ELSP Robot Learn.

Article | Received 10 September 2024; Accepted 18 November 2024; Published 27 November 2024
https://doi.org/10.55092/rl20240003

FTI-SLAM: federated learning-enhanced thermal-inertial
SLAM

Haochen Liu'"", Hantao Zhong!'" and Weiyong Si*"

! Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
2 School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK

T These two authors contributed equally.

* Correspondence author; E-mail: w.si@essex.ac.uk.

Abstract: Utilising thermal imaging for simultaneous localisation and mapping has effectively
improved the performance and robustness of robots and autonomous systems in unconventional
environments. However, the transmission of large amounts of visual data from terminal devices
to the central system for training not only results in high communication costs and pressure on
bandwidth, but also induces concerns regarding privacy. Meanwhile, for applications in the
real world, it is essential to expand the input domain to more practical scenarios rather than
relying on experimental environments, and the terminal devices in-service can also benefit
from further training with data collected in operations. To deal with these challenges, we
investigated FTI-SLAM by applying federated learning to a thermal-inertial simultaneous
localisation and mapping system. We conducted a series of experiments and showed that

federated learning is feasible for the task and can improve overall performance.

Keywords: robotics; robot learning; SLAM,; distributed artificial intelligence; distributed architectures
1. Introduction

1.1. Simultaneous localisation and mapping

Simultaneous localisation and mapping (SLAM) is an essential problem in robotics. For
robots and other autonomous systems, it enables them to construct maps of surroundings
and confirm their locations and moving trajectories in the environment at the same time,
without prior knowledge of the environment, support from other positioning systems, or
human interference [1]. It has broad application scenarios, including domestic robots [2],
autonomous driving vehicles [3], and support in emergency and hazardous missions [4].
SLAM mainly relies on signals from visual sensors, such as panoramic cameras [5] and
RGB-D cameras [6], sound navigation and ranging (Sonar) sensors [7], and light detection
and ranging (LiDAR) sensors [8]. Other sources of signals, such as accelerations and

® Copyright©2024 by the authors. Published by ELSP. This work is licensed under a
@ Creative Commons Attribution 4.0 International License, which permits unrestricted use,

distribution, and reproduction in any medium provided the original work is properly cited.

Liu H, et al. Robot Learn. 2024(1):0003

Robot Learn. Article

angular velocities from inertial navigation systems (INS) [9], and radars [10], can also be
involved to obtain enhanced performance. Currently, vision-based SLAM has been preferred
over LiDAR-based due to the improvement in visual sensors and the significantly more
information from various types of image and video data, making it suitable for tasks in various
environments [1]. A SLAM system can be separated into a front-end and a back-end [1]. The
front-end is responsible for processing and utilising data from sensors, obtaining abstractions
such as extracted features from images, correspondence, loop closure, and more [1, 11].
The back-end optimises these abstractions and provides inferences about the states of the
agent [8,11].

For visual-based SLAM, early attempts employed filter-based approaches. Kalman Filters
(KF) has been actively applied and improved in SLAM. For example, Jensfelt et al. [12]
utilised the Extended Kalman Filter (EKF), providing a solution based on data from a single
camera. MonoSLAM proposed by Davison et al. [13] is also EKF- and single camera-based,
outputting real-time 3-dimensional trajectories of the object. Jiang et al. [14] mitigated the
problem of filter divergence that occurred in EKF methods with Adaptive Kalman Filter (AKF).
However, these KF-based methods perform poorly in the aspect of correspondence, which
is related to identifying previously visited places [1], and rely heavily on the hypothesis of

Gaussian noise, limiting their performance in large and complex environments [1].

1.2. Deep learning and SLAM

In recent years, the rapid evolution in machine learning, especially deep neural networks
(DNN), enables visual SLAM to become data-driven, performing more accurately and robustly
in various environments [15,16]. These methods partially or fully adopt DNNs in the system.
For the front-end, Wang et al. [17] proposed DeepVO, using deep recurrent convolutional
networks (RCNN) to address the temporal dependencies and representations in raw data, which
overcame the difficulties of hard-coding algorithm parameters for specific environments and
performed well in new environments. Clark et al. [18] further involved using long short-term
memory (LSTM) to incorporate inertial data with features learned by deep RCNN from RGM
images, which relieves users from manual calibration and synchronisation between inertial
sensors and cameras. For loop closure detection, Merrill and Huang [19] proposed a method
based on the unsupervised auto-encoder, obtaining reliable features that were robust against
changes in environments including brightness, weather, and other moving subjects. For the task
of relocalisation, which aims to solve the kidnapped robot problem [20], Kendall et al. [21]
propose PoseNet, which employs deep convolutional neural networks (CNN) and transfer
learning for end-to-end relocalisation. In general, DNN models significantly reduce the need
for hand-crafting features and show feasibility in multiple SLAM sub-tasks.

Researchers are also working on unifying the sub-tasks under deep learning to provide
complete end-to-end SLAM approaches. Li et al. [22] proposed DeepSLAM, an unsupervised
and deep learning SLAM system, using DNN architectures proven in related fields, including
RCNN and encoder-decoder, for 3D map construction, robot pose estimation, and loop closure

detection. The unsupervised system required no human annotations, making it capable

Robot Learn. Article

of working on unlabelled video data independently. For applying multi-modal data on
SLAM, An et al. [23] utilised the advantage of both visual and LiDAR data, providing a deep

unsupervised SLAM system with better performance than methods with a single modality.

1.3. Thermal-based SLAM

Though widely used, visual SLAM has some obvious weaknesses. One of them is the high
sensitivity to different illumination conditions [24]. In dark environments, RGB sensors cannot
provide data with acceptable quality, which affects the performance of the back-end [1]. In
comparison, LiDAR sensors are less prone to illumination changes, but in common non-ideal
weather conditions, such as rain and fog, the quality of LiIDAR sensing drops drastically [25].
Similarly, in complex environments, for example, in a scene of fire with lots of smoke, the
moving particles will downgrade the LiDAR sensors’ ability to recognise the environment.

Relying solely on RGB images overlooks other regions of the spectrum that can provide
supplemental information, such as the long-wavelength infrared band [26]. Under scenarios
with little or no visible lights, thermal sensors can still provide information through infrared
radiations from the surrounding environment and objects, which improves the situational
perception and robustness of robots [26—28]. Inspired by these advantages, researchers have
started to incorporate thermal sensing into SLAM tasks. For odometry, Saputra et al. [29]
propose DeepTIO, the first deep learning-based thermal-inertial odometry model. DeepTIO
performed selective feature fusion, adaptively selecting features across modalities including
thermal images, inertial features from IMU, and supplementary features from thermal images
using visual hallucination network [29-31]. On different devices in various environments
including benign or smoke-filled rooms, DeepTIO outperformed existing visual-inertial
odometry methods [29].

Other deep-learning-based designs, such as TP-TIO by Zhao et al. [32] that employed
a CNN-based feature extraction tool, can outperform traditional visual odometry in more
complex environments. In addition, there are also other explorations of thermal-inertial SLAM
algorithms. Unlike TI-SLAM, which tackles the problem with learning-based approaches,
Wang et al. [33] estimated odometry from thermal images and inertial measurements
by focusing on the edges of objects where thermal radiations change significantly. The
proposed Edge Thermal-Inertial Odometry (ETIO) algorithm adopts a distance-aided
Kanade-Lucas-Tomasi tracker and adaptive feature tracking scheme, ensuring the robustness

of the algorithm in environments with poor visual conditions.

1.4. Thermal-inertial SLAM

Based on the success of DeepTIO, by involving a graph-based approach and probabilistic
neural networks, Saputra et al. [24] provided a full SLAM system based on thermal images
and IMU sequences, referred to as TI-SLAM.

The front-end of TI-SLAM comprises three primary components: neural thermal-inertial
odometry, neural embedding, and neural loop closure. Neural thermal-inertial odometry

processes a series of thermal images to compute the 6-DoF poses over time. Similar

Robot Learn. Article

to DeepTIO, features from thermal images are extracted with a thermal network and a
hallucination network, and features from IMU sensors are extracted using long short-term
memory. The architectures of the thermal network and hallucination network are based
on Flownet [34]. The features are then selected using deterministic soft fusion [30], and
based on the features, a pose regressor network built with LSTM and mixture density
network [35] provides estimations of 6-Dof camera poses and uncertainty estimations for each
timeframe. Neural embedding adapts a truncated section of the ResNet50 network to generate
global descriptors, which serve as embeddings, from thermal images. These embeddings are
subsequently utilised for loop pairs detection by evaluating the discrepancy among embedding
using cosine distance. The Neural Loop Closure Network calculates loop closure constraints
and ascertains whether the mobile agent has revisited a specific location.

The back-end of TI-SLAM contains an outlier rejection and an optimisation module. The
outlier rejection module reduces the impact of noises and errors in the pose graph output by
the front-end. The final trajectory is optimised using these loop closure constraints and 6-DoF
poses through the Levenberg-Marquardt algorithm [36].

TI-SLAM is evaluated on multiple datasets of different environment conditions, including
environments with smoke and rooms in different illumination conditions, against visual and/or
inertial-based SLAM approaches and obtained much smaller root mean square (RMS) absolute

trajectory errors, which shows the effectiveness and robustness of TI-SLAM [24].

1.5. Federated learning in robotics

The training of robots and autonomous systems requires large amounts of data from various
sensors. For robot-related machine learning methods, training with data obtained from
servicing can improve their performances, adjusting them correspondingly to the user
scenarios [37,38]. However, some data, such as images, videos, and audio recordings,
may contain sensitive information from the users, and transmitting these data from users
to the central server causes concerns about privacy and security [39,40]. Recently, due to
the concern of data leakage and inappropriate utilisation of user data, authorities across the
world have enacted laws and regulations to restrict the transmission of sensitive data [41,42].
Meanwhile, transmitting large amounts of data leads to heavy pressure on the bandwidth, and
the users’ terminals are not always online for data transmission [37].

To efficiently utilise data while respecting concerns of privacy and provide equivalent
or better support to tasks in robotics, internet of things (I0T), and other services involving
autonomous systems powered by machine learning, federated learning [37, 43] provides
solutions in a new perspective. Federated learning involves multiple terminal devices (clients)
and a central server. The training of machine learning models is first conducted locally on the
client’s side using each client’s specific data. After training, instead of sending training data,
the parameters of local models are sent to the central server for aggregation, and the server
will send back the combined model to clients for inference and further training. By doing this,
federated learning not only secures privacy and reduces the abundant information transmission

between users and service providers [37,40], but also allows more data from diverse sources

Robot Learn. Article

to be involved in training, which improves the generalisation ability of obtained models and
allows local fine-tuning to fit specific demands from users [44,45].

Many scenarios in robotics and autonomous systems can benefit from the introduction of
federated learning. Except for privacy protection, for mobile robotics systems with various
local datasets that are not independent and identically distributed, there are federated learning
strategies that improve generalisation ability under such circumstances [46]. Federated learning
methods have been introduced to self-driving cars [47], mobile IoT robots[48], and other
specific tasks, including SLAM. For example, Li et al. [49] introduced federated learning to
support the visual- and LiDAR-based SLAM system in feature extraction and place matching.
Zhang et al. [50] proposed a distributed multi-vehicle SLAM system for autonomous driving,
reducing the error in localisation through cooperative training and training time. There has not

been any work focusing on federated learning, thermal images, and SLAM at the same time.

1.6. Federated TI-SLAM

The effectiveness of TI-SLAM has been shown in the original work [24]. However, the
front-end of TI-SLAM contains multiple DNN models, which requires a large amount of time
and computational resources for training. Meanwhile, transmitting a large amount of image
and video data raises concerns for privacy and difficulties in communication. In practical user
scenarios, the domain of data might vary from case to case, requiring a proper approach to
efficiently utilise the data for better generalisation.

Inspired by the potential for improvement, we implemented and trained the federated
learning version of TI-SLAM, referring as FTI-SLAM. We conducted experiments in different
federated learning settings and data configurations. Our contributions can be summarised
as follows:

(1) We provide a complete implementation of federated learning-adapted TI-SLAM,

providing a framework for realistic experiments.

(2) We conduct a series of experiments on FTI-SLAM with limited computational
resources and the same amount of training on the same data, showing that the
introduction of federated learning can maintain similar performance levels and improve
the system’s overall performance when applying proper aggregation algorithms.

(3) We introduce alternations on FTI-SLAM, discuss the reasons for improvements and

failures with detailed analysis, and provide possible guidelines for future works.
2. Methods

2.1. FTI-SLAM

To provide federated learning support for TI-SLAM, we adopt Flower framework [51] and
implemented FTI-SLAM with it. Flower is a federated learning framework that is easy to
use for simulating various federated learning settings. Although Flower supports TensorFlow
2.0 [52], the original TI-SLAM codebase was based on TensorFlow 1.0. Consequently,
we have re-implemented and adapted the TI-SLAM codebase to TensorFlow 2.6 and

Robot Learn. Article

Keras 2.6 [53]. The implementation of FTI-SLAM is available as a GitHub repository
(https://github.com/MrTooOldDriver/ti-slam/). The structure of FTI-SLAM is displayed

in Figure 1.

SLAM Front-End

Client 1

Server

Normalised
14-bit Thermal
data \

SLAM Back-End
6-DoF Poses as /
od tery >
Constraints /
Loop
Constraints

Loop Pairs - Outliers

Indices Rejection

Client n Client n

I Loop Closure
Constraints
Federated Neural Federated Neural Loop
Detection
Embedding Closure

Figure 1. FTI-SLAM structure. Our framework introduced federated learning to the neural networks
on the SLAM front-end. Adapted from the original TI-SLAM structure [24].

Trajectory
after
Optimising

Pose-Graph
Optimisation

IMU

Client n

Federated Neural
Odometry

Client 1 Client 1

Extract Indices

Embedding cln;)s:pre
Features Pairs

Server Server

Normalised
8-bit Thermal
data

The training process of TI-SLAM front-end can be divided into the training of three parts:
neural odometry, neural embedding, and neural loop closure. We establish three independent
federated learning systems for each part. Each client is provided with a local dataset different
from other clients, which closely reflects real-world scenarios as different clients might operate
in various environments.

The federated neural embedding network training in FTI-SLAM follows the same process
as in TI-SLAM, training from scratch with anchor Iz, positive images I, and negative images
I for embedding training. The loss function for this part is a triplet loss. Given a triplet
{IT,I}L,I;}, the neural embedding network dw, where Wr is the trainable weights, and
dw, (I7) denotes the embedding vector that defines the global image descriptor of an image
I7, the triplet loss used for this part is defined as [24],

Lrripter Uy X7 17) = max(A + |ldw, (Ir) — dw, ()| — [ldw, (Ir) — dw, (I7)[1%,0), (1)

where A limits the margin between positive and negative images [24]. If the location is
revisited, we expect the network to produce similar embeddings for those visits [24].

The training process for the federated neural odometry network and federated neural
loop closure network differs from the corresponding parts of TI-SLAM. For the original
neural odometry network, it is necessary first to initialise a hallucination network using
Flownet [34], followed by hallucination training, before continuing to the thermal network
training. Unfortunately, we were unable to locate a Flownet pre-trained weight compatible
with TI-SLAM hallucination network, and the authors of TI-SLAM did not provide any details
on that. To address and simplify this issue, we omit the hallucination network training and
initialise it using the best checkpoint provided by the TI-SLAM authors. In this case, the

training only involves the second stage of neural odometry in the original implementation [24].

Robot Learn. Article

For each transition component t € R? and rotation component r € R? to estimate, and Z =
{zi:i=1,2,...,m} as the sensor measurements, the objective is to optimise the loss of mixture
density networks (MDN) [35], i.e.,

m m

ZLypn = Z;P(tfz); +B Zip(rfz)fa (2)
i= i=

where p(t|Z); and p(r|Z); are the negative log-likelihoods for the posterior p(t|Z); and
p(r|Z); [24]. In FTI-SLAM, the federated neural loop closure network begins training with a
trained hallucination weight loaded into the global model, which is from the best checkpoint
of TI-SLAM as well. It also uses MDN to estimate relative poses. However, unlike the neural
odometry network, the neural loop closure network does not use IMU data as input; it only
uses thermal images. The loss function is also the negative log-likelihood of MDN posterior.

For the neural loop closure network in TI-SLAM, the trained neural odometry network is
used to initialise the feature extractor. This design shares the same feature extractor between
the neural odometry network and the neural loop closure network. However, rewriting the
training processes of both networks in FTI-SLAM with a federated learning update strategy
for simultaneous feature extractor updating would be overly complex. Similar to our approach
with the federated neural odometry network, we utilise the best checkpoint from the TI-SLAM
codebase to initialise the feature extractor for the global model at the outset.

In TI-SLAM, data is read with float64 precision and cast to float32 precision to be used in
the framework. Due to constraints in computational resources, we reduced the precision of
image data from float32 to float16. This reduction conserves VRAM during the training and
inference phases, and we verify that the reduction only affects the performance slightly.

2.2. Federated aggregation algorithms

For federated learning, a key component is the weight updating of the server model. It relies
on what information is sent from clients to the server and how the update is conducted.

The first feasible federated aggregation algorithm is Federated Averaging (FedAvg) [37].
FedAvg is improved upon the baseline of distributed training with synchronous stochastic
gradient descent [54]. In the baseline, clients compute the gradient at each step and then upload
the gradients to the server. The server updates global model weights with the aggregated
gradients and then distributes the updated model weights to the clients. FedAvg provides an
equivalent and efficient alternative by letting clients perform multiple local weight updates
before sending local updated weights for aggregation [37]. For a system with K clients, the
new weight after step ¢ is given as

K
Wil =) — Wit 3)
k=1 "
where
Wi i+1 < Wr — Mgk, 4

Robot Learn. Article

with 1) being the learning rate, g, being the gradient of client k, and % denotes the proportion
of weight contribution based on the local data proportion of client k£ [37]. Compared to the
baseline, FedAvg reduces the communication cost between clients and the server by involving
local updating, maintaining the performance on various tasks and DNN architectures [37].
In distributed systems including federated learning systems, abnormal behaviours in
certain computing units, such as providing gradients or weights that diverge from the proper
direction of optimisation, may cause performance degradation to the whole system [55,56].
Some serious and malicious attacks are even threatening the safety of user data and the
functionality of the entire system [57]. These attacks are categorised as Byzantine faults,
sourcing from the Byzantine Generals Problem [58]. There has been active research in
federated learning on mitigating the impact of a fraction of unidentifiable malfunctioning
clients. For example, Yin et al. [56] provided algorithms that are Byzantine-robust and achieve
optimal statistical performance, one of which is introducing trimmed mean to gradients in
distributed gradient descent, removing two equal fractions of gradients that are too large or too
small before computing the mean across remaining clients. Flower combined this approach
with FedAvg and proposed FedTrimmedAvg, which trims the weighs of clients rather than

gradients, i.e., [51,56],
1

1-28

Wit <

n
Y i, (5)
n

keK’

where f3 is the trimming proportion and K’ is the set of clients after trimming.

2.3. Datasets and training configurations

The dataset used in this study is collected by TI-SLAM authors [24]. This dataset consists
of two parts. The first part is collected with a ground-moving robot (Turtlebot 2). This robot
is equipped with a Flir Boson 640 thermal camera and an XSens MTI1 Series IMU sensor,
and the data were collected in an indoor environment. The ground truth is based on Velodyne
HDL-32E Lidar. The second part is collected with a handheld device customised by the
TI-SLAM authors with the same set of sensors. Data for this part is collected from indoor
environments with different floor areas and functions. The ground truth is based on Velodyne
Ultra Puck LiDAR.

However, after carefully checking the available data, we noticed many data sequences
are missing one or more necessary records for training and testing TI-SLAM and FTI-SLAM.
For example, all sequences of data collected by the handheld device and Sequences 1 to 11,
29, and 30 collected by the ground-moving robot do not have corresponding relative pose
records, which makes the training of neural embedding and neural loop closure unable to
be conducted. Meanwhile, data Sequence 31 and its following sequences collected by the
ground-moving robot do not have corresponding RGB features, preventing them from being
used in experiments. This significantly limits the choices of data sequences available for
training, validation, and testing of the FTI-SLAM framework.

Eventually, due to computational resource limitations and the inadequacies in data

sequences, we selected all usable data sequences, with a total number of 16, and organised

Robot Learn. Article

them in the experiment. These sequences are all collected by the ground-moving robot,
with nine sequences (Sequences 12-20) for training, three sequences (Sequences 21-23) for
validation, and four sequences (Sequences 27-30) for testing. Meanwhile, to demonstrate the
performances of FTI-SLAM in a more realistic environment, we exchanged Sequences 27
and 28 in the test set with Sequences 21 and 22 in the validation set. Sequences 29 and 30
cannot be used for training or validation due to missing necessary data entries. Given the
relatively smaller size of the dataset, we reduce the training epochs to just 50. Except where
specifically stated, all experimental settings are identical to the TI-SLAM paper [24]. For
training FTI-SLAM, we utilised 16 NVIDIA 2080Ti 22GB graphics cards, where each client
used a dedicated GPU. The server also hosted the centralised model on a dedicated GPU,

allowing us to run all clients in parallel.

2.4. Experiment setting

We conduct a series of experiments on FTI-SLAM. We first focus on comparing our federated
learning framework with the original form, TI-SLAM, which is completely centralised. In
our experiment, the original TI-SLAM uses 9 sequences of training data and 3 validation
sequences. In comparison, the FTI-SLAM involves 3 clients, and the 9 same sequences of data
for training are separated evenly for the clients. It is the same for the 3 sequences for validation.
We also involve a 6-client experiment with clients using overlapped but not identical training
sequences. Both 3-client and 6-client experiments adopt FedAvg and FedTrimmedAvg to
compare how different federated aggregation algorithms affect the results. We also exchanged
two sequences in the test set with two sequences in the validation set to allow Sequences 21

and 22 to be used for testing as well.

3. Results

Table 1 shows the validation losses of FTI-SLAM frond-end components for all experiments
conducted. We can see that two federated learning settings of FTI-SLAM slightly outperform
the original setting, while in neural loop closure, non-federated learning achieves significantly
lower loss than all federated learning ones.

Table 1. Validation losses of three parts of FTI-SLAM front-end in different experimental settings.

Non-FL refers to the original TI-SLAM configuration. The lowest validation losses for each of the
three parts are presented in bold.

Aggregation . . Sl . Neural Neural Neural
Aglgor;gthms Clients Train/Validation per Client Odometry Embedding Loop Closure
Non-FL 1 9 training, 3 validation -28.4200 2.5310 -4.4430
FedAvg 3 3 training, 1 validation -30.8130 2.1438 3.7723
FedAvg 6 3 training, 1 validation -29.1692 2.1944 2.5621
FedTrimmedAvg 3 3 training, 1 validation -30.9511 2.2600 2.9702
FedTrimmedAvg 6 3 training, 1 validation -31.0009 2.1817 1.4772

In the following sections of discussion, we further compare the performances of different
SLAM settings on the test sequences based on their estimations of odometry. The four

metrics are:

Robot Learn. Article

* Root root mean square of the absolute trajectory errors of the thermal-inertial odometry
without loop closure detection, denoted as RMSE, in meters (m).

* Root root mean square of the absolute trajectory errors of the thermal-inertial odometry
after incorporating loop closure detection, denoted as RMSE;, in meters (m).

* Variance of RMSE;, denoted as Vargysg, -

* The improvement after incorporating loop closure detection compared to using

RMSE—RMSE,
RMSE °

These metrics are also used for quantifying performances in the TI-SLAM paper [24].

thermal-inertial odometry only, calculated as

We also present the ground truth trajectories, odometry trajectories, and trajectories after
optimisation of test sequences for visually intuitive comparisons. As declared in [24], the data
sequences involved in our experiment are collected by a ground robot moving on flat surfaces,
resulting in negligible Z-axis translations. In this case, we visualise the ground truth trajectory,
the odometry trajectory, and the optimised trajectory for each sequence in the X-Y plane for

visual comparisons.

3.1. Verifying the applicability of data reduction

As described in Section 2.1., we reduce the data precision to floatl6 due to the strained
computational resources. Before moving on to full-scale experiments, we compare the
performance of TI-SLAM before and after applying data reduction.

The two TI-SLAM frameworks with different data precisions are trained with a smaller
number of sequences and tested on Sequences 27 to 30. From the results in Table 2, it
can be seen that data with reduced precision brings negligible impacts to the resulting
metrics even after multiple steps of computation in the front-end neural network models
and back-end algorithms.

Visually, as shown in Figure 2, it is difficult to tell the difference between the two settings.
For all four sequences, using data with reduced precision achieves almost identical trajectories
compared to the original precision. In this case, we validate that using reduced precision here
is feasible and does not bring a noticeable impact on the performance of the framework. We
proceed with using reduced precision in the following experiments.

Table 2. RMSE, RMSE;,, Varrysg, , and the percentage of improvement by optimisation of sequences

obtained from TI-SLAM frameworks before and after data precision reduction to float16. All metrics
are presented with 9 significant digits.

Test Sequence Setting ~ RMSE (m) RMSE; (m) Vargrmsg, Improvement
Seq 27 Before 0.936396639 0.907995997 0.158176793 3.03297141
After 0.936396639 0.907996049 0.158176792 3.03296586

Seq 28 Before 0.856796745 0.889722414 (0.228328572 -3.84287984
After 0.856796745 0.889722410 0.228328568 -3.84287943

Seq 29 Before 0.599048563 0.666784891 0.176294525 -11.3073182
After 0.599048563 0.666784879 0.176294498 -11.3073163

Seq 30 Before 0.525298776 0.671268465 0.197105876 -27.7879362
After 0.525298776 0.671268492 0.197105878 -27.7879413

10

Robot Learn. Article

05

(e) Seq 27 (f) Seq 28 (g) Seq 29 (h) Seq 30

Figure 2. Trajectory optimisation results of TI-SLAM in the original setting (a, b, ¢, d) and after data
reduction to float16 precision (e, f, g, h). The grey dashed lines represent ground truth, the blue solid
lines represent odometry trajectories, and the red solid lines represent the trajectories after optimisation.

3.2. Effect of federated learning (FedAvg)

We first look at how federated learning influences the performance. When looking at the
behavioural metrics as presented in Table 3, we can see that FTI-SLAM using FedAvg with 3
clients completely outperforms the original setting in Sequences 27, 29, and 22. For Sequences
30 and 21, though the optimisation does not bring larger improvements in the FedAvg setting,
FedAvg still achieves a lower RMSE, than the regular setting. However, this information
cannot provide the full story of the performance. Figures 3 and 4 show how the optimised
trajectories behave compared to the ground truth from LiDAR.

For the original setting, though the odometry trajectories are not very close to the ground
truth, they can properly recover the pattern of ground truths. But it is clear that the optimised
trajectories for all sequences get tangled up, not even showing a proper pattern. This shows
that the embedding and loop closure done by the front end might be overfitting, resulting in
problems in optimisation.

On the contrary, for FedAvg with 3 clients, the optimised trajectories are not greatly
diverged from the odometry trajectories, but they manage to recover some parts of the ground
truth in Sequences 29 and 30, as shown in Figures 4c¢ and 4d. Figure 4a demonstrates that the
optimisation is tending more towards the ground truth. With the same amount of training on
the same training data, federated neural odometry performs similarly to the original neural
odometry. Loop constraints from federated neural embedding and federated neural loop
closure are not overfitting but would require more complex training data to make the optimised
trajectory closer to the ground truth. In more scenarios of Sequences 21 and 22, their ground
truth trajectories are more complicated than other sequences, and the optimisation results
based on loop closure detection almost overlap with trajectories from neural odometry. The

11

Robot Learn. Article

results suggest that compared to the original fully centralised setting, federated learning can
provide better generalisation ability for the front-end, especially for neural odometry. Still, to
boost the performance of neural embedding and neural loop closure, we need to involve more
complex cases in training.

Table 3. RMSE, RMSE;,, Varrwysg, , and the percentage of improvement by optimisation of sequences

of the original non-federated learning TI-SLAM setting and FTI-SLAM with 3 clients and FedAvg
for aggregation.

Test Sequence Setting RMSE (m) RMSE; (m) Vargmsg, Improvement(%)
Seq 27 Non-FL 0.7108 0.8482 0.1318 -19.3310
FedAvg 3 Clients 0.5892 0.5173 0.0783 12.2061
Seq 28 Non-FL 0.7083 0.8124 0.1360 -14.7035
FedAvg 3 Clients 0.5162 1.0668 0.5827 -106.6509
Seq 29 Non-FL 0.4862 0.6910 0.0952 -42.1315
FedAvg 3 Clients 0.3697 0.4817 0.0549 -30.2843
Seq 30 Non-FL 0.5450 0.7021 0.1090 -28.8233
FedAvg 3 Clients 0.3363 0.5070 0.5070 -50.7308
Seq 21 Non-FL 0.5682 0.5541 0.0575 2.4755
FedAvg 3 Clients 0.4936 0.4926 0.0686 0.2072
Seq 22 Non-FL 0.5681 0.6041 0.0495 -6.3298
FedAvg 3 Clients 0.4652 0.4453 0.0245 4.2830

= =Ground truth
Odometry
e Optimized Trajectory

2
2 445 4 05 0 05 1 15 2 25 4 05 0 05 1 15 2 25 3

(a) Seq 27 (b) Seq 28 (c) Seq 29

(d) Seq 30 (e) Seq 21 (f) Seq 22

Figure 3. Trajectory optimisation results of the non-federated learning setting.

3.3. Aggregation algorithms

Within the scope of federated learning, we compare the performance of FTI-SLAM with
3 clients using different aggregation algorithms. In our experiment, the aggregation of
weights in FedTrimmedAvg is done by excluding two fractions B = 0.2 of each corresponding

weight in the clients’ uploaded model. Since we have 3 clients, FedTrimmedAvg removes

12

Robot Learn.

Article

round (3 x 0.2) = round(0.6) = 1 weight on both sides, and only 1 median weight is kept as

the aggregated result.

= =Ground truth

= Optimized Trajectory - -

= =Ground truth
Odometry
= Optimized Trajectory

Odometry 25

(d) Seq 30

(e) Seq 21

= = Ground truth
Odometry
== Optimized Trajectory

(f) Seq 22

Figure 4. Trajectory optimisation results of FTI-SLAM with 3 clients using FedAvg for aggregation.

Table 4 presents the quantitative metrics. For neural odometry, it is clear that FedAvg

outperforms FedTrimmedAvg in 5 out of 6 sequences. Meanwhile, the improvement brought

by applying optimisation benefits 3 out of 6 sequences for FedAvg, while only one sequence

for FedTrimmedAvg. The reason for this great difference in performance is that FedAvg

involves significantly more clients than FedTrimmedAvg. Though the starting point for

FedTrimmedAuvg is to exclude clients providing extreme gradients, using the model of only

one client as the global model cannot be suitable for the situation for other clients, as the data

involved is not representative enough.

Table 4. RMSE, RMSE;, Varrysg, , and the percentage of improvement by optimisation of sequences
of FTI-SLAM with 3 clients using FedAvg and FedTrimmedAvg for aggregation.

Test Sequence Setting RMSE (m) RMSE; (m) Vargmsg, Improvement(%)
Seq 27 FedAvg 3 Clients 0.5892 0.5173 0.0783 12.2061
FedTrimmedAvg 3 Clients 0.6727 0.8529 0.1898 -26.7886
Seq 28 FedAvg 3 Clients 0.5162 1.0668 0.5827 -106.6509
FedTrimmedAvg 3 Clients 0.8188 0.9608 0.2274 -17.3429
Seq 29 FedAvg 3 Clients 0.3697 0.4817 0.0549 -30.2843
FedTrimmedAvg 3 Clients 0.5749 0.4477 0.0804 22.1394
Seq 30 FedAvg 3 Clients 0.3363 0.5070 0.5070 -50.7308
FedTrimmedAvg 3 Clients 0.5882 0.5484 0.1009 6.7646
Seq 21 FedAvg 3 Clients 0.4936 0.4926 0.0686 0.2072
FedTrimmedAvg 3 Clients 0.4256 0.5379 0.2895 -26.3654
Seq 22 FedAvg 3 Clients 0.4652 0.4453 0.0245 4.2830
FedTrimmedAvg 3 Clients 0.4956 0.6104 0.2363 -23.1533

Figure 5 shows the situation of trajectories. Compared to Figure 4, FedTrimmedAvg

13

Robot Learn. Article

makes the optimised trajectory of Sequence 29 moving from the odometry trajectory to the
ground truth trajectory with a very similar shape, and the right part of Sequence 30 also fits
the ground truth better, as shown in Fig Sc and 5d respectively. An improvement in Sequence
28 compared to FedAvg can also be witnessed, as the optimised trajectory tends closer to
overlap more with the ground truth than the one in FedAvg. The situation in Sequences 28, 29,
and 30 reflects FedTrimmedAvg’s advantage in improvements, as shown in table 4. But for
Sequences 21 and 22, the results for both odometry and odometry after optimisation are not fit
for the ground truth, which also reflects the impact of having too few clients in aggregation.

= = Ground truth
Odometry
s Optimized Trajectory

== =Ground truth
Odometry
e Optimized Trajectory

== =Ground truth
05 Odometry
e Optimized Trajectory

(d) Seq 30 (e) Seq 21 (f) Seq 22

Figure 5. Trajectory optimisation results of FTI-SLAM with 3 clients using FedTrimmedAvg
for aggregation.

Based on these, the behaviours of FedAvg and FedTrimmedAvg on visualised results do
not show a distinguishable gap. However, the quantitative metrics show the inferior position of
FedTrimmedAvg in this case, especially in Sequences 21 and 22 which are more complicated.
The advantage of FedTrimmedAvg is overridden by the lack of clients who can provide

representative information about the actual dataset.

3.4. More clients with data overlapping

In this set of experiments, we increase the number of clients from 3 to 6 for both FTI-SLAM
with FedAvg and with FedTrimmedAvg. By comparing Table 5 with Table 4 which is with 3
clients, it is clear that performance in terms of percentage of improvement drops significantly
for both cases. Optimisation of odometry in these settings does not work properly.

For the optimised trajectories, the ones from FedAvg with 6 clients (Figure 6) show a
similar situation as in Figure 3. The results of odometry alone are also not as satisfying.
For FedTrimmedAvg with 6 clients, according to Figure 7, though the quality of optimised
trajectories also degraded compared to the case with fewer clients, it is worth noticing that

14

Robot Learn. Article

they are not showing the same pattern as FedAvg with 6 clients. First, for Sequence 27, the
performance actually improved compared to previous cases, and it is the best-optimised
trajectory for Sequence 27 across all experiments. Second, the ones for Sequences 28,
29, and 30 are less strangled compared to that of FedAvg with 6 clients. In this setting,
FedTrimmedAvg removes round (6 x 0.2) = round(1.2) = 1 weight that is the largest and 1
smallest weights, keeping the remaining 4 for aggregation. For Sequences 21 and 22, with
6 clients involved in the framework, both FedAvg and FedTrimmedAvg present different
behaviours compared to when there are only 3 clients, though quantitative metrics do
not present a clear change trend. For other sequences, the optimised trajectories from
FedTrimmedAvg present more reasonable patterns and more overlaps to the ground truth than
those from FedAvg. The sub-optimal performances suggest that in situations when facing
more complex attacks rather than just extreme values, FTI-SLAM would require more suitable
aggregation algorithms to prevent malicious attempts and mitigate their negative impacts.

Table 5. RMSE, RMSE;, Varruvsg, , and the percentage of improvement by optimisation of sequences
of FTI-SLAM with 6 clients using FedAvg and FedTrimmedAvg for aggregation.

Test Sequence Setting RMSE (m) RMSE; (m) Vargymsg, Improvement(%)
Seq 27 FedAvg 6 Clients 0.6727 0.1898 0.8529 -26.7886
FedTrimmedAvg 6 Clients 0.9376 0.1284 0.6704 28.5009
Seq 28 FedAvg 6 Clients 0.4751 0.1300 0.8480 -78.4884
FedTrimmedAvg 6 Clients 0.9035 0.4482 1.3535 -49.8036
Seq 29 FedAvg 6 Clients 0.4328 0.0804 0.6652 -53.6967
FedTrimmedAvg 6 Clients 0.6298 0.2532 0.7572 -20.2303
Seq 30 FedAvg 6 Clients 0.5476 0.1067 0.6666 -21.7351
FedTrimmedAvg 6 Clients 0.4612 0.1397 0.6569 -42.4469
Seq 21 FedAvg 6 Clients 0.4944 0.5377 0.0677 -8.7723
FedTrimmedAvg 6 Clients 0.6224 0.9576 0.6603 -53.8650
Seq 22 FedAvg 6 Clients 0.5482 0.5234 0.4535 0.0453
FedTrimmedAvg 6 Clients 0.4628 0.7495 0.3475 -61.9362

3.5. Impact of bias and noise in data

As discussed in TI-SLAM, both thermal data and IMU data are affected by noise [24]. For
thermal imaging systems, the collected data is commonly affected by fixed-pattern noise [59].
For IMU data, the noises and biases can come from various sources, including but not limited to
sensor configurations, white random noise, and pink noise [60]. In TI-SLAM, the researchers
introduced deterministic the soft fusion structure for feature selection to mitigate the impact of
bias and noises [24,30]. This is also used continuously in FTI-SLAM.

To demonstrate the impact of bias and noise in thermal and IMU data in FTI-SLAM,
we compare the performance of the regular experiment of FTI-SLAM with three clients and
FedAvg as the aggregation algorithm and use the odometry constraints and loop closure
constraints from the front-end to obtain the optimised trajectories. For comparison, we use
the ground truth data as odometry constraints and the loop closure constraints from FedAvg 3
clients setting to obtain the optimised trajectories without the affection noises from thermal

images and IMU sensing.

15

Robot Learn.

Article

3 15
w= = Ground truth
25 Odometry 1 ”
0 = = = ¢ /|=—Optimized Trajectory e Optimized Trajectory
2 7 V4 - \\ 05 7 -
0.5 15 4 ¥ [}])
/ 0 <
1 ! 4
a1 7 \ / 05 N
05 ~ ’ \ Vi
- ~
1 '
15 0 \ -,
\ -\ -
15
\ 05
2
S o a1 2
-25 -1.5 -25
-15 1 0.5 o 05 1 15 2 25 3 - 15 1 0.5 o 05 1 15 2 25 -15 1 0.5 o 05 1 15 2 25 3
(a) Seq 27 (b) Seq 28 (c) Seq 29
15 2 1 =
= =Ground truth = =Ground tuth = =Ground tuth
1 P Odometry 15 Odometry 05 Odometry
e Opiimized Trajectory Opiimized Trajectory = Opiimized Trajectory
05 1 o ~ I
So 5
0 05 =~ - -0.5
=\
' I
05 0 Bl
M ’
1 \ /7 05 1 15
>)
1.5) =~ -~ I 1 " 2
K -~
-2 -15 25
E 05 0 05 1 15 2 25 - 05 0 05 1 15 2 25 3 45 1 05 0 05 1 15 2 25
(d) Seq 30 (e) Seq 21 (f) Seq 22

Figure 6. Trajectory optimisation results of FTI-SLAM with 6 clients using FedAvg for aggregation.

4 3
w— = Ground truth w= = Ground truth
0 3 ‘Odometry 2 ‘Odometry
s Optimized Trajectory e Optimized Trajectory
05 2 P N 1
1 -
- [
-1 1]
7
N
15 0 1 S~ -~
LS —
2 -1 -2
=z
25 -2 -3
3 3 -4
-2 1 0 1 2 3 4 - 1 0 1 2 3 4 5 -1 0.5) 05 1 15 2 25 3
(a) Seq 27 (b) Seq 28 (c) Seq 29
15 25 15
= = Gowawn = Gomawn = = Grawawn
1 = Odometry 2 Odometry 1
s Optimized Trajectory s Optimized Trajectory
05 15 05
0 1 0
05 05 -~ -05
~
-1 0 -1
\ 4 !
15 S 07 05 1 15
-2 -1 ’ -2
-25 -15 -25
-2 1 o 1 2 3 4 -3 2 1 0 1 2 3 4 -2 15 1 0.5 0 05 1 15 2 25
(d) Seq 30 (e) Seq 21 (f) Seq 22

Figure 7. Trajectory optimisation results of FTI-SLAM with 6 clients using FedTrimmedAvg

for aggregation.

The quantitative results are presented in Table 6, and the optimised trajectories based on

ground truth odometry, which is not affected by the noises, are shown in Figure 8. It is clear
that RMSE; (m) and Vargrymsg, for optimised trajectories with ground truth trajectories are
both lower, and for Sequence 30, the difference is significant. This is also reflected in the
visualised trajectories. Compared to Figure 4, the obtained optimised trajectories are much

closer to the ground truth trajectories, and Sequence 30 shows the best result. In this case, we

16

Robot Learn. Article

can conclude that data noise and bias do have an impact on FTI-SLAM.

(a) Seq 27 (b) Seq 28 (c) Seq 29 (d) Seq 30

Figure 8. Trajectory optimisation results of FTI-SLAM with 3 clients with ground truth odometry and
FedAvg for aggregation.

Table 6. RMSE; and Varrmsg, of the optimised odometry trajectories for FTI-SLAM aggregated with
FedAvg with 3 clients, using estimated odometry and ground truth trajectory respectively.

Test Sequence Setting RMSE,; (m) Vargmsg,
Seq 27 FedAvg 3 Client 0.5173 0.0783
FedAvg 3 Client GT Odometry 0.4337 0.0036
Seq 28 FedAvg 3 Client 1.0668 0.5827
FedAvg 3 Client GT Odometry 0.6808 0.3369
Seq 29 FedAvg 3 Client 0.4817 0.0549
FedAvg 3 Client GT Odometry 0.3537 0.0423
Seq 30 FedAvg 3 Client 0.5070 0.5070
FedAvg 3 Client GT Odometry 0.1258 0.0035

4. Conclusion

From the previous sets of experiments, we use limited amounts of data and computational
resources to show the feasibility and effectiveness of FTI-SLAM. For robotics, the introduction
of federated learning can provide efficient support for distributed training, allowing a local
dataset to be properly utilised. In some federated learning settings, FTI-SLAM shows improved
performance compared to the original system with the same training contents, which shows the
better generalisation ability provided by federated learning. Future works on this perspective
can focus on introducing local fine-tuning to make the device suitable for conducting tasks
in its designated environment and maintaining robustness against less common situations
and settings. We presented possible alternations to the initial federated learning setting,
making the system not easily prone to potentially misleading training data. Future works can
focus on applying and adjusting more robust aggregation algorithms, such as Bulyan [55],
when conducting experiments with adversarial activities against global models. We also
demonstrated the impact of data noise, and future works on FTI-SLAM could improve the
current approach of feature selection or involve other techniques to further mitigate the
negative impact of biases and noises. In addition, due to the limitation of our computational
resources, our experiments involve up to 6 clients. Future experiments on this could involve
more clients for simulations on a larger scale or more sources of data to explore the impact of
data heterogeneity.

17

Robot Learn. Article

Conflicts of Interests

The authors declare that they have no conflict of interest.

Authors’ contribution

Conceptualization, H.L. and H.Z.; Data Curation, H.Z. and H.L.; Formal Analysis, H.L. and
H.Z.; Funding Acquisition, W.S.; Investigation, H.Z. and H.L.; Methodology, H.Z. and H.L.;
Project Administration, H.L. and H.Z.; Resources, H.Z.; Software, H.Z. and H.L.; Supervision,
W.S.; Validation, H.L. and H.Z.; Visualization, H.L. and H.Z.; Writing—Original Draft, H.L.
and H.Z.; Writing—Review & Editing, H.L.., H.Z., and W.S. All authors have read and agreed
to the published version of the manuscript.

References

[1] Taheri H, Xia ZC. SLAM,; definition and evolution. Eng. Appl. Artif. Intell. 2021,
97:104032.

[2] Ekvall S, Jensfelt P, Kragic D. Integrating Active Mobile Robot Object Recognition
and SLAM in Natural Environments. In 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, 9-15 October 2006, pp. 5792-5797.

[3] Cheng J, Zhang L, Chen Q, Hu X, Cai J. A review of visual SLAM methods for
autonomous driving vehicles. Eng. Appl. Artif. Intell. 2022, 114:104992.

[4] Tseng PY, Lin JJ, Chan YC, Chen AY. Real-time indoor localization with visual SLAM
for in-building emergency response. Autom. Constr. 2022, 140:104319.

[5] Ji S, QinZ, Shan J, Lu M. Panoramic SLAM from a multiple fisheye camera rig. ISPRS
J. Photogramm. Remote Sens. 2020, 159:169-183.

[6] Zhang S, Zheng L, Tao W. Survey and evaluation of RGB-D SLAM. IEEE Access 2021,
9:21367-21387.

[7] Franchi M, Ridolfi A, Pagliai M. A forward-looking SONAR and dynamic model-based
AUV navigation strategy: Preliminary validation with FeelHippo AUV. Ocean Eng.
2020, 196:106770.

[8] HuangL. Review on LiDAR-based SLAM techniques. In 2021 International Conference
on Signal Processing and Machine Learning (CONF-SPML), Palo Alto, USA, 14
November 2021, pp. 163-168.

[9] Mohamed SA, Haghbayan MH, Westerlund T, Heikkonen J, Tenhunen H, et al. A survey
on odometry for autonomous navigation systems. IEEE access 2019, 7:97466-97486.

[10] Hong Z, Petillot Y, Wallace A, Wang S. RadarSLAM: A robust simultaneous
localization and mapping system for all weather conditions. Int. J. Robotics Res. 2022,
41(5):519-542.

[11] Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, et al. Past, present, and future

of simultaneous localization and mapping: Toward the robust-perception age. I[EEE
Trans. Robotics 2016, 32(6):1309-1332.

18

Robot Learn. Article

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Jensfelt P, Kragic D, Folkesson J, Bjorkman M. A framework for vision based bearing
only 3D SLAM. In Proceedings 2006 IEEE International Conference on Robotics and
Automation, Orlando, USA, 15-19 May 2006, pp. 1944-1950.

Davison AJ, Reid ID, Molton ND, Stasse O. MonoSLAM: Real-time single camera
SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(6):1052—-1067.

Jiang X, Li T, Yu Y. A novel SLAM algorithm with Adaptive Kalman filter. In 2016
International Conference on Advanced Robotics and Mechatronics (ICARM), Macau,
China, 18-20 August 2016, pp. 107-111.

Beghdadi A, Mallem M. A comprehensive overview of dynamic visual SLAM and deep
learning: concepts, methods and challenges. Mach. Vis. Appl. 2022, 33(4):54.

Mokssit S, Licea DB, Guermah B, Ghogho M. Deep learning techniques for visual slam:
A survey. IEEE Access 2023, 11:20026-20050.

Wang S, Clark R, Wen H, Trigoni N. Deepvo: Towards end-to-end visual odometry with
deep recurrent convolutional neural networks. In 2017 IEEE international conference
on robotics and automation (ICRA), Singapore, 29 May-3 June 2017, pp. 2043-2050.
Clark R, Wang S, Wen H, Markham A, Trigoni N. Vinet: Visual-inertial odometry as
a sequence-to-sequence learning problem. In Proceedings of the AAAI conference on
artificial intelligence, San Francisco, USA, 4-9 February 2017, pp. 3995-4001.
Merrill N, Huang G. Lightweight unsupervised deep loop closure. arXiv 2018,
ArXiv:1805.07703.

Engelson SP, McDermott DV. Error correction in mobile robot map learning. In
Proceedings 1992 IEEE International Conference on Robotics and Automation, Nice,
France, 12-14 May 1992, pp. 2555-2556.

Kendall A, Grimes M, Cipolla R. Posenet: A convolutional network for real-time 6-dof
camera relocalization. In Proceedings of the IEEE international conference on computer
vision, Santiago, Chile, 07—13 December 2015, pp. 2938-2946.

Li R, Wang S, Gu D. DeepSLAM: A robust monocular SLAM system with unsupervised
deep learning. IEEE Trans. Ind. Electron. 2020, 68(4):3577-3587.

AnY, ShiJ, Gu D, Liu Q. Visual-LiDAR SLAM based on unsupervised multi-channel
deep neural networks. Cogn. Comput. 2022, 14(4):1496-1508.

Saputra MRU, Lu CX, de Gusmao PPB, Wang B, Markham A, et al. Graph-based
thermal—inertial SLAM with probabilistic neural networks. IEEE Trans. Robotics 2021,
38(3):1875-1893.

Kutila M, Pyykonen P, Holzhiiter H, Colomb M, Duthon P. Automotive LiDAR
performance verification in fog and rain. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), Maui, USA, 4-7 November 2018, pp.
1695-1701.

Brenner M, Reyes NH, Susnjak T, Barczak AL. RGB-D and thermal sensor fusion: a
systematic literature review. IEEE Access 2023, 11:82410-82442.

Nguyen TXB, Rosser K, Chahl J. A review of modern thermal imaging sensor technology

19

Robot Learn. Article

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

and applications for autonomous aerial navigation. J. Imaging 2021, 7(10):217.

Bavle H, Sanchez-Lopez JL, Cimarelli C, Tourani A, Voos H. From slam to situational
awareness: Challenges and survey. Sensors 2023, 23(10):4849.

Saputra MRU, De Gusmao PP, Lu CX, Almalioglu Y, Rosa S, ef al. Deeptio: A deep
thermal-inertial odometry with visual hallucination. /IEEE Robot. Autom. Lett. 2020,
5(2):1672-1679.

Chen C, Rosa S, Miao Y, Lu CX, Wu W, er al. Selective sensor fusion for neural

visual-inertial odometry. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, USA, 15-20 June 2019, pp. 10542—-10551.
Hoffman J, Gupta S, Darrell T. Learning with side information through modality
hallucination. In Proceedings of the IEEE conference on computer vision and pattern
recognition, Las Vegas, USA, 27-30 June 2016, pp. 826—834.

Zhao S, Wang P, Zhang H, Fang Z, Scherer S. Tp-tio: A robust thermal-inertial odometry
with deep thermalpoint. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, USA, 24 October 202024 January 2021, pp.
4505-4512.

Wang Y, Chen H, Liu Y, Zhang S. Edge-based monocular thermal-inertial odometry in
visually degraded environments. /IEEE Robot. Autom. Lett. 2023, 8(4):2078-2085.
Dosovitskiy A, Fischer P, llg E, Hausser P, Hazirbas C, ef al. Flownet: Learning optical
flow with convolutional networks. In Proceedings of the IEEE international conference
on computer vision, Santiago, Chile, 7-13 December 2015, pp. 2758-2766.

Bishop CM. Mixture density networks, 1994. Available: https://publications.aston.ac.
uk/id/eprint/373/1/NCRG_94_004.pdf (accessed on 17 June 2024).

Ranganathan A. The levenberg-marquardt algorithm. Tutoral on LM algorithm 2004,
11(1):101-110.

McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics,
Ft. Lauderdale, USA, 20-22 April 2017, pp. 1273-1282.

Yin H, Qu L, Chen T, Yuan W, Zheng R, ef al. On-device recommender systems: A
comprehensive survey. arXiv 2024, ArXiv:2401.11441.

Aledhari M, Razzak R, Parizi RM, Saeed F. Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 2020, 8:140699-140725.
Zhang C, Xie Y, Bai H, Yu B, Li W, e al. A survey on federated learning. Knowl.-Based
Syst. 2021, 216:106775.

Chik WB. The Singapore Personal Data Protection Act and an assessment of future
trends in data privacy reform. Comput. Law Secur. Rev. 2013, 29(5):554-575.

Albrecht JP. How the GDPR will change the world. Eur. Data Prot. L. Rev. 2016, 2:287.

Ma X, Zhu J, Lin Z, Chen S, Qin Y. A state-of-the-art survey on solving non-iid data in
federated learning. Future Gener. Comput. Syst. 2022, 135:244-258.

20

https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf

Robot Learn. Article

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

Collins L, Hassani H, Mokhtari A, Shakkottai S. Fedavg with fine tuning: Local updates
lead to representation learning. Adv. Neural Inf. Process. Syst. 2022, 35:10572—-10586.

Zhang J, Hua Y, Wang H, Song T, Xue Z, et al. Fedala: Adaptive local aggregation for
personalized federated learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Washington, USA, 7—14 February 2023, pp. 11237-11244.

Yeganeh Y, Farshad A, Navab N, Albarqouni S. Inverse distance aggregation for
federated learning with non-iid data. In Domain Adaptation and Representation Transfer,
and Distributed and Collaborative Learning: Second MICCAI Workshop, DART 2020,
and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020,
Proceedings 2, Lima, Peru, 4-8 October, 2020, pp. 150-159.

Nguyen A, Do T, Tran M, Nguyen BX, Duong C, et al. Deep federated learning
for autonomous driving. In 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen,
Germany, 4-9 June 2022, pp. 1824-1830.

Imteaj A, Amini MH. Fedar: Activity and resource-aware federated learning model
for distributed mobile robots. In 2020 [9th IEEE International Conference on
Machine Learning and Applications (ICMLA), Miami, USA, 14-17 December 2020, pp.
1153-1160.

Li Z, Wang L, Jiang L, Xu CZ. FC-SLAM: Federated learning enhanced distributed
visual-LiDAR SLAM in cloud robotic system. In 2019 IEEE International Conference
on Robotics and Biomimetics (ROBIO), Dali, China, 6-8 December 2019, pp.
1995-2000.

Zhang H, Yang Z, Tian Y, Zhang H, Di B, et al. Reconfigurable holographic surface
aided collaborative wireless SLAM using federated learning for autonomous driving.
IEEE Trans. Intell. Veh. 2023, 8(8):4031-4046.

Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, et al. Flower: A friendly
federated learning research framework. arXiv 2020, ArXiv:2007.14390.

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. arXiv 2016, ArXiv:1603.04467.

Chollet F. Keras, 2015. Available: https://keras.io (accessed on 10 July 2024).

Chen J, Pan X, Monga R, Bengio S, Jozefowicz R. Revisiting distributed synchronous
SGD. arXiv 2016, ArXiv:1604.00981.

El Mahdi EM, Guerraoui R, Rouault S. The hidden vulnerability of distributed
learning in byzantium. In International Conference on Machine Learning, Stockholm,
Sweden, 10-15 July 2018, pp. 3521-3530.

Yin D, Chen Y, Kannan R, Bartlett P. Byzantine-robust distributed learning: Towards
optimal statistical rates. In International conference on machine learning, Stockholm,
Sweden, 10-15 July 2018, pp. 5650-5659.

Lyu L, Yu H, Yang Q. Threats to federated learning: A survey. arXiv 2020,
ArXiv:2003.02133.

Lamport L, Shostak R, Pease M. The Byzantine generals problem. In Concurrency: the

21

https://keras.io

Robot Learn. Article

works of leslie lamport, New York: Association for Computing Machinery, 2019, pp.
203-226.

[59] Williams R, Parrish WJ, Wolfe J. Fixed pattern noise mitigation for a thermal imaging
system. U.S. Patent No. 10,230,912. 4 January 2018.

[60] Nirmal K, Sreejith A, Mathew J, Sarpotdar M, Suresh A, ef al. Noise modeling and
analysis of an IMU-based attitude sensor: improvement of performance by filtering and
sensor fusion. In Advances in optical and mechanical technologies for telescopes and
instrumentation 11, Edinburgh, United Kingdom, 26 June-1 July 2016, pp. 2138-2147.

22

	Introduction
	Simultaneous localisation and mapping
	Deep learning and SLAM
	Thermal-based SLAM
	Thermal-inertial SLAM
	Federated learning in robotics
	Federated TI-SLAM

	Methods
	FTI-SLAM
	Federated aggregation algorithms
	Datasets and training configurations
	Experiment setting

	Results
	Verifying the applicability of data reduction
	Effect of federated learning (FedAvg)
	Aggregation algorithms
	More clients with data overlapping
	Impact of bias and noise in data

	Conclusion

