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Abstract: The increasing use of composite materials in sectors like automotive and aerospace poses 

serious problems for preserving their material performance and integrity. Because they provide 

automated, accurate, and effective inspection capabilities, advanced inspection techniques—in 

particular, robotic intelligence technologies—have emerged as viable options. This paper provides a 

comprehensive review of the key robotic intelligence technologies used in the inspection of composite 

materials, highlighting advancements in vision-based, tactile-based, and force-based traditional 

approaches, as well as the development in modern advanced deep learning methods such as 

Convolutional Neural Network (CNN) based image processing techniques for inspection. In order to 

guarantee accurate and steady manipulation during inspection jobs, robot control strategies are also 

investigated. The robot’s capacity to navigate intricate composite constructions while preserving constant 

inspection quality has also been greatly improved by the use of clever path-planning algorithms. The paper 

concludes by outlining future directions for improving inspection accuracy and efficiency through AI 

integration and advanced sensor technologies. 
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1. Introduction 

Over the past decade, the increasing demand for automation has driven significant advancements in 

robotic technologies, encompassing areas such as perception, control, and decision-making [1]. The 

integration of artificial intelligence (AI) and machine learning (ML) is further accelerating these 

developments, allowing robots to interact autonomously with their environments and execute more 

complex tasks [2]. Robotics has been widely used in manufacturing, healthcare, agriculture, transport 

and logistics industries [3–6]. 

In manufacturing, robots are utilized in various processes, such as assembly, packaging, and welding [2], 

due to their precision, speed, and reliability. In the composites manufacturing industry, robotics plays a 

particularly dominant role. This is largely because composite materials are widely used in the automotive 

and aerospace sectors, where components tend to be large and complex, making it challenging for human 
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workers to manufacture them efficiently. For instance, as shown in Figure 1 [7,8], two important 

methods for producing composite materials are (a) Automated Tape Laying (ATL) and (b) Automated 

Fiber Placement (AFP). ATL offers speedier manufacturing but is less suitable for complex geometries 

since it uses wide tapes, which are perfect for huge structural components like wings and fuselages and 

flat or slightly curved surfaces. AFP, on the other hand, lays narrow fibre tows, which allow for accurate 

placement and little material waste. As a result, it is more appropriate for high-precision applications and 

complicated, curved surfaces, especially in aerospace. In some complicated manufacturing cases, this 

process requires a collaborative robotic arm system to carry out the entire manufacturing operation [9]. 

Furthermore, in manufacturing processes involving complex geometrical components, the collaborative 

system between robots and humans is often necessary to complete the task. This collaboration is particularly 

essential in tasks where precision and adaptability are required. For example [10], the system consists of 

a draping robot responsible for laying up the composite sheets, while two grasping robots assist by 

holding and positioning the material. This coordinated effort allows for greater accuracy and efficiency, 

especially when handling large or intricate parts. Such collaborative systems leverage the strengths of 

both robots and human workers, where robots provide consistency and speed in repetitive tasks, and 

humans contribute flexibility and problem-solving capabilities. In addition, the integration of 

advanced sensors, such as depth cameras and tactile sensors, alongside machine learning algorithms, 

improves these systems by enabling real-time adjustments and adaptive decision-making throughout 

the production process [11]. These technologies ensure precise handling and deposition of composite 

materials, even in complex geometries, reducing the chances of defects and material waste. To further enhance 

quality control, several defect detection methods, such as ultrasonic C-scan (UT) [12], infrared thermography 

(IRT) [13], X-ray computed tomography (CT) [14], and computer vision [15], have been incorporated into 

these systems. Although some of these methods can be used during production for in-process monitoring, 

most are still primarily applied after manufacturing to ensure final product integrity. 

 

Figure 1. Two main manufacturing methods of composites (a) Automated Tape Laying (ATL) [7] 

and (b) Automated Fibre Placement (AFP) [8]. 

Moreover, the detection of defects has made extensive use of image processing techniques, 

especially in the production of composite materials. Flaws in composite materials like cracks, wrinkles, 

and foreign objects and debris (FODs) have been found using techniques like edge detection, feature 

extraction, and pattern recognition [16]. These technologies enable automated inspection systems to 

discover faults with improved accuracy and efficiency compared to traditional manual examinations. 
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For example, image processing algorithms in vision-based systems can evaluate visual input from 

cameras or sensors to detect possible defects instantly [17]. The system’s capacity to identify intricate 

patterns and abnormalities is further improved when these methods are coupled with machine learning 

models. By using bigger datasets for training, this kind of integration makes it possible to continuously 

increase the accuracy of defect classification [18]. Furthermore, deep learning like convolutional neural 

networks (CNNs) has been used to identify and pinpoint defects in composite materials with little 

assistance from humans [19]. The need for sizable annotated datasets, the difficulty of real-time 

processing in industrial settings, and the generalization of models across various manufacturing 

processes are some of the obstacles that still need to be overcome in order to fully realize the potential 

of image processing and machine learning for defect detection [20]. In order to further increase the 

precision and resilience of robotic inspection systems in the composite manufacturing process, it will be 

imperative to address these issues. 

The demand for composite materials in the automotive and aerospace industries has made it 

challenging to ensure efficient material quality control. Conventional inspection methods, such as visual 

inspection by hand and ultrasonic testing, frequently cannot handle complicated geometries, find defects 

instantly, or scale up for large-scale applications [21]. The need for automated and non-destructive 

testing (NDT) is rising, and these labour-intensive, human error-prone approaches cannot keep up with 

the demand. Increased precision and the complexity of composite materials mean that increasingly 

sophisticated inspection methods are needed. Robotic intelligence systems possess the capability to 

tackle these issues by performing precise, automated, and instantaneous inspections, particularly in 

settings where human involvement is restricted [22]. However, there are still many obstacles to overcome 

before AI and robotic control can be fully integrated into composite inspection systems. These include 

issues with processing speed, accuracy, and adaptability to various composite environments and structures. 

This review offers a comprehensive overview of recent advancements in robotic intelligence 

technologies for composite material inspection, aimed at addressing these challenges. Section 2 

examines key strategies, applications, and current limitations of various composites inspection 

techniques, including wave-based, optical, radiation, vision-force, and tactile methods. Section 3 explores 

image processing techniques in composites inspection. Section 4 explained the applications of robotic and 

intelligent technologies in materials inspection, while section 5 reviews robot path planning and control 

methods. Finally, section 6 discusses future industry prospects for composite manufacturing. 

2. Intelligent inspection technologies 

2.1. Wave-based inspection techniques 

Cross-sectional scan, or ultrasonic C-Scan Testing is the main technique used to assess a part’s internal 

quality using pictures as shown in Figure 2. To find flaws, a probe emits high-frequency sound energy 

pulses into the material [23,24]. The C-scan provides a detailed two-dimensional (2D) map of the inspected 

region, in contrast to the A- and B-scans, which provide single-dimensional and cross-sectional views, 

respectively. This makes the C-scan indispensable for accurate inspections where the precise location, 

size, and extent of faults must be recognized. As a result, the aerospace industry frequently uses ultrasonic 

c-scan for composite inspections as well as material integrity checks throughout manufacturing operations. 
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Using the properties of ultrasonic propagation in the time domain, the depth-direction ultrasonic 

C-scan detection technique was originally proposed in 2001, allowing for the development of multiple 

scanned images of the interior of carbon fibre composites. Defect identification is the exclusive purpose 

of this technique [25]. Utilizing ultrasonic C-scan technology, Hasiotis et al. found artificial faults 

inserted into CFRP composites. This technique made it possible to precisely measure the specimen’s 

thickness and to identify and characterize flaws [26]. 

Fu et al. investigated ultrasonic testing in carbon fibre composites with layer-dropping structures using 

finite element simulations in recent years. They discovered that ultrasonic reflection becomes less effective 

the more angles there are between layers, especially when the angle is more than 60 degrees, which makes 

flaw identification more difficult. Additionally, thicker structures decrease signal amplitude, indicating 

that different techniques could be required for the trustworthy examination of such composites [27]. 

 

Figure 2. The ultrasonic C-scan equipment [24]. 

2.2. Optical-based inspection techniques  

Another potent method for finding flaws in a variety of materials, including composite structures, is 

infrared thermography (IRT). This technique utilizes infrared imaging to detect localized thermal 

variations caused by material flaws, making it ideal for in-situ inspections of complex geometries and 

widely used in composite material inspection [28,29]. The pictures show how infrared thermography 

(IRT) is used for material inspection and its guiding principles. The active thermography system is 

depicted in Figure 3, where a material’s surface is heated by a pulsed heat source, creating temperature 

variations that are recorded by a sensor to identify underlying flaws or properties [30]. Furthermore, the 

integration of a sensor for automated inspections is illustrated by its installation on a robotic arm. The 

application of infrared thermography (IRT) for aircraft defect detection is illustrated in Figure 4 [31], 

where a robot equipped with an IRT system scans the aircraft fuselage and collects thermal data.  

There have been several advancements in the development of IRT approaches. Pulsed thermography 

became a standard technique in the early 2000s [32], followed by the introduction of Lock-in 

Thermography [33]. The invention of Line Scan Thermography (LST) by Ley et al. in 2010 was a major 

breakthrough [34]. In contrast to static thermography techniques, LST offers enhanced fault 

identification capabilities thanks to its real-time scanning of the specimen using an infrared detector and 
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a moving heat source. However, maintaining constant scan speeds and heat dispersion is difficult when 

applying LST manually. 

In order to overcome these constraints, scientists started combining IRT methods with robotic 

systems. Robotic-assisted LST was introduced in 2013 and has been shown to reduce operating expenses 

and improve scanning accuracy and reliability [35]. Due to this integration, the scanning process could 

be precisely controlled, guaranteeing uniform inspection quality and even heat dispersion throughout 

vast, intricate composite constructions. In the years that followed, more advancements in robotic-assisted 

IRT were shown. For example, a work by Jeroen et al. demonstrated the use of active thermography to 

evaluate a carbon fibre reinforced polymer (CFRP) bicycle frame using a six-axis robot fitted with an 

excitation source and an infrared camera [36]. With this configuration, complex geometries may be 

inspected with extreme accuracy and repeatability, demonstrating the potential of robotic systems to 

improve IRT’s capabilities.   

 

Figure 3. This diagram (Left) illustrates the working principle of infrared thermography 

inspection. A heat source applies thermal energy to the specimen, and the infrared camera detects 

the resulting temperature variations. These variations are processed by a computer to identify 

subsurface defects, such as delamination or voids, in composite materials. The picture (Right) 

showcases an automated robotic infrared thermography setup. The robot-mounted infrared camera 

system enhances inspection precision and efficiency, allowing for real-time detection of defects in 

complex geometries [30].   

Apart from the advantages, IRT inspections still have several issues that need to be resolved. 

Variability in results can arise from the technique’s sensitivity to defects’ size, shape, and material 

qualities [37]. The accuracy of fault identification can still be impacted by optical problems and unequal 

heat dispersion [38]. Furthermore, evaluating things with several integrated components comes with 

special difficulties. Variations in material emissivity can also lead to misinterpretation or concealment 

of defects in thermal images, while environmental factors like background reflections, thermal noise, 

and external interferences also affect the effectiveness of infrared thermography (IRT) inspections [39,40]. 

To address these problems and strengthen the reliability of IRT inspections, researchers are hard at 

work creating sophisticated image-processing algorithms and machine-learning strategies [41]. 

Combining many NDT and robotics techniques and to build more complete inspection systems is a 

recent trend in IRT research. 
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Figure 4. The thermal imaging results reveal critical defect information in composite material 

inspection: (a) shows the robotic Infrared Thermography (IRT) system in operation on an aircraft 

fuselage, while (b) presents a 3D view of the collected thermal data, highlighting defect areas [31]. 

2.3. Radiation-based inspection techniques 

In composite materials inspection, X-ray computed tomography (CT) has been widely used in material 

quality assurance. It is one of the most extensively used non-contact technologies for flaw detection in 

the composites manufacturing sector because of its capacity to provide intricate three-dimensional (3D) 

subsurface images of components [42,43]. As shown in Figure 5, this is an example of the process for 

sampling, scanning, and analysing Carbon Fiber Reinforced Thermoplastic Sheet Moulding Compound 

(CFRTP-SMC). When it comes to viewing interior structures, flaws, and damage mechanisms—all of 

which can be difficult to identify with conventional non-destructive testing methods—this methodology 

has some distinct advantages. Both hardware and software advancements have significantly improved 

the resolution and processing power of X-ray CT in composite inspection, overcoming the limitations 

of its early applications.  

 

Figure 5. Schematic of the sampling, scanning and analysis process for CFRTP-SMC [44,45]. 

Nonetheless, notable advancements in these fields have occurred recently, making it possible to identify 

and characterize progressively smaller flaws and minute material changes [45]. The advent of interactive 

software tools for advanced visual analysis of flaws in composites has been one of the major 

advancements in the field. Garcea et al. [46] developed a precise 3D inspection system to model defect 

shapes, enhancing understanding of defect morphology and its impact on material properties. Building 

on this, Cognigni et al. [47] used the ORS Dragonfly tool to detect micro flaws like voids and cracks, 

providing critical insights into failure mechanisms. Senck et al. [48] further advanced X-ray CT 
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capabilities by integrating it with optical coherence tomography (OCT) for multi-scale analysis of carbon 

fibre reinforced polymers (CFRP). The integration of X-ray CT with AI and machine learning has 

facilitated automated flaw detection and improved the accuracy of void identification in composite 

materials. Additionally, in situ X-ray CT enables real-time monitoring of damage progression under load, 

providing important insights into material behaviour under stress [49,50]. In order to get better picture 

quality with less radiation exposure, Villarraga-Gómez et al. [51] explored a novel X-ray source 

technology for high-resolution CT imaging of composites, while Recur et al. [52] proposed an iterative 

reconstruction technique that improved defect visibility and reduced artifacts, contributing to more 

efficient processing and enhanced image quality. 

Despite its advantages, X-ray CT still faces limitations in composite material inspection, such as 

being time-consuming, costly for large components, and involving bulky equipment that is difficult to 

transport, making it less suitable for field inspections. Additionally, radiation safety remains a concern, 

particularly in industrial settings. However, these challenges could be mitigated by the use of robots, 

improving practicality and safety in such environments [53]. 

2.4. Vision-based inspection techniques 

In the material quality assessment of composite materials, machine vision has become an indispensable 

technology, providing quick, automated, and very precise inspection capabilities. The development of 

machine vision techniques in composite inspection is reviewed in this part, covering both conventional 

image processing methods and more recent developments in data-driven approaches.  

Machine vision, the primary technique to determine defects in composite inspection in the past, is 

based on digital image processing techniques incorporating some combination of preprocessing, edge 

detection and thresholding [54]. These techniques have been successfully explored to detect defects such 

as dents and fractures in composite surfaces, fibre orientations and impact damage. For example, the 

fibre orientations in dry woven and cured unidirectional (UD) prepreg composites have been exacting 

inspected using a polarisation vision method [55]. Atkinson et al. studied the in-plane shear behaviour 

of different composites, as shown in Figure 6, impact-loaded with various energy inputs using the same 

technique and obtained an accuracy of 0.1°–0.2°. While effective, traditional machine vision methods 

often face limitations related to camera resolution, lighting conditions, and the reflective nature of some 

composite surfaces, particularly carbon fibre composites [56].  

This shift toward data-driven methods of machine vision using machine-learning and deep-learning 

algorithms highlights the potential for achieving higher detection, and more automation, over the past 

few years, especially in automating defect detection and classification in composites [57]. For instance, 

Zambal et al. [58] describe a system that automates the detection and classification of three types of 

defects (delamination, in-situ foreign objects and localised resin-rich regions) in carbon fibre-reinforced 

polymer (CFRP) in components using data from thermography. The machine learning approach 

achieved a good level of accuracy. In related work, Tabernik et al. [59] presented a segmentation-based, 

deep-learning approach for detecting the surface defects in a composite. To address the issue of limited 

labeled data in composite material inspection, researchers have explored few-shot learning and transfer 

learning methods. Kesavan et al. [60] improved defect detection accuracy in composites using transfer 

learning with a small dataset, while Duan et al. [61] proposed a multimodal deep learning approach 

combining visual and infrared images for detecting defects in CFRP materials. 
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Figure 6. Polarized images (left) of the impacted specimens and greyscale images (right) depict 

the damage for all impact energy. For impact energies of 7.5 J and 10 J, respectively, the damage’s 

diameter is 10.5 mm and 11.6 mm [56]. 

Meanwhile, to find surface-level flaws including wrinkles, cracks, and foreign objects, visual-based 

assessment methods use cameras and sensors. However, the precision of these methods depends heavily 

on the robot’s ability to follow exact trajectories. To guarantee that the robot covers the whole surface 

of intricate composite structures, highly accurate path planning is necessary. Furthermore, in order to 

compensate for geometric abnormalities in the material, adaptive control algorithms allow for real-time 

adjustments to the robot’s position and orientation. This guarantees consistent image quality and lessens 

the possibility of missing important areas, leading to more accurate fault identification. The reliability 

and efficiency of composite material examinations can be greatly increased by robotic systems by 

combining precise motion control with sophisticated visual inspection techniques. 

2.5. Force-based inspection techniques 

Recent years have seen a notable increase in the use of force feedback-based non-destructive testing 

methods as a supplementary for composite materials. In order to detect mechanical changes on the surface 

or within a material, these approaches mostly rely on tactile or high-precision force sensors [62]. A force 

signal that is aberrant is registered by the force feedback device when it detects voids, delamination, or 

fissures inside the material. The force-displacement relationship can be examined for various regions by 

applying force and monitoring the material’s displacement response; aberrant force-displacement 

characteristics typically correlate to flaws in the composite material [63]. 
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More accurate detection is possible when force feedback technology is combined with robotic 

manipulation. By carefully adjusting the applied force and utilizing force feedback techniques, robots 

may precisely scan the outside or interior of a material, detecting abnormal areas through force feedback 

information from their end-effectors [64]. Villa-Tiburcio et al. [65] utilized a six-degree-of-freedom 

force sensor to ensure consistent contact force during the AFP process, as shown in Figure 7, By 

combining a PI controller with an Artificial Neural Network (ANN), their method achieved precise force 

tracking and robust compensation for disturbances under complex conditions. The study provides a 

robust foundation for further exploration of force-based defect detection in automated manufacturing 

processes. In order to identify features relevant to material flaws, the collected force feedback signals 

usually need to be processed using signal processing algorithms, such as Fourier transform or waveform 

analysis [66]. Furthermore, force feedback data can be combined with machine learning algorithms to 

automatically classify and identify defects [67].   

 

Figure 7. Robotic contact measurement system [65]. 

Force-based inspection techniques measure the material’s response to applied controlled forces in 

order to evaluate the mechanical characteristics of composite materials, such as stiffness and bonding 

strength. Precise and consistent application of forces is made possible in large part by robotic control 

systems. Using adaptive force control in conjunction with real-time sensor feedback, the robot can 

identify minute changes in the material’s response that could point to flaws like holes or delamination. 

Moreover, real-time force sensor data can be processed and interpreted by machine learning algorithms, 

which enhances the robot’s capacity to recognize and categorize flaws according to the mechanical properties 

of the material. 

2.6. Tactile-based inspection techniques 

Tactile-based defect detection has emerged as an innovative approach to identifying defects in composite 

materials, offering a complementary method to traditional visual inspection techniques. Unlike visual 
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methods, which are limited to surface-level defects, tactile sensing can potentially identify subsurface 

anomalies and provide information about material properties through direct contact with the material 

surface. Some examples of tactile sensors have been developed lately to fulfil the requirement of 

composites defect detection, such as the Gelsight sensor from Yuan et al. [68] have gained notoriety for 

their optical tactile sensor. It uses a three-color light source with a symmetrical distribution of the 

circumference to create a symmetrically distributed tactile image of red, blue, and green. What makes 

this sensor innovative is that it uses the photometric stereo method to reconstruct the contact geometry 

with high precision. Similarly, Meta Corporation (USA) has developed the open-source DIGIT haptic 

sensor [69], which is a fully optimized sensor design for better application in robotics tasks. Moreover, 

Lin et al. [70] suggested a monochromatic light-based phototactile sensor called 9DTact, which uses a 

black silica gel to cover a semi-transparent elastomer in order to achieve the shadow change in the contact 

region. This reduces the complexity of creating a three-color light source. In order to detect defects in 

the surfaces of dry fabric and composite prepreg, our previous research [71] proposed a new vision-based 

tactile sensor roller prototype, TacRoller, which is a three-colour reflective membrane roller-shape 

sensor. This new tactile sensor is anticipated to enhance the automation of the hand layup process. 

Because it allows for real-time quality monitoring, it drastically reduces the need for extensive manual 

inspections. Figure 8 shows the TacRoller developed in the authors’ group. 

 

Figure 8. The TacRoller developed by the authors. 

In addition to improving real-time monitoring and revolutionizing flaw identification, tactile sensing 

has found new uses in a variety of production processes, most notably in composite materials. 

Krombholz et al. [72] highlighted that traditional post-manufacturing inspection of high-performance 

composite parts can take up to 6 hours, significantly impacting production efficiency. In contrast, tactile 

sensing enables real-time, in-process monitoring, allowing for layer-by-layer inspection throughout the 

manufacturing process. This facilitates immediate defect detection and potential corrective actions, as 

demonstrated by Sacco et al. [73] in their work on automated fibre placement (AFP) systems. The 

applications of tactile sensing in composite materials are diverse. Fang et al. [74] showcased its 

capability in identifying fabric defects, including irregular dyeing patterns, revealing that tactile images 
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could provide clearer background textures compared to visual images for certain materials. However, 

they noted limitations in sensor size and the need for repeated lifting and pressing of the sensor, which 

could impact detection efficiency. In a related field, Shimonomura et al. [75] developed a tactile sensor 

capable of identifying foreign objects based on hardness variations, a principle that has potential 

applications in detecting inclusions or contaminants in composite manufacturing. Recent advancements 

in tactile sensor technology have addressed some of these limitations. Kim et al. [76] developed large-area 

capacitive sensor arrays to overcome the issue of small sensor size, while Zang et al. [77] reviewed 

progress in flexible pressure sensors that can better conform to curved or complex composite surfaces. The 

integration of multiple sensing modalities and machine learning algorithms, as discussed by Zou et al. [78] 

and demonstrated by Zhao et al. [79], has further enhanced the ability to detect and characterize various 

types of defects.  

Notwithstanding these developments, issues with sensor robustness, attaining fast inspection across 

wide regions, interpreting data in real time, and smooth integration with current production procedures 

still need to be resolved. The creation of self-healing tactile sensor skins, investigation of biomimetic 

tactile sensing concepts, and combination with additional non-destructive testing techniques are 

potential future research avenues. Tactile-based defect identification is expected to become more and 

more important as these issues are resolved in guaranteeing the dependability and quality of composite 

structures in a variety of industries. 

The robot’s capacity to regulate the force used during the inspection is crucial to tactile-based 

methods of inspection. Robots may control how much pressure is applied to a material to avoid damaging 

it while maintaining a constant contact point between the surface and the sensor thanks to adaptive force 

control. Robots can now navigate more complex surfaces thanks to advanced control algorithms, which 

also guarantee high-resolution data collecting from touch sensors even in hard-to-reach places. Its 

accurate and efficient flaw detection is enhanced by the combination of tactile sensing and precise force 

control, making it an invaluable instrument for composite material inspection. 

2.7. Comparison of various inspection methods 

Wave-based, optical-based, radiation-based, visual-based, force-based, and tactile-based composite 

inspection methods each have unique capabilities, limitations, applications, defect type covered and 

success rate as shown in Table 1. Wave-based techniques (ultrasonic testing) are ideal for robotic 

inspection of large structures due to their high sensitivity and deep penetration, demonstrating an 

impressive 85%–95% defect coverage [23,25,27]. Particularly in multi-layered composites, these 

methods are highly effective at detecting delamination, voids, and fibre breakage. However, they face 

challenges with complex internal geometries that may distort readings and require precise calibration, with 

high model complexity and reliance on coupling media constraining automation potential. Optical-based 

methods, such as infrared thermography, are non-contact and provide excellent precision in surface 

defect detection, achieving an 80%–90% success rate [28,30,33] while being sensitive to environmental 

conditions. They are well-suited for robotic automation due to their non-contact nature, enabling quick 

and precise flaw detection. Radiation-based techniques, including CT scans and X-rays, offer 

unparalleled 90%–99% accuracy for internal defects [42,46,53], providing high-resolution internal 

images when combined with high-precision 3D imaging. However, they are less suitable for direct 

robotic integration, are costly, and require stringent safety precautions. Visual techniques achieve a 
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cost-effective 75%–90% success rate in surface defect detection [57–60], while force-based methods 

(70%–85% success rate) [62,64–67] and tactile-based approaches (60%–80% accuracy) [68,71,76] 

provide precise feedback on contact pressures, material deformations, surface roughness, and micro-defects. 

Table 1. Comparative overview of inspection methods. 

Methods Capabilities Limitations Application References 

Wave (UT) 

- Effective for detecting delamination, voids, 

and fibre breakage. 

- Can penetrate multi-layered structures. 

- Requires coupling 

medium and precise 

calibration  

- Limited by complex 

geometries 

- Aerospace components 

- Thick composite 

structures 

[23–27] 

Optical 

(IRT) 

- Infrared thermography can detect 

subsurface defects like delamination by 

measuring heat flow. 

- Sensitive to 

environmental factors 

- Limited to near-surface 

detection 

In-process monitoring of 

composite layups 

[28–41] 

Radiation 

(CT) 

- Excellent for detecting internal defects like 

voids and delamination. 

- Non-contact, high-resolution results. 

- Expensive, high 

radiation safety 

requirements 

- Not real-time 

Critical component 

inspections in aerospace 

and automotive 

[42–53] 

Visual 

(CV) 

Quick and easy for surface-level defects like 

cracks or wear. 

- Limited to surface 

defects. 

- Dependent on lighting 

conditions 

Quality control in 

manufacturing 

environments 

[54–61] 

Force 

(sensor) 

Assesses mechanical properties like stiffness 

and bonding strength. 

Limited resolution for 

small-scale internal 

defects 

- Precision assembly 

- mechanical property 

evaluation 

[62–67] 

Tactile 

(sensor) 

Effective for detecting surface roughness or 

cracks. 

- Limited to surface-level 

defects 

- slow scanning speed 

Real-time monitoring 

during hand layups 

[68–79] 

Methods Defect Types Covered Success Rate (%) Model Complexity References 

Wave (UT) 
Delamination, voids, fibre breakage, thickness 

variation 
85%–95% High [23,25,27] 

Optical 

(IRT) 

Subsurface delamination, cracks, voids, foreign 

objects 
80%–90% Medium [28,30,33] 

Radiation 

(CT) 

Internal voids, cracks, fibre orientation, 

delamination 
90%–99% High [42,46,53] 

Visual 

(CV) 

Surface cracks, wear, impact damage, fibre 

alignment 
75%–90% Low [54–57] 

Force 

(sensor) 

Surface ridges, resin excess, mechanical property 

variations 
70%–85% Medium [62,63–66] 

Tactile 

(sensor) 

Surface roughness, microcracks, texture 

irregularities 
60%–80% Medium [68,76] 

From a robotic integration perspective, each technique finds its specific domain as demonstrated 

in Table 2. Wave-based and optical methods are highly suitable for automated inspection due to their 

non-contact nature and precision; radiation-based methods, despite their accuracy, face application 
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limitations from cost and safety concerns; visual, force-based, and tactile methods excel in continuous 

monitoring and scanning through rapid, precise feedback. Both tactile and visual approaches are easily 

integrated with robotic systems for continuous monitoring and scanning. Ultimately, selecting an 

inspection method demands careful consideration of sensitivity, penetration depth, cost, safety, and 

automation potential to achieve optimal composite material defect detection. 

In conclusion, the inspection technique selection is based on the particular needs of the composite 

material application, taking into account cost, robotic integration potential, and flaw detection capability. The 

real-time performance and automation ease of visual (CV) and optical (IRT) approaches make them 

useful for quick, economical surface examinations. However, despite their slower speeds and greater 

prices, wave-based (UT) and radiation-based (CT) technologies are preferable for detecting complicated 

interior problems. Although they are less appropriate for real-time applications, tactile and force-based 

approaches offer insightful evaluations of surface conditions and mechanical characteristics, which 

makes them perfect in situations where material strength is crucial. Robotic integration provides a road 

to completely automated, high-precision inspections by improving the efficiency and accuracy of 

existing methods, especially for big or complex composite constructions. Through deliberate selection 

and fusion of several techniques, sectors can maximize the velocity and precision of their evaluations 

of composite materials. 

Table 2. Comparison of real-time inspection capabilities and robotic arm integration for composite 

material inspection methods. 

Methods Real-time Capability Suitability for Integration References 

Wave (UT) 
Moderate: Near real-time data with some processing 

delays depending on equipment. 
Suitable [23–27] 

Optical (IRT) 
High: Near real-time feedback, especially effective for 

surface and near-surface defect detection. 
Suitable [28–41] 

Radiation (CT) 
Low to Moderate: Immediate results possible with X-

rays, but CT scans require significant processing time. 
Partially Suitable [42–53] 

Visual (CV) 
High: Immediate feedback, highly suitable for surface 

inspections. 
Highly Suitable [54–61] 

Force (sensor) 
Low to Moderate: Results require post-processing, 

reducing real-time capability. 
Suitable [62–67] 

Tactile (sensor) 
Low: Slow due to physical contact requirement, not suited 

for real-time monitoring. 
Suitable [68–79] 

3. Image processing techniques 

Image processing is now crucial for flaw detection due to the growing demand for composite material 

inspection. While image processing allows for the quick, automated detection of minute flaws on 

intricate surfaces, traditional inspection techniques frequently call for physical labour or specialized 

equipment. Image processing provides increased precision and consistency for minute problems such 

fibre misalignment, microcracks, or foreign objects in composite materials. A more intelligent, 

automated inspection procedure that can adjust to the many conditions and geometries found in 

composite materials is made possible by this multi-technology approach. 
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The two main categories of image processing algorithms utilized in composite material inspection 

are machine learning/deep learning algorithms and traditional computer vision (CV) techniques. Both 

conventional computer vision techniques and deep learning algorithms have merits in the field of 

composites inspection; nevertheless, the most popular algorithms are primarily determined by the 

particular application situation and inspection needs. Due to their ease of use, simplicity, and efficiency, 

conventional computer vision algorithms are still frequently employed in many industrial inspection 

situations today. However, the use of machine learning and deep learning algorithms is rapidly 

expanding, particularly in automated and intelligent inspection, as the amount of data grows and the 

standards for automated inspection accuracy improve. 

3.1. Traditional CV methods 

Because of their computational efficiency and ease of use, traditional computer vision techniques 

continue to be essential in the inspection of composite materials. Otsu’s thresholding technique is still a 

mainstay for image segmentation, especially in situations with constant contrast [80], while advanced 

imaging techniques like edge detection are frequently used to detect surface flaws and structural irregularities 

in composite materials [81,82]. In ultrasonic and X-ray imaging, a variety of filtering techniques, such as 

Gaussian and median filtering, are widely utilized for picture improvement and noise reduction [83]. 

These traditional methods, which are the foundation of many industrial inspection systems, are excellent at 

identifying and evaluating surface flaws, edges, and fundamental structural irregularities [84]. For example, 

Zhao et al. [85] showed how well wavelet transforms and Canny edge detection work to identify 

delamination in composite laminates, while Gao et al. [86] successfully used a combination of Gabor 

filters and Otsu thresholding to detect and classify defects in carbon fibre reinforced polymer (CFRP) 

components. Because they are simple, computationally efficient, and reliable in certain environments, 

traditional computer vision techniques are perfect for real-time industrial applications. However, their 

reliance on predetermined traits and standards often limits their ability to adjust to complex or highly 

varied inspection tasks. These methods may therefore not be as successful in scenarios with intricate 

fault patterns or low-contrast images, where more advanced algorithms or machine learning techniques 

may be more useful. 

3.2. Machine learning and deep learning methods 

Building upon these traditional methods, the field has witnessed rapid adoption of machine learning 

algorithms, particularly deep learning models, which have demonstrated superior performance in 

complex defect detection and segmentation tasks. Convolutional Neural Networks (CNNs), which is a 

type of deep learning, have completely changed machine vision in composite inspection and U-Net 

architectures have shown remarkable capability in processing complex images and accurately localizing 

various types of defects [87,88]. The necessity for human feature engineering has been eliminated by 

CNNs’ amazing abilities to automatically learn pertinent characteristics for fault identification [89]. CNNs 

are useful for identifying flaws in CFRP materials, as evidenced by a recent study by Meister et al. [90] that 

used X-ray computed tomography data. Their method provided accurate defect localization and achieved 

great accuracy in identifying a variety of defect types, such as pores, delamination, and foreign objects. 

Support Vector Machines (SVMs), often combined with traditional feature extraction methods, prove 
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effective for specific defect classifications, especially with limited datasets [91]. Clustering algorithms 

like K-means offer powerful solutions for the automatic segmentation of composite materials, particularly 

when defect locations are uncertain [46]. This integration of advanced machine learning techniques with 

traditional methods provides a comprehensive framework for composite material inspection, addressing a 

wide range of defect types and inspection requirements in various industrial settings [92]. 

Recent research highlights the power of these advanced techniques. Li et al. [93] successfully 

applied a hybrid CNN-SVM model for automated defect detection in aircraft composite structures, 

demonstrating improved performance over traditional methods. In the realm of X-ray Computed 

Tomography (CT), Andre et al. [94] proposed a method using CNN for image segmentation to identify 

cracks and failures in composites. Xu et al. [95] presented a unique approach combining CNN for fibre 

orientation classification with a separate code for measuring the fracture process zone (FPZ). Further 

advancing the field, Yang et al. [96] and Chen et al. [97] utilized U-net CNNs to reconstruct composite 

structures from micro-CT images, demonstrating the potential of deep learning in material 

characterization. However, the strong feature extraction capability of CNNs can sometimes lead to the 

recovery of unnecessary features [74], potentially affecting defect detection accuracy. To address this, 

Niu et al. [98] introduced the attention mechanism, a powerful machine learning tool that enhances 

CNNs by reducing extraneous feature input and allowing for more effective model training focused on 

relevant features. These advancements illustrate the evolving landscape of composite material 

inspection, where traditional computer vision techniques provide a solid foundation, while machine 

learning and deep learning methods offer enhanced capabilities for complex defect detection and 

analysis. The synergy between these approaches continues to drive improvements in inspection 

accuracy, efficiency, and applicability across various industrial domains. 

Although deep learning and machine learning approaches improve the accuracy of fault 

identification, the precision and adaptability of robotic systems are critical factors that determine how 

well these techniques work in practical applications. Robotic control systems are essential for 

guaranteeing the precise application of force, tactile, and vision-based techniques in composite material 

examinations. Robots can navigate complex geometries, adapt to changing material qualities, and 

produce consistent, high-quality inspection findings thanks to sophisticated control strategies like 

adaptive force control, learning-based systems, and real-time motion planning. Intelligent robotic control 

not only increases the efficacy of inspections but also makes it easier to make changes in real-time and 

receive ongoing feedback—both of which are critical for finding problems in complex or large-scale 

composite structures. The convergence of sophisticated machine learning algorithms and intelligent 

robotic control systems produces notable enhancements in inspection precision, flexibility, and 

effectiveness for a range of industrial uses. The subsequent sections will analyse the ways in which 

particular advancements in robotic manipulation and control tactics directly improve the accuracy and 

efficiency of various composite material inspection methods. 

4. Applications of robotic and intelligent technologies in materials inspection 

Non-destructive testing (NDT) has been transformed by robotic systems in a number of industries, 

providing increased accessibility and efficiency. As shown in Table 3, in aerospace applications, 

complex-geometry composite components can be inspected using six-axis robotic manipulators fitted 

with phased array ultrasonic testing (PAUT) probes [99]. Lamb wave-based mobile robotic devices 
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hold potential for automated NDT of aircraft surfaces by fusing flaw identification and structural 

mapping [100]. Unmanned Aerial Vehicles (UAVs), which have historically used high-resolution 

cameras for visual assessments, have become an invaluable tool for remote NDT inspections [101]. 

Internal inspections of industrial assets are now possible thanks to recent developments that have 

included ultrasonic contact measurement capabilities in autonomous UAV systems [101]. 

Collaborative robots (cobots) integrated with advanced sensors are revolutionizing manufacturing 

quality control. These systems combine robotic precision with human flexibility, enabling real-time 

inspection and reducing defects [102]. 

In addition, current developments in AI and machine learning have greatly enhanced industrial 

quality control and fault detection. In several industries, such as the production of steel and 

semiconductors, Convolutional Neural Networks (CNNs) have become an essential tool for automated 

surface defect classification [103]. Real-time fault identification and improved decision-making are 

made possible by these deep learning models’ exceptional ability to extract fine information from 

product photos [104]. Efficiency gains, waste reductions, and operating cost reductions have resulted 

from the incorporation of AI-powered systems into production workflows [104]. CNNs have 

demonstrated efficacy in tackling Industry 4.0 difficulties, namely in domains like anomaly detection 

and defect detection for maintenance [105]. Sensor accuracy and computational demands often limit the 

efficiency of intelligent systems. The integration of AI with robotic systems for adaptive control and 

defect prediction shows great promise. Emerging technologies like digital twins and augmented reality 

could further enhance inspection processes by providing real-time visualization and analysis [105]. 

Table 3. Comparison of applications of robotic systems in materials inspection. 

Robotic System Inspection Method Applications References 

Robotic Arms  UT Internal defect detection [23,99] 

Mobile Robots  IRT 
Surface and near-surface defect detection in large 

structures 

[100] 

Autonomous UAVs CV 
Inspection of large-scale structures like wind turbines 

and bridges 

[101] 

Collaborative Robots  Force/Tactile sensing 
Real-time surface roughness and defect detection in 

manufacturing 

[102] 

5. Robotic path planning and control techniques 

Robot perception systems offer crucial environmental data and feedback for control and manipulation, 

and sophisticated control and manipulation strategies let robots behave with flexibility and precision 

depending on this sensory input [106]. To handle complicated and changing work conditions in 

composites manufacturing, modern robots commonly use algorithms like learning-based control and 

force control [107]. The goal of manipulation techniques is to increase the dexterity and adaptability of 

robots; compliant control enables robots to demonstrate greater flexibility in their interactions with 

their environment [108]. Furthermore, robots may now continuously optimize their control and 

manipulation tactics by learning from experience thanks to the development of artificial intelligence 

and deep learning [109]. In a variety of application settings, robots are able to exhibit ever-higher 
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degrees of autonomy and intelligence because to the close integration of these technologies with 

perception systems [110].  

5.1. Path planning 

Robotic path planning is essential for accurate material placement in composite material layup processes 

because of the intricacies of curved surfaces, the necessity to prevent material wrinkling or stretching, 

and the continuity of layup routes [111]. The most established and often used algorithms in the field of 

robotic path planning for composite material layup are the following three: offline programming with 

trajectory planning [112], curve fitting and smoothing path planning [113], and A* algorithm with 

optimization techniques [114]. Building upon these robotic perception and control foundations, the 

traditional three primary path-planning algorithms have evolved to address the specific challenges in 

composite manufacturing while leveraging modern technological advances. Offline programming with 

trajectory planning has become increasingly sophisticated through the integration of digital twin 

technology and machine learning approaches, enabling more accurate simulation and optimization of 

paths before physical implementation [115]. Curve fitting and smoothing path planning methods have 

been enhanced to better handle the complexities of curved surfaces and material properties, 

incorporating advanced optimization techniques to prevent material deformation while maintaining 

motion efficiency [116]. Meanwhile, the A* algorithm continues to evolve through modern optimization 

techniques, particularly in addressing dynamic environmental changes and real-time planning 

requirements [117], with recent developments integrating adaptive strategies to better handle complex 

manufacturing scenarios. Despite that, an Inverse Reinforcement Learning (IRL) system was presented 

by Omey et al. [10], which is an advanced modern technique, with the goal of improving robot trajectory 

planning, specifically for task sequencing in manufacturing applications. Expert knowledge of task order 

and motion execution is captured by this framework, which efficiently learns task sequencing policies 

from human demonstrations. The approach makes it possible to transfer these rules to robots by 

modelling expert preferences and incorporating them into the learning process. As a result, robots can 

now perform trajectory planning and automatically create optimal task sequences for intricate 

manufacturing processes like composite layups without the need for extra human demonstrations for 

new parts. These algorithmic advances, coupled with improved perception and control systems, have 

significantly enhanced robots’ capability to perform precise and adaptive composite material layup tasks. 

5.2. Robot control 

5.2.1. Force control 

Motion control of robotic end-effectors is crucial for ensuring inspection quality. Three control approaches 

are the main emphasis: force control for managing contact interactions with composite surfaces, velocity 

control for ensuring smooth inspection processes, and position control for accurate inspection trajectory 

tracking. Recent breakthroughs in control have resulted in more sophisticated and adaptive systems that 

integrate multiple control algorithms to perform complex inspection tasks [118,119]. 

Force control has become increasingly common in robot contact tasks, often combined with position 

control to achieve precise inspection operations [120]. PID control is widely used for its simplicity and 
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effectiveness in achieving precise trajectory tracking. For example, by creating a novel variable target 

stiffness (NVTS) control method, Zhang et al. [121] made substantial progress in force control in 

compliant, force-tracking interactions within unknown inspection environments. Mazumder [122] 

developed a PID-based dynamic controller for soft robots, addressing the challenges of precise control in 

these flexible systems. Lee et al. [123] introduced a practical method to improve PID control performance 

in nonlinear systems like robot manipulators, enhancing tracking without adding complexity. However, 

PID control may struggle with dynamic or highly nonlinear environments due to its fixed parameter 

structure, requiring manual tuning for optimal performance [124]. 

Advanced control methods such as demonstration-based stiffness/force controllers [125,126] have 

shown advantages in contact-rich manipulation tasks. For example, the robot can learn force-controlled 

inspection skills from human demonstrations [10], producing more accurate and fluid strokes on a 

variety of materials. In order to ensure stability and agility in execution, the hierarchical architecture 

combines high-level planning with low-level real-time force adaptation. Experiments where the robot 

effectively completed tasks requiring precision force control, such as cleaning uneven surfaces (similar 

to inspection of composite materials), verified this strategy [126]. 

Research in this emerging field suggests that force control, as an advanced solution for contact-rich 

tasks, holds promise for composite inspection—a similarly contact-intensive application in robotics. 

This technique effectively prevents damage to sensitive composite surfaces, and when combined with 

advancements in sensor technology and artificial intelligence, it has greatly enhanced the capabilities of 

composite inspection systems [127]. 

5.2.2. Learning-based control 

Learning-based control methods, such as reinforcement learning and neural network control, enable 

robots to learn control strategies for complex inspection tasks through data-driven approaches. These 

methods excel in handling unstructured or dynamic environments, particularly in scenarios where 

traditional control models are difficult to implement or inadequate.  

In order to optimize robot-environment interaction in composite inspection, Peng et al. [128] 

presented an adaptive admittance control approach enhanced by radial basis function neural networks 

(RBFNN). This method improves trajectory tracking in uncertain settings by dynamically controlling 

contact torque. In a similar vein, Petit et al. [129] created a learning-based force control system that 

integrates parallel position/force control and admittance control with reinforcement learning (RL). The 

system incorporates safety features to allow for secure training on actual inspection systems, and real-

world tests and simulations show that it is effective at handling contact-intensive tasks. 

By allowing robots to automatically adjust to novel materials and inspection environments 

through experience accumulation, learning-based control systems provide a scalable solution for 

upcoming composite inspection problems. These systems gradually improve control strategies as jobs 

become more difficult, using vast datasets and developing algorithms to manage complex situations. 

This flexibility reduces the need for lengthy reprogramming and improves inspection safety and 

precision, opening the door for more adaptable robotic frameworks in the workplace. There are still 

issues, though, such as the requirement for substantial data training, decreased interpretabilit y, and 

stability issues. These problems have started to be addressed by recent developments in learning 

efficiency, model robustness, and safety [130,131]. Furthermore, hybrid systems that blend 
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traditional control theory with learning-based methodologies have demonstrated encouraging 

outcomes in real-world applications [132,133]. 

6. Conclusion 

Composite material inspection is changing as a result of the combination of robotic intelligence 

technology and sophisticated inspection techniques, which provide increased automation, efficiency, 

and accuracy. From solo detection techniques to the integrated solutions of today, traditional composite 

material inspection technologies have seen significant development. The most common methods in the 

past were manual inspection and purely wave, optical, radiation, etc. detection, which took a lot of time 

and required a high level of operator skill. Nowadays, this subject has undergone a revolution thanks to 

the combination of advanced inspection techniques with robotic intelligence, which makes automated, 

accurate, and efficient inspections possible. When paired with image processing algorithms, machine 

learning models, and robot technologies, advanced non-destructive testing techniques like X-ray 

computed tomography, infrared thermography, and ultrasonic C-scan have shown impressive 

capabilities in identifying flaws in composite structures. 

Nonetheless, a number of issues still exist with the present inspection systems, such as their 

susceptibility to environmental changes, limited model generalization, and real-time processing limitations. 

Three main areas are anticipated to be the focus of composite inspection in the future: (1) the creation of 

increasingly complex robotic control systems with improved precision and adaptability; (2) the 

incorporation of cutting-edge AI technologies, especially in the areas of transfer learning and few-shot 

learning for improved generalization; and (3) advancements in sensor fusion technologies for more 

thorough and dependable defect detection. 

The way forward is to create more resilient and flexible systems that effectively integrate robotic 

capabilities with human knowledge. Together with ongoing developments in AI and sensor technologies, 

this human-robot collaboration method will not only overcome present constraints but also make 

inspection procedures more dependable and effective in a variety of industrial applications. In order to 

satisfy the rising need for quality assurance in increasingly complex composite materials and structures, 

such evolution will be essential. 
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