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Abstract: Scene flow estimation provides the 3D low-level motion understanding in dynamic
scenes. In this paper, we propose an optimization-based scene flow estimation method with
neural rigidity prior for the autonomous driving environment. Specifically, we utilize the
rigidity prior of dynamic scenes to partition the point clouds into pillars of different resolutions.
Then, the flow vector of a point is represented as the average of local rigid transformations
associated with the different pillars to which it belongs. To model local rigidity, we employ
the neural implicit representation for encoding the intrinsic constraints of pillars. Our method
achieves state-of-the-art accuracy on three commonly-used autonomous driving datasets:
Argoverse, Waymo, and nuScenes, and even surpasses previous supervised learning-based
methods. Experiment results demonstrate the effectiveness of our method, particularly on
sparse points in the autonomous driving scene.
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1. Introduction

3D scene flow represents the 3D motion of each point in a dynamic environment. It has
been widely applied in scenes like autonomous driving [1], object tracking [2], etc. Basically,
previous scene flow estimation works can be mainly categorized into two types: learning-based
methods and optimization-based methods. Learning-based methods [3–7] heavily rely on
large amounts of training data. Typically, they are trained on synthetic datasets and fine-tuned
on real-scene datasets. However, these data-dependent approaches often suffer from poor
generalization performance to the real-world data. In contrast, optimization-based methods
have better generalization abilities. However, methods [8,9] that optimize point-to-point scene
flows do not take full advantage of the rigidity prior in the scene, and the optimization tends to
be worse when the number of points is small due to the lack of sufficient constraints. Some
methods [10,11] introduce scene rigidity prior, but need to rely on strong regularization to
construct constraints, which introduces some hyperparameters and does not generalize well
across different scenes.

To address this issue, we propose an method that leverages the rigid priors of dynamic
scenes to partition point clouds into equal-size pillars. The scene flow of each point is then
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represented by the average of local rigid transformations associated with the multi-resolution
pillars to which it belongs. To avoid introducing strong regularization, we employ neural
implicit representation to model the local rigidity prior, which can encode the intrinsic
constraints of the pillars. Our method achieves the state-of-the-art accuracy on three commonly
used autonomous driving datasets: Argoverse, Waymo, and nuScenes. The results of the
experiment demonstrate the effectiveness of our method, particularly in the sparse point clouds
in the autonomous driving scene. Specifically, our method has shown significant improvement
compared to F-NSF [9] in the results of three datasets with 2048 and 8192 points.

In summary, our contributions are as follows:
• We propose a novel scene flow optimization method with neural rigidity prior for the

autonomous driving environment.
• We develop a representation method for scene flow using a combination of rigid

transformations of multi-resolution pillars. Local rigidity is modeled by neural implicit
representation, thereby avoiding the requirement for strong regularization in our model.

• Our method achieves the state-of-the-art accuracy on three commonly used autonomous
driving datasets. Particularly for sparse points, our method shows a significant
improvement in accuracy.

2. Related works

2.1. Learning-based scene flow

According to whether scene flow ground truth is used during training, learning-based scene flow
estimation methods can be divided into supervised scene flow and unsupervised scene flow.

2.1.1. Supervised scene flow

FlowNet3D [3] is the first precursor to learn 3D scene flow from point cloud pairs in an
end-to-end manner. They construct point cloud feature pyramids and introduce a flow
embedding layer. FLOT [4] incorporates optimal transport to constrain point matching based
on graph matching. PointPWC-Net [12] introduces point cloud cost volume, up-sampling, and
warping layers to perceive motion between consecutive frames. Wang et al. [5] develop
an attentive cost volume considering feature space and propose a hierarchical attention
learning network for scene flow estimation. PV-RAFT [13] proposes a hybrid point-voxel
correlation field to capture both local and global dependencies. Bi-PointFlowNet [14] proposes
a bi-directional flow embedding layer with forward and backward flow learning directions.
DifFlow3D [15] designs a diffusion-based scene flow residual generation method, which
refines the fine-grained flow residual from coarse to fine in a generative manner. However,
due to the difficulty in obtaining ground truth for scene flow, supervised scene flow estimation
models are often trained on synthetic datasets such as FlyingThings3D [16] and then fine-tune
on real-scene data. Although synthetic datasets provide readily available ground truth scene
flow, there is a significant domain gap between these datasets and real-scene LiDAR point
cloud data. Factors such as noise and motion distortion commonly exist in real-world scenarios

2



Robot Learn. Article

but are not adequately captured in the synthetic datasets. As a result, supervised methods
trained on synthetic data tend to exhibit poor generalization ability in real-world scenes.

2.1.2. Unsupervised scene flow

To address the challenge of acquiring ground truth for scene flow, many works focus on
unsupervised learning methods for scene flow estimation. PointPWC-Net [12] introduces
three loss functions: Chamfer loss, smoothness constraint, and Laplacian regularization. These
loss functions enable the model to learn scene flow without relying on ground truth flow.
Inspired by PointPWC-Net [12], JGF [17] apply the concept of cycle consistency loss to
enforce time consistency in the predicted scene flow. Based on the iterative closest point (ICP)
algorithm, FlowStep3D [18] proposes a global correlation unit and a recurrent local update unit
to iteratively refine the flow residuals. SLIM [19] and RigidFlow [20] take into account global
ego-motion when predicting scene flow. SPFlow-Net [21] designs an iterative end-to-end
superpoint-based flow estimation method, where superpoint can be dynamically updated by
the point-to-superpoint matching construction. 3DSFLabeling [22] designs an auto-labeling
method, which can generate a large number of 3D scene flow pseudo labels. SeFlow [23]
integrates a dynamic classification method in formulating efficient self-supervision objectives.
Self-supervised learning methods possess the advantage of adaptability to different datasets,
maintaining a certain level of generalization ability. However, to achieve satisfactory estimation
outcomes, these methods still require a significant amount of training data, leading to high
training costs.

2.2. Optimization-based scene flow

Optimization-based methods optimize scene flow at runtime and do not rely on model training.
Pontes et al. [24] utilizes the construction of a point cloud graph to constrain non-rigid scene
flow to rigid scene flow within a specific range for optimization. However, this method is
highly sensitive to the hyperparameters of the graph. A best-known work is NSFP [8], which
utilizes a Multi Layer Perceptron (MLP) as an implicit regularization technique to optimize
scene flow. Chodosh et al. [25] use NSFP [8] to re-evaluate scene flow. Building upon NSFP,
F-NSF [9] further improves the optimization speed by replacing the loss function with a
distance transform (DT) loss. This enhancement greatly accelerates the optimization process.
RSF [10] uses a combination of global self-motion and bounding box rigid motion to represent
scene flow. They introduce a learnable bounding box formulation to optimize the scene flow.
Optflow [11] achieves fast convergence and improves point correspondence by using local
correlation weight matrices for correspondence matches, adaptive correspondence threshold
constraints for nearest-neighbour searches, and graph prior rigidity constraints. ICPFlow [26]
uses ICP to estimate the scene flow utilising a rigid transformation of objects in the scene.
Khatri et al. [27] combines a 3D object detector and a simple Kalman filter-based tracker to
estimate the scene flow.
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3. Methods

Let Pt−1 ∈ Rn1×3 and Pt ∈ Rn2×3 represent two point clouds from consecutive frames at time
t-1 and t, respectively. The number of points in these two point clouds may be different
and there may not be point-to-point correspondences between two frames. The motion of a
point pi in Pt−1 can be represented by a 3D vector fi. The motion of all points in Pt−1 can be
represented as F ∈ Rn1×3. The objective function of scene flow optimization is:

F∗ = argmin
F

∑
pi∈Pt−1

D(pi + fi,Pt), (1)

where D calculates the distance between the point pi + fi and its closest neighbor in Pt .

Figure 1. Visualization of point cloud pillars. We partition the whole point cloud into equally sized
pillars in the vertical direction relative to the ground. We assume that the points within each pillar
exhibit consistent rigid motion patterns.

3.1. Multi-resolution pillars

Local rigidity is a common prior in scene flow estimation. It refers to the assumption that
neighboring regions within the scene exhibit consistent rigidity motion patterns. In the context
of autonomous driving, we assume that local motion in the vertical direction (perpendicular to
the ground) within certain regions is consistent. Therefore, we partition the point cloud into
pillars of equal size as shown in Figure 1. We assume that the points within each pillar exhibit
consistent rigid motion patterns. The advantage of using pillars to represent local rigid motion
is that it does not require explicit segmentation of foreground objects and background in the
scene. By partitioning the point cloud into pillars, we can capture the local motion patterns
without the need for explicit object boundaries. This approach allows us to focus on modeling
and estimating the motion within each pillar.

However, as shown in Figure 1, the same object may be partitioned into multiple pillars.
This leads to different rigid transformations being used for points on the same object. To
address this issue, we propose a multi-resolution pillar partition method, which divides the
point cloud into different resolutions using different pillar sizes as shown in Figure 2. Smaller
pillars exhibit higher motion consistency among points and focus more on local fine-grained
point cloud motion. Larger pillars help prevent an object from being split into multiple distinct
rigid motions, providing a broader scope for enforcing consistency constraints among points.
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Specifically, we partition the point cloud into L layers of different sizes, and Tl
i = {Rl

i ∈
SO(3), tl

i ∈ R3} is used to represent the rigid transformation of the i-th pillar in the l-th layer.

Figure 2. Pipeline for scene flow optimization. The point cloud is partitioned into pillars of different
resolutions. For a point in the point cloud, we can obtain the center coordinates and size of the pillar it
belongs to at different resolutions. Then, the coordinates (xy) and size (s) are used as inputs to the
model. The model outputs a 6-dimensional vector for each layer, where the first three dimensions
represent the rotation vector and the last three dimensions represent the translation vector. • represents
the source point, and • represents the predicted point. × means applying the rotation and translation to
the source point to get predicted point, and ⊕ represents taking the sum of the predicted results and
then averaging them. The final predicted point is the mean of the predicted points from all layers.

Multi-resolution pillars are the result of partitioning a point cloud using different sizes.
The process divides the 3D space into small cube-like regions called pillars, assigning each
point to a pillar based on its location. The outputs include centroid coordinates for each pillar
and the corresponding pillar index for each point.

In this case, for point pi in the point cloud Pt , the scene flow fi can be represented by the
following equation:

fi =
1
L

L

∑
l=0

(Rl pi + tl − pi), (2)

where Rl and tl represent the rotation and translation of the pillar where point pi belongs to in
the l-th layer.

3.2. Neural rigidity prior

Many optimization-based methods introduce explicit regularization when modeling scene flow
based on rigid priors. For example, RSF [10] optimizes object-level scene flow and initializes
the size of object bounding boxes using the size of a car. Although they can optimize the size
of the bounding box for objects, the ability is limited and cannot optimize the size of small
objects well. To avoid explicit regularization, inspired by NSFP [8], we use an multilayer
perceptrons (MLP) to model the rigid transformation of pillars. The rigid transformations of
adjacent pillars may be similar, and this consistency constraint can be encoded in the model.

In detail, we use the center coordinates and the size of the pillars as the input for the
model. Since the height of the center coordinates is the same, we only use the XY coordinates
in our model. In practice, we use the normalized coordinates. The output of the model is a
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6-dimensional vector, where the first three dimensions represent the rotation vector and the
last three dimensions represent the translation vector. In fact, for a pillar, we represent the
rotation using the following equation:

(r, t) = MLP((x,y,s)), (3)

where x and y represent the XY coordinates of the center point of the pillar, and s represents
the size of the pillar. r represents a rotation vector, and t represents a translation vector. When
computing coordinate transformations, the rotation vector is converted into a rotation matrix R.

As shown in Figure 2, the process of obtaining the predicted flow position for a point
in the point cloud involves the following steps: First, the center coordinates and size of the
corresponding pillar at different resolutions are obtained. These xy coordinates and size values
are then used as inputs to the model. The model predicts the separate rigid transformations for
each layer. Finally, the predicted point cloud is obtained by applying rigid transformations to
the source point. We average the predicted point clouds from each layer to determine the final
predicted point cloud.

3.3. Loss function

The chamfer distance [28] is utilized for our flow optimization, which is commonly leveraged
in unsupervised learning scene flow and optimization-based scene flow networks. Typically,
the chamfer distance loss is computed by the point distances both from the source to the target
point cloud and from the target to the source point cloud. The specific calculation formula is
as follows:

LC = ∑
p∈P

min
q j∈Q

||p−q j||22 + ∑
q∈Q

min
pi∈P

||pi −q||22, (4)

where pi represents the i-th point in the source point cloud P. qi represents the j-th point in
the target point cloud Q. And ||.|| denotes the Euclidean distance.

From the above formula, it can be observed that calculating the distance between one point
with the whole point clouds in the other frame requires searching for the nearest neighboring
points. The complexity of chamfer distance computation is O(n2). This can lead to significant
increases in computation time when dealing with a large number of points. To address this
issue, F-NSF [9] introduces the distance transform (DT) as an efficient loss function. The
DT loss builds a DT map for the target point cloud. When calculating the distance from the
source point cloud to the target point cloud, we can directly query the pre-constructed map
to obtain the distance to the nearest point. This computational approach has a complexity of
O(n), significantly accelerating the optimization speed.

In this paper, we choose the DT loss as our optimization loss function:

L = min
p′∈P′,q∈G

∥p′−q∥2, (5)

where P′ refers to the predicted point cloud obtained by adding the source point cloud and the
scene flow. G represents the constructed DT map, and q represents the regularly spaced point
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in a voxel.

4. Results

In this section, we evaluate the effectiveness of our method on three commonly used
autonomous driving datasets. We compare our method with several state-of-the-art approaches,
including supervised methods, unsupervised methods, and optimization-based methods.

Table 1. Results for 2048 and 8192 points on the Argoverse dataset.

Points Method Supervision EPE3D(m) ↓ Acc3DS(%)↑ Acc3DR(%)↑ θε (rad) ↓

2048

FlowNet3D [3] Full 0.455 1.34 6.12 0.736
PointPWC-Net [12] Full 0.405 8.25 25.47 0.674

JGF [17] Self 0.542 8.80 20.28 0.715
PointPWC-Net [12] Self 0.409 9.79 29.31 0.643

F-NSF [9] Optim 0.239 22.44 46.47 0.472
OptFlow [11] Optim 0.20 43.85 65.50 0.39

Ours Optim 0.112 52.33 82.46 0.383

8192

FLOT [4] Full 0.821 2.00 8.84 0.967
R3DSF [29] Weakly 0.417 32.52 42.52 0.551

NSFP [8] Optim 0.113 46.32 72.68 0.347
F-NSF [9] Optim 0.118 69.93 83.55 0.352

Ours Optim 0.091 73.11 90.50 0.343
The dataset consists of 212 test scenes. ‘Full’ represents supervised scene flow estimation. ‘Self’ represents
unsupervised scene flow estimation methods. ‘Weakly’ represents weakly supervised scene flow estimation
methods. ‘Optim’ represents optimization-based methods. The best results are highlighted in bold, and the second
best results are underlined.

Table 2. Results for 2048 and 8192 points on the Waymo dataset.

Points Method Supervision EPE3D(m) ↓ Acc3DS(%)↑ Acc3DR(%)↑ θε (rad) ↓

2048 F-NSF[9] Optim 0.185 33.49 62.57 0.404
Ours Optim 0.121 65.58 87.68 0.372

8192

FLOT [4] Full 0.702 2.46 11.30 0.808
R3DSF[29] Weakly 0.414 35.47 44.96 0.527

NSFP[8] Optim 0.138 53.62 78.57 0.339
F-NSF[9] Optim 0.106 77.53 88.99 0.329

Ours Optim 0.092 75.47 91.93 0.356

The dataset consists of 202 test scenes. The evaluation results for previous methods on 8192 points are taken from
the report of NSFP [9]. The best results are highlighted in bold, and the second best results are underlined.

4.1. Implementation detail

The experiment runs on an NVIDIA RTX 4090 GPU with PyTorch=2.0.1 and CUDA=11.7.
The optimizer is Adam [30], and the initial learning rate is 0.008. We partition the point cloud
using sizes 1 m, 4 m and 8 m. MLP has 8 hidden layers and 128 hidden units. We primarily
conduct tests on datasets with 2048 and 8192 points. DT grid size is set to 10.

4.2. Dataset

Our proposed method primarily focuses on scene flow estimation in real-world autonomous
driving scenes. Therefore, we conduct tests on three commonly used autonomous driving
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datasets, namely Argoverse [31], Waymo [32], and nuScenes [33]. These three datasets are
all obtained from real-world scenarios using lidar sensors and contain a large number of
challenging scenes. Since ground truth labels for the scenes are not provided, we utilize
self-motion and 3D object tracking to create pseudo-labels. The processing methods for datasets
Argoverse, Waymo, and nuScenes respectively follow approaches [8,24], [34,35], and [8,24]. In
practice, we have used the preprocessed datasets provided by the approaches [8] and [9].

Table 3. Results for 2048 and 8192 points on the nuScenes dataset.

Points Method Supervision EPE3D(m) ↓ Acc3DS(%)↑ Acc3DR(%)↑ θε (rad) ↓

2048

FlowNet3D [3] Full 0.505 2.12 10.81 0.620
PointPWC-Net [12] Full 0.442 7.64 22.32 0.497

JGF [17] Self 0.625 6.09 0.139 0.432
PointPWC-Net [12] Self 0.431 6.87 22.42 0.406

Graph Prior[24] Optim 0.289 20.12 43.54 0.337
F-NSF[9] Optim 0.322 34.69 61.13 0.293

OptFlow[11] Optim 0.216 40.85 65.97 0.271
Ours Optim 0.263 53.71 75.22 0.291

8192 F-NSF[9] Optim 0.252 49.77 74.55 0.240
Ours Optim 0.232 63.43 79.59 0.280

The dataset consists of 310 test scenes. The evaluation results for previous methods on 2048 points are taken from
the report of NSFP [8]. The best results are highlighted in bold, and the next best results are underlined.

4.3. Metric

We evaluated the optimization results of the scene flow using commonly used metrics such as
in [3,8,12,15,24]. EPE3D indicates the average absolute distance between two point clouds.
Acc3DS represents the percentage of scene flow where EPE3D ≤ 0.05 m or relative EPE3D
error ≤ 5%. Acc3DR represents the percentage of scene flow where EPE3D ≤ 0.1 m or
relative EPE3D error ≤ 10%. θε denotes the mean angular error between the estimated scene
flow and the ground truth.

4.4. Comparison with other methods

In the supervised methods, FlowNet3D [3], FLOT [4], and PointPWC-Net [12] train their
models on the Flythings3D dataset. Additionally, PointPWC-Net can also be trained using an
unsupervised approach. JGF [17] is an unsupervised scene flow learning method. R3DSF [29]
is a weakly supervised approach that does not directly use the ground truth values of scene
flow during model training. Instead, it utilizes background masks and ego-motion signals for
training. Graph prior [24], NSFP [8], F-NSF [9], and Optflow [11] are optimization-based
methods. In some learning-based methods, such as PointPWC-Net, the estimation of scene
flow often restricts the point cloud range to 35 m. However, optimization-based methods
usually do not require such restrictions when evaluating scene flow. Therefore, to ensure the
fairness, we do not limit the point cloud range in evaluation. Furthermore, for some methods,
the evaluation results have already been reported, so we directly use those reported results,
which will be specified in the corresponding table.
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Figure 3. Visualization results for scene flow with 2048 points. From top to bottom the results are
for Argoverse, Waymo, and nuScenes respectively. Our results are compared with those of F-NSF [9].
Blue points represent the ground truth, and orange points represent the predicted point cloud.

Figure 4. Visualization results for scene flow with 8192 points. From top to bottom the results are
for Argoverse, Waymo, and nuScenes respectively. Our results are compared with those of F-NSF [9].
Blue points represent the ground truth, and orange points represent the predicted point cloud.

Our test results on the three datasets with 2048 points achieved state-of-the-art accuracy
as shown in Tables 1–3. Specifically, our results show a significant improvement in accuracy,
with Acc3DS increasing by 19% to 95% and Acc3DR increasing by 14% to 40%. In the test
results with 8192 points, our results still achieve the best performance on the Argoverse dataset.
Although some metrics on Waymo and nuScenes are slightly inferior to the best results, they
still outperform learning-based methods. Figures 3, 4 show the visualisation results for 2048
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and 8192 points, respectively. Due to the lack of rigid constraints, the estimation results
of F-NSF [9], which is based on point-to-point scene flow optimization, are significantly
worse than our results, especially for points belonging to the static background. Thanks to the
constraints of local rigidity, our method ensures the consistency of local point cloud motion.
This guarantees that the network can optimize the rigid motion of pillars even with a smaller
number of points in the point cloud.

4.5. Ablation studies

To validate the effectiveness of the method, we conducted ablation experiments on the
Argoverse dataset with 8192 points, as shown in Table 4. ‘W/O neural’ represents not
using neural implicit representation to model the rigid transformation of pillars, but directly
optimizing a rigid transformation for each pillar. The experiment results indicate that the
experiment without using implicit representation yields large errors in terms of EPE3D
and θε . This demonstrates that the estimated rigid transformations for the majority of
pillars are incorrect. This is due to the explicit representation leading to a lack of inherent
constraints between different pillars. ‘W/O multi-resolution’ means not using a combination
of multi-resolution pillar rigid transformations to represent scene flow. Experiment results
show that using just a single layer is worse than multi-resolution. This is because some objects
in the scene may be split into several pillars, and points on the same object may not be subject
to the same rigidity constraints.

Table 4. Ablation experiment results for 8192 points on the Argoverse dataset.

Method EPE3D(m) ↓ Acc3DS (%)↑ Acc3DR(%)↑ θε (rad) ↓
W/O neural 0.706 16.99 18.23 1.614

W/O multi-resolution 0.093 71.02 88.52 0.356
Complete 0.091 73.11 90.50 0.343

4.6. Limitation

Compared to these learning-based methods for scene flow estimation, optimization-based
methods perform optimization at runtime and are therefore more time-consuming.
Learning-based methods can usually run in real-time and optimization-based methods can
only run offline.

5. Conclusion

In this paper, We propose a novel scene flow optimization method with neural rigidity prior
for the autonomous driving environment. The point cloud is partitioned into pillars of different
resolutions. Scene flow of a point is represented as a combination of rigid transformations of
multi-resolution pillars. Local rigidity is modeled in the network using implicit representation.
We conduct tests on commonly used autonomous driving datasets. The experiment results
show that our method significantly improves the estimation performance of scene flow on
sparse point clouds compared to point-to-point optimization methods and strongly regularized
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optimization methods. This improvement is attributed to the introduction of rigid priors and
the multi-resolution representation of scene flow. Finally, we demonstrate the feasibility of
using neural networks to represent rigid priors and the effectiveness of using a combination of
multi-resolution pillar rigid transforms to represent scene flows.
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