm may adhere to 

obstacles, which presents a challenge for controlling the microrobot [56]. To avoid the 

micro-/nanorobots close to the obstacles in operation, the wall-avoiding method is proposed 

in [17] by adding a distance function based on the cost function of the A* algorithm. The cost 

function of the wall-avoiding path planning is expressed as follows: 

( ) ( ) ( ) ( )f n g n h n d n     (2) 

where ( )d n  denotes a distance function that is inversely proportional to the distance between 

the current waypoint and the obstacle. Further, the distance function is defined by the radial 

lengths of internal and external circumferences of microrobots. 
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To manipulate microrobot movement in liquid 3D space for vivo medical applications, 

Dong et al. [57] proposed a path strategy that combines the A* algorithm and the minimum 

jerk method, enabling the generation of an obstacle-free and smooth path. After obtaining the 

3D grid maps from both cameras, the optimal path is retrieved and recorded several times in 

a repetitive search loop using the A* algorithm. Both the heuristic function ( )h n  and the path 

function ( )g n  are defined as the Euclidean distance. The A* algorithm may retrieve local 

paths where the acceleration and velocity cannot be satisfied. The minimum jerk method is 

proposed to satisfy the path’s derivative and continuity constraints by applying the squared 

jerk’s integral as the path cost function. Further, waypoints away from the boundary of the 

obstacle are added to avoid collision with the obstacle. 

The integration of control parameters and environmental data into a novel cost function 

enables the rectification of the original path. The optimized cost function enhances the 

obstacle avoidance efficiency of the A* algorithm and reduces the operational difficulty of 

the micro-/nanorobot. 

2.3. Swarm intelligence algorithm 

Swarm Intelligence (SI) algorithms simulate the genetic, predatory, and group behavior of 

organisms [58]. Since exiting the positive feedback mechanism, the SI algorithms are used 

to solve the path planning problem for micro-/nanorobots [59]. Common SI algorithms 

include Genetic Algorithm (GA) [60] and Particle Swarm Optimization (PSO) [61]. 

To control a snakelike magnetic microrobot swarm (SMS) under microscopic visual 

navigation, a path planner based on the GA was proposed in [62]. The SMS is constructed 

from peanut-shaped hematite colloidal particles, driven by rotating magnetic fields, which 

enable it to form a dynamic equilibrium chain. The GA optimizes the generation and motion 

control of the SMS for efficient and precise navigation. By integrating the GA into the path 

planning process, the SMS achieves high-precision trajectory tracking at desired velocities in 

both simple and complex environments. This approach ensures efficient swarm generation, 

enabling the SMS to navigate through curved and branched narrow channels with high mobility. 

To prevent nanorobots from getting lost during travel to the target region, the directed 

PSO algorithm was proposed in [63]. This algorithm can deliver the entire swarm of 

nanorobots to the target region after only a small number of iterations. When at least one 

nanorobot reaches the goal point, the goal information is broadcast to all robots, reducing the 

number of iterations required. Experiment results show that the directed PSO algorithm can 

deliver all nanorobots to the target area more efficiently than traditional algorithms.  

To guide the multifunctional magnetic spore for drug delivery, a PSO-based path planer 

was designed in [30]. The PSO path planner evaluates the fitness of each particle using a cost 

function, typically taking into account factors such as path length and collision risk to ensure 

no collision with the obstacles. Simulation results of the PSO-based optimal path planner 

after modeling the environment data are shown in Figure 4. 



Robot Learn.    Review 

7 
 

 

Figure 4. Simulation results of the PSO-based optimal trajectory planner after 

parameter tuning. (a) Captured experimental scenario. (b) Illustration of the three path-

planning results with different targeted cells. Reproduced from [30] with permission. 

Copyright 2020 IEEE Transactions on Automation Science and Engineering. 

Zheng et al. [64] introduced the idea of the artificial potential field to optimize the PSO 

algorithm. The main concept is to establish a virtual force field in the working environment 

of the mobile microrobot, where the target point generates an attractive potential field and 

the obstacles generate a repulsive potential field. The motion environment of the microrobots 

is modeled using the grid method, where obstacles are marked on the grid. The artificial 

potential field technique is then applied to assign potential field values to each grid point. 

Using the PSO algorithm, a path is planned that follows a trajectory of decreasing potential 

field values. 

Overall, searching path planning algorithms can quickly calculate the optimal path in 

environments with a limited number of nodes, which is leveraged for the preliminary path 

planning of nanorobots [65]. 

3. Sampling path planning 

Sampling path planning algorithms randomly sample waypoints from environmental data [66]. 

The sampled waypoints provide greater flexibility in the shapes of the micro-/nanorobot’s 

path. Sampling path planning algorithms include probabilistic roadmaps [67] and rapidly 

exploring random trees [68]. 

3.1. Probabilistic roadmaps 

Kavraki et al. [69] proposed a motion path planning algorithm for robots in static workspaces 

called the Probabilistic RoadMap (PRM) algorithm. The PRM has been successful in 

retrieving paths in high-dimensional spaces, which includes three main steps for avoiding 

obstacles. First, waypoints are randomly sampled within the specified target area, and 

waypoints proximate to obstacles are removed. Second, all selected waypoints are connected 
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by straightedges to generate a graph, with edges not blocked by obstacles regarded as 

potential localized paths. Finally, the shortest path from start to end is determined from the 

potential localized paths. 

A path planner utilizing the PRM algorithm was proposed by Dey et al. [70] for 

micromanipulators. Initially, the PRM algorithm is employed to address obstacles within the 

working environment, generating a roadmap through random sampling and collision checks. 

Subsequently, the start and goal positions are incorporated into this roadmap. Finally, the 

greedy algorithm is deployed to ascertain the optimal or shortest path between these positions. 

The advantage of the PRM is randomly selecting waypoints from the movement space, 

which can quickly retrieve the optimal path through the selected waypoints. Therefore, the 

PRM algorithm can reduce the time of modeling the environment to improve the 

computational efficiency of paths. However, the random selection of waypoints produces the 

optimal path which cannot equal the shortest arrival path. 

3.2. Rapidly-exploring random tree 

Different from the sampled waypoints to generate a graph, the Rapidly-exploring Random 

Tree (RRT) is proposed to describe the optimal path by a random tree [71]. The algorithm 

quickly and efficiently searches the high-dimensional space to find the planned path from the 

starting point to the goal point. The randomly sampled waypoints guide the search through 

the restricted area [72]. Since environmental data modeling is avoided through collision 

detection of the sampled points, the RRT algorithm offers a viable solution for the path 

planning of micro-/nanorobots in high-dimensional spaces with complex constraints [73]. 

To achieve automatic obstacle avoidance in micro-robot vascular environments, 

Fan et al. [74] modified the artificial potential field combined with the RRT algorithm. 

Meanwhile, the RRT algorithm is used for path planning of multi-agent micro-/nanorobots. 

Salehizadeh and Diller [34] proposed the unidirectional-RRT motion planner to control the 

movement of two nanorobots through a narrow slit. 

However, the randomly sampled waypoints usually result in the calculated path that is 

neither the shortest nor the most direct, which increases the overall tortuosity [75]. In the 

course of practice, the path composed of randomly selected path points was not smooth 

enough, which caused the micro-/nanorobot to be unable to respond quickly to changes in 

direction. Consequently, to facilitate the navigation of micro-/nanorobots, it is essential to 

optimize the initial paths calculated by the RRT algorithm. 

To navigate magnetic microrobots in complex and large-workspace human body 

environments, Liu et al. [37] proposed an improved RRT algorithm based on the evolutionary 

strategy. Especially, three limitation requirements of evolutionary strategy are designed to 

achieve a shorter, smoother, and safer path: (1) Paths are calculated by the RRT algorithm; 

(2) The journey length, path smoothness, and distance from obstacles are taken into account; 

(3) The path is not blocked by obstacles. To fulfill the requirement (2), three cost functions 

have been devised as follows: 
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where 
lf  represents the Euclidean distance between the waypoints. 

af  represents the angle 

change of the path. 
df  denotes the minimum distance between the path point and the surface 

of an obstacle. 

A Rapidly-exploring Random Tree Star (RRT*) algorithm is proposed to ensure that the 

generated optimal tree is the shortest path [76]. Furthermore, an enhanced bidirectional RRT* 

algorithm was proposed to realize path planning and motion control of microrobots [77]. 

Using an image-guided motion controller, the generation process of the optimal path consists 

of three steps: (1) obtaining the initial path based on RRT*; (2) establishing collision Buffer 

Layers to avoid all obstacles; (3) Smoothing the path. The proposed path planning algorithm 

enables clusters of microrobots to accurately approach moving targets with greater efficiency. 

4. Dynamic path planning 

As the operating environment becomes more complex, dynamic path planning algorithms remain 

significant challenges for micro-/nanorobots to avoid unknown and moving obstacles [78]. 

Unlike searching and sampling path planning, dynamic path planning algorithms simplify 

global paths into local steps for micro-/nanorobots [79]. The algorithm for real-time motion 

direction calculation in micro-/nanorobots is classified as dynamic path planning. 

Consequently, contemporary research in robotics focuses on developing dynamic path 

planning algorithms to ensure the safe operation of micro-/nanorobots [80,81]. Current 

dynamic path planning algorithms include the dynamic window approach, reinforcement 

learning, and deep learning. These algorithms combine the dynamic environment and the 

micro-/nanorobot’s motion state to predict the direction of travel in real time [82]. 

4.1. Dynamic Window Approach 

The Dynamic Window Approach (DWA) is an obstacle avoidance algorithm for local path 

planning, which is widely applied in the path planning of micro-/nanorobots. The objective 

cost function ( , )G v   of the DWA algorithm scores the trajectory based on the feasible and 

angular velocities to obtain the best combination to drive the robot’s motion along the local 

paths [83]. The cost function is illustrated as follows: 

 ( , ) ( , ) ( , ) ( , )G v w heading v w dist v w V v w          (6)  

where  ,  , and   are the weighted parameters. ( , )heading v w  represents the heading 

angle function. ( , )dist v w  denotes the safety evaluation function. ( , )V v w  is the speed 

magnitude evaluation function. 
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In unknown and complex environments, the DWA algorithm entails the step-by-step 

exploration of dynamic paths from a starting point to a target area, considering the vital 

dynamics of nanorobots [84]. 

An optimal path is determined with the DWA integrated linear quadratic regulator to 

deliver the target drug via nanorobots [85]. The cost function LQRJ  of the linear quadratic 

regulator is designed to minimize the sum of all state errors and the control input. The total 

cost function J  is expressed as follows: 

( , ) (1 ) LQRJ G v w J     (7)  

To address the low success rate of microrobots traversing obstacle-dense environments 

by employing the DWA algorithm, Zeng et al. [86] proposed the obstacle avoidance planning 

algorithm based on the multi-module enhanced dynamic window approach. The suggested 

path planner optimizes the heading angle function and obstacle function. The heading angle 

function is optimized below: 

( , ) ( / )mheading v w Round d v    (8) 

where ( , )heading v w  is the optimized heading function. ( )Round   is the rounding function. 

md  represents the predicted time step and vice versa. 

The optimized obstacle function ( , )dist v w  records the distance between the trajectory 

and the nearest obstacle. Further, the target point function target( , )v w  is added after the 

microrobots have passed through the dense obstacles, improving the navigation capability of 

the robot. The evaluation function ( , )G v w  of the multi-module enhanced dynamic window 

approach is shown as follows: 

 ( , ) ( , ) ( , ) ( , ) target( , )G v w heading v w dist v w V v w v w               (9)  

The speed and angle of the micro-/nanorobot are dynamically calculated by minimizing 

the cost function of the DWA. Optimizing the loss function and modeling the operating 

environment can markedly enhance the efficiency of nanorobots in complex environments. 

4.2. Reinforcement Learning 

Reinforcement Learning (RL) enables nanobots to follow the shortest path to reach their 

target by making decisions at each point along the way [87,88]. The framework of the 

reinforcement learning algorithm is shown in Figure 5. 

 

Figure 5. The framework of the reinforcement learning algorithm. 
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To deliver targeted drugs for treating cancer [89], nanorobots must reach the designated 

location safely and stably. In [90], the Q-learning, i.e., reinforcement learning, was applied 

to obtain the optimal solution of the Markov Decision Process (MDP) [91] to predict the 

direction of operation of the micro-/nanorobot. The formation of a dynamic decision 

algorithm known as the MDP has been employed to address issues related to motion planning 

and execution by providing a mathematical framework. A policy for decision-making is 

required for the MDP. This policy should provide the probability of taking action when in 

the state S , as illustrated in Figure 6. 

 

Figure 6. The framework of the Markov Decision Process. 

The optimal strategy based on the Q-learning and the MDP is designed to generate the 

optimized local path. which is expressed as follows: 

 1( , ) ( , ) max( ( , )) ( , )i i i i
a

Q s a Q s a r Q s a Q s a 


       (10)  

where r  represents the immediate reward.   is the relative parameter of delayed rewards. 

s  denotes the new state. a  and a  are the actions of states. 

To improve the efficiency of microrobots navigating through blood vessels, 

Tabrizi et al. [92] proposed a path planner combining ant colony optimization with the RL. 

The suggested combination algorithm includes the linear learning step and the auxiliary 

learning step. In the linear learning step, the ant agents interact with the environment to obtain 

the real environment information. Then, the real statements are used to update the primary 

function. The optimization method improves the efficiency of path retrieval under a large 

motion. However, the ant colony optimization relies on repeated events that have occurred. 

Controlling magnetic nanorobots to deliver cancer drugs in the complex and dynamic 

3D vivo space requires path planning algorithms including a sense of generality and 

adaptability. Abbasi et al. [15] suggested the model-free path planner based on the RL 

algorithm to control the magnetic nanorobots, which reduces the average path length to reach 

the target, resulting in more accurate motion control of the nanorobots. To combine path 

planning and control, the suggested RL agents with a neural network are trained gradually 
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from simulation, 2D navigation, and 3D navigation. The experiments show that the trained RL 

model has a huge improvement in control accuracy compared to the traditional control model. 

In summary, the advantage of the RL algorithm is the real-time interaction between the 

micro-/nanorobots and the dynamic environment. By directly modeling the environment and 

motion state, the RL algorithm iteratively refines the control strategy, enabling precise 

positioning and navigation in dynamic environments. However, manual intervention is still 

necessary during the initial stages of training for different individual environments. 

4.3. Deep learning 

To perform more complex tasks and adapt to dynamic environments, establishing real-time 

interaction between micro-/nanorobots and surroundings is crucial [93]. Consequently, deep 

learning-based path planning algorithms, as efficient means of intelligent interaction, have 

become a current research focus [94]. This increases the flexibility and adaptability of 

micro-/nanorobots. Moreover, deep learning aids in processing complex imaging data, 

enhancing localization accuracy [95]. The descriptions and schematics for the five autonomy 

levels are illustrated in Figure 7. 

 

Figure 7. Descriptions and schematics for the five autonomy levels. Reproduced from [13] 

with permission. Copyright 2022 Nature Machine Intelligence. 

Amar et al. [38] presented model-free deep reinforcement learning to intelligently and 

autonomously navigate magnetic microrobots in the real-world fluid surface. Based on 
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reinforcement learning, deep neural networks are added to the process of the state and reward, 

which means the suggested navigation system does not need to model the motion state. The 

direction of the microrobot is directly predicted by the trained end-to-end model. The added 

deep neural networks can learn more space features than the complex math models in 

traditional reinforcement learning. Yang et al. [96] created a path planning framework using 

convolutional neural networks to analyze the environmental information, and then utilizing 

bioinspired reinforcement deep learning to generate the local paths. Further, neural networks 

are trained with varying obstacle shapes to obtain the optimal navigation strategies. The 

optimal state-action value function Q* (v, w) of reinforcement deep learning is shown below: 

*

1

( , ) [ ( )] ( )n

n n

n

Q v w E R s s 




    (11)  

where 
1

[ ( )]n

n

n

E R s




  denotes the particle state at the time step n . ( )ns  represents the 

environmental parameters after convolution. The trained results allowed the nanorobots to 

autonomously determine the current direction of travel in unknown and complex paths. 

Deep Neural Networks (DNNs) were also proposed for autonomous swarm orientation 

and distribution planning in [13]. The next optimal trajectory [ , ]S SR   is formulated as follows: 

  1 2

1
[ , ] argmin ( )S S i s c s fwdR b O w R R w

N
  

 
       

 
  (12)  

where 
ib  is a boundary point of distributed swarms. O  denotes the obstacle regions. 

sR  

represents the shape ratio of swarm distribution. 
s  and fwd  is the forward direction. 

The DNNs-based swarm orientation planning includes two sequence models: swarm 

shape planning and swarm orientation planning. The structures of the DNNs for swarm shape 

planning and swarm orientation planning are illustrated in Figure 8. 

 

Figure 8. The structures of the DNNs for swarm shape planning and swarm orientation 

planning. Reproduced from [13] with permission. Copyright 2022 Nature 

Machine Intelligence. 
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The spatial features around the robot are extracted through convolutional and pooling 

layers. Further, the shape features of the swarm nanorobots are computed through full 

connection layers. The relationship between environmental obstacles and the shape of the 

swarm nanorobots is established. Lastly, according to the space features and shape features, 

the stance of the swarm nanorobots is predicted by the swarm orientation planning. 

Therefore, the DNN models enable autonomous changes in the shape of swarm nanorobots 

when facing different obstacles, improving the robots’ possibility [97]. 

Consequently, deep neural networks can create connection relationships between 

dynamic environments and micro-/nanorobot’s motion state. The operation parameters are 

directly given by the end-to-end model trained by the datasets of motion control, which 

allows the micro-/nanorobots to autonomously move in unknown surroundings. Deep 

learning will revolutionize the future of autonomous path planning for micro-/nanorobots. 

5. Conclusion 

This paper reviews path planning algorithms for obstacle avoidance in micro-/nanorobots. 

Considering the specific characteristics of the obstacle environment and the task 

requirements, calculation optimization, and path correction are conducted based on 

traditional path planning algorithms. Therefore, it is particularly important to analyze and 

summarize the optimization process for different algorithms. The continuous optimization of 

path planning algorithms saves time and reduces the investment in human and medical 

resources. The advantages and limitations of different algorithms are concluded in Table 1. 

Table 1. The advantages and limitations of different algorithms. 

Classifications Algorithms Advantages Limitations 

Searching 

Dijkstra Simple operation logic. High time complexity. 

A* 
Low time complexity compared 

with Dijkstra. 

The path depends on the loss 

function. 

SI 
Few parameters. High efficiency 

in global search. 

Slow search speed. Low ability 

in local search. 

Sampling 

PRM No modeling environment. 
Obtaining the best path requires 

traversing all waypoints. 

RRT 
Fast convergence. Fast obtaining 

optimal path. 

The optimal path may not 

equal the shortest path. The 

obtained path is not smooth. 

Dynamic 

DWA 
Good adaptability to 

dynamic scenarios. 

Dependent environment and 

kinetic modeling. 

Reinforcement 

Learning 

Fast response according to 

environments. 

Requires separate modeling for 

different scenarios. 

Deep 

Learning 

Autonomous adjustment of the 

operating direction according to 

the surrounding environment. 

Requires environmental and 

operational datasets. 



Robot Learn.    Review 

15 
 

Searching path planning algorithms systematically retrieve and evaluate static waypoints 

to calculate global paths, ensuring accurate navigation. The Dijkstra algorithm is simple in 

operational logic but suffers from high time complexity. In contrast, the A* algorithm offers 

lower time complexity than Dijkstra. However, the effectiveness of the path heavily depends 

on the design of the cost function. The SI algorithm is distinguished by the minimal parameter 

requirements and high efficiency in global searches. 

Sampling path planning algorithms overcome the limitations of fixed grids, which 

significantly enhances the flexibility and efficiency of path planning. The PRM algorithm 

does not necessitate environmental modeling. However, obtaining the optimal path still 

requires traversing all sampled waypoints. The RRT algorithm quickly converges and efficiently 

discovers paths, though these paths may not be the shortest and often lack smoothness. 

Dynamic path planning algorithms interact with the environment in real time, allowing 

automatic adjustments for unexpected changes and obstacles. The DWA algorithm shows 

strong adaptability but depends on accurate environmental and kinematic modeling. 

Reinforcement learning algorithms can quickly respond to environmental changes but need 

distinct training for different scenarios. Deep learning algorithms can autonomously adjust their 

paths based on environmental inputs but demand extensive datasets for training and operation. 

6. Opportunities 

 

Figure 9. Path planning for dynamic environments based on deep learning. (a) 

Dynamic path planning with convex obstacles. (b) Dynamic path planning for non-convex 

obstacles. Reproduced from [98] with permission. Copyright 2023 IEEE International 

Conference on Robotics and Automation (ICRA 2023). 
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The integration of artificial intelligence with path planning will become one of the most 

promising areas. Particularly, deep learning algorithms can enable micro-/nanorobots to 

navigate complex and dynamic environments more efficiently and autonomously [98]. Figure 9 

illustrates the motion planning results based on deep learning. 
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