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Highlights:

• This paper systematically outlines underwater heterogeneous robotic systems’ composition and
fundamental concepts, exploring their unique advantages in various application domains.

• It analyzes critical technologies in underwater heterogeneous robotic systems, including navigation
and control, communication, perception, decision-making, and energy management. The paper also
introduces the latest research progress and application cases.

• We summarize the primary challenges currently faced by research and outline future development
directions, proposing potential research paths and solutions.

Abstract: Heterogeneous aquatic robot systems, consisting of ROVs, AUVs, ASVs, and UAVs, are vital
for environmental exploration, monitoring, and task execution. This paper presents advancements in
critical technologies within these systems, focusing on communication (underwater acoustic, radio, and
optical), multi-sensor fusion, and collaborative navigation techniques. It reviews control strategies
like deep reinforcement learning, end-to-end control, and large model-based methods, addressing
autonomous decision-making and adaptability in complex environments. The paper also discusses
energy management strategies for efficient storage, utilization, and recovery. Furthermore, it explores the
ethical and environmental impacts of deploying such systems, emphasizing sustainability and minimizing
ecological disruptions. Finally, case studies and applications in ocean exploration and environmental
monitoring are highlighted, showcasing the real-world utility and future potential of heterogeneous
aquatic robot systems. This work provides valuable insights into the technological, ethical, and practical
considerations for developing these systems.
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1. Introduction

The Science article “125 Questions: Exploration and Discovery” mentions robots several times, illustrating
that robots have become indispensable tools in today’s society, holding significant research value [1–5].
Heterogeneous aquatic robot systems, composed of various types of robots such as underwater remotely
operated vehicles (ROVs), autonomous underwater vehicles (AUVs), autonomous surface vehicles (ASVs),
and uncrewed aerial vehicles (UAVs), play a crucial role in environmental exploration, monitoring,
and task execution [6–8]. These systems extend their reach beyond traditional bodies of water like
rivers, lakes, and oceans [9–11], expanding their role into near-water skies and adjacent land areas,
creating a three-dimensional research and operational space [12,13]. Their ability to access underwater
environments that are otherwise inaccessible to humans enables them to perform diverse tasks, including
environmental monitoring [12,13], ecological research [14,15], resource exploration [16,17], and disaster
response [18,19].

However, despite their immense potential, heterogeneous aquatic robot systems face several
technical challenges that must be addressed to enable widespread and effective deployment. One major
challenge is the communication systems, where signal attenuation and interference significantly hinder
the effectiveness of underwater communication [20–22]. Robots must rely on multi-sensor fusion and
intelligent algorithms for autonomous operation to adapt to dynamic underwater environments. This
enables them to perceive obstacles, localize accurately, and map their surroundings. Furthermore, efficient
navigation and control algorithms are essential for coordinating and executing tasks among multiple
heterogeneous robots, mainly when these robots operate in challenging environments.

Diversifying aquatic robot technologies enables them to meet various exploration and operational
needs. Traditional underwater Remotely operated vehicles (ROVs) are renowned for their high-precision
operational capabilities but are limited in range by cable length or communication distance [23, 24].
Autonomous underwater vehicles (AUVs) surpass this limitation and can independently execute long-term
missions, though they face challenges in adapting to complex environments and making real-time
decisions [25–27]. Autonomous surface vehicles (ASVs) and unmanned aerial vehicles (UAVs) play
crucial roles in wide-area coverage, communication [28, 29], and navigation support in vast water
bodies [30–33]. However, they cannot directly engage in underwater operations. Given the variability and
complexity of marine environments, a single aquatic robot often fails to meet all requirements. Therefore,
there is an urgent need to develop a comprehensive system that integrates the strengths of multiple
robot types. Such a system would harness the precise operations of ROVs, the autonomy of AUVs, the
expansive operational capabilities of ASVs, and the aerial advantages of UAVs, facilitating more efficient
and flexible task execution. Through this interdisciplinary collaboration, not only can mission success
rates be enhanced, but it can also propel aquatic robot technology toward higher levels of intelligence
and automation.

Despite demonstrating significant potential in theory and application, aquatic heterogeneous robot
systems face various technical challenges during implementation. Firstly, complex navigation and control
algorithms must be developed to achieve efficient collaboration and precise task allocation among robots.
Secondly, innovative underwater communication technologies are urgently needed to overcome signal
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attenuation and interference issues due to restricted underwater communication conditions [20–22].
Additionally, the robots’ autonomous perception capabilities are crucial for adapting to underwater
environments, relying on advanced sensor technologies and intelligent algorithms. Moreover, the
decision-making capability of heterogeneous robot systems in aquatic environments is paramount,
necessitating intelligent algorithms to enhance their autonomy [34,35] and adaptability [36–38]. Finally,
given the substantial energy consumption and limited endurance of underwater operations, there is an
urgent need to develop efficient energy management systems and endurance technologies to extend
operational time and enhance the reliability of mission execution. In summary, overcoming these
challenges requires interdisciplinary collaboration [39,40] and the application of innovative technologies
to propel aquatic heterogeneous robot systems to higher levels of development [41–44]. The timeline of
the heterogeneous robotic system in the water domain is shown in the following Figure 1.

Figure 1. Heterogeneous robotic system timeline.

This paper reviews the latest research advancements in underwater heterogeneous robotic systems,
systematically discussing key technologies and future directions in this field. The framework of this paper
is shown in Figure 2, and the main contributions are as follows:

• This paper systematically outlines underwater heterogeneous robotic systems’ composition and
fundamental concepts, exploring their unique advantages in various application domains.

• It analyzes critical technologies in underwater heterogeneous robotic systems, including navigation
and control, communication, perception, decision-making, and energy management. The paper
also introduces the latest research progress and application cases.

• We summarize the primary challenges currently faced by research and outline future development
directions, proposing potential research paths and solutions.

The remaining structure of this paper is as follows. The communications of the heterogeneous
aquatic robot system, as discussed in Section 2. The perception of the heterogeneous aquatic robot system,
as discussed in Section 3. The navigation of heterogeneous aquatic robot system, as discussed in Section 4.
The Control of heterogeneous aquatic robot system, as discussed in Section 5. The Decision-making of
heterogeneous aquatic robot system, as discussed in Section 6. The energy management of heterogeneous
aquatic robot system, as discussed in Section 7. Ethical implications are elaborated in Section 8.
Applications and cases in related areas are discussed in Section 9. Finally, we summarize the paper in
Section 10. and provide an outlook on future research directions. The full structure of this paper is shown
in Figure 3.
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Figure 2. Framework diagram of heterogeneous aquatic robot system [45–48].
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Figure 3. The overall structure of the paper.

2. Communication of heterogeneous aquatic robot system

Heterogeneous robot communication in water is critical for multi-robot systems, especially in applications
such as ocean exploration, environmental monitoring, and underwater operations [49–51]. These robots,
including AUVs and ASVs, require efficient and reliable communication to perform their tasks [52–54].
While hydroacoustic, radio, and optical communication are the primary communication technologies
used in these systems, each has distinct advantages and limitations depending on the environmental
conditions [55–57]. Challenges such as signal attenuation, interference, data transmission delays, and
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communication range still persist [58–60]. Recent research efforts are focused on developing hybrid
communication systems, intelligent systems, and adaptive technologies to overcome these issues [61–63].
As technology continues to advance, heterogeneous robot communication systems are expected to become
more integrated and effective in multi-robot operations.

2.1. An overview of the main communication technologies

Effective communication among heterogeneous robots in aquatic environments ensures that different
types of robots can exchange data reliably across various environmental conditions. This section
reviews the major communication technologies for heterogeneous aquatic robot systems: hydroacoustic
communication, radio communication, and optical communication, highlighting their advantages,
limitations, and suitable application scenarios, as summarized in Table 1.

Table 1. Comparison of major communication technologies for aquatic robots.

Methods Specificities Advantages Disadvantages Scenarios Related
work

Underwater
acoustic
communication

• Long distance
of transmission
• Slower speed
( ≈ 1500 m/s)
• Highly
influenced by
water
temperature,
salinity and depth

• Suitable for
long distance
communication
• Suitable for
deep-sea
environments

• Limited
bandwidth
• Lower data
transfer rate
• Vulnerable to
multipath effects
and ambient
noise interference

• Widely used for
navigation, control
and data transmission
of AUVs in
applications such as
oceanographic
exploration,
environmental
monitoring and
military applications.

[55,64–75]

Radio
communications

• Fast airborne
propagation
( ≈ 3×108 m/s)
• Speed is
severely
attenuated in
water

• High bandwidth
• High speed
transmission
• Suitable for
communication
between surface
robots and
shore-based
equipment

• Limited
transmission
distance under
water
• Highly affected
by water
absorption and
attenuation

• Suitable for
communication
between ASVs and
control centers,
surface monitoring,
search and rescue
missions, etc.

[76–82]

Optical
communications

• Light waves
travel fast in
water
• Finite distance
• Highly affected
by water quality
and suspended
particulate matter

• High data
transfer rate
• Suitable for
high bandwidth
applications
• Highly resistant
to
electromagnetic
interference

• Limited
transmission
distance
• Requires high
alignment
accuracy
• Suitable for
clear water
environments

• Suitable for
short-distance
high-bandwidth data
transmission, such as
inter-robot
communication in
close proximity, data
download and
real-time video
transmission.

[76,83–93]

The methods listed in Table 1 perform differently in different environments, as shown below:
Shallow Water: In shallow water environments, radio communication often performs well due

to its ability to quickly transmit data at high speeds, although the effective range is limited. Optical
communication can be used for short-range, high-bandwidth tasks such as real-time video transmission
between nearby robots. However, signal interference from environmental factors such as surface waves or
turbidity can degrade its performance.
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Deep-Sea: Hydroacoustic communication remains the dominant choice for deep-sea exploration,
where its long transmission range and reliability in complex environments outweigh its lower data transfer
rate and vulnerability to interference from multipath effects. However, for real-time high-bandwidth tasks
such as video streaming, optical communication is generally not feasible due to the limited range and
reliance on clear water conditions.

Murky or High-Interference Environments: In environments with high turbidity, such as riverbeds or
areas with significant suspended particulate matter, optical communication is often ineffective. In such
conditions, hydroacoustic communication offers a better alternative, though it still faces challenges such
as multipath interference and signal attenuation due to environmental noise.

Heterogeneous robotic communication technologies in the water domain cover various approaches,
each with unique advantages and limitations. Hydroacoustic communication is suitable for long-range and
deep-sea environments, radio communication has good application prospects in surface and shallow water
areas, and optical communication excels in short-range, high-bandwidth transmission. The future trend
will be to synthesize these technologies to develop hybrid communication systems adapted to different
environments and application requirements to improve the overall performance of heterogeneous robotic
systems in water.

2.2. Critical challenges for robotic communications in water

Despite the progress in communication technology, heterogeneous robotic communication in water still
faces several significant challenges, including signal attenuation, interference, data transmission delay,
and coverage limitations. These challenges vary depending on the specific aquatic environment, such
as deep-sea or shallow coastal waters, and must be carefully considered when choosing the appropriate
communication method.

2.2.1. Signal attenuation and interference

Signal attenuation is one of the main problems in underwater communication, and its severity depends on
the type of environment. Hydroacoustic signals, for example, are highly sensitive to water temperature,
salinity, and depth. In deep-sea environments, where these factors fluctuate significantly, hydroacoustic
communication remains effective for long-range transmission but suffers from a slower data transfer rate
and increased interference from ambient noise. In contrast, radio waves face significant attenuation even
in shallow waters, limiting their effectiveness for underwater communication, especially as the distance
increases. Optical signals, although offering high data rates, are highly sensitive to water clarity and
suspended particulate matter, making them more suitable for short-range communication in clear water
environments. In underwater environments, signal attenuation is an unavoidable problem. Hydroacoustic
signals decay significantly with increasing propagation distance. The following Equation (1) can express
signal attenuation:

A(d) = A0 +20log10(d)+αd (1)

where A(d) is the attenuation at propagation distance d, P0 is the initial intensity, and β is the
medium-dependent attenuation coefficient. The attenuation is even more severe for radio waves,
with high-frequency radio waves barely penetrating the water column. At the same time, low and
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medium-frequency radio waves are also subject to significant absorption and attenuation. The attenuation
can be expressed as Equation (2):

P(d) = P0e−βd (2)

where P(d) is the signal strength at propagation distance d, P0 is the initial signal strength, and β is the
absorption coefficient of the medium. Optical signals travel a limited distance in water and are strongly
influenced by water quality, suspended particulate matter, and light refraction. The attenuation of the
optical signal can be approximated as Equation (3):

I(d) = I0e−κd (3)

where I(d) is the light intensity at distance d, I0 is the initial light intensity and κ is the absorption
coefficient of the medium.

The complexity of the underwater environment makes communication signals susceptible to a variety
of interferences. For example, the multipath effect is caused by the reflection and refraction of signals in
water, which can cause delays and interference. The multipath effect can be represented as Equation (4):

r(t) =
N

∑
i=1

ais(t − τi) (4)

where r(t) is the received signal, ai is the attenuation factor for each path, s(t) is the transmitted signal,
and τi is the delay for each path.

2.2.2. Data transmission delay

Data transmission latency is critical in heterogeneous robotic communication in waters, especially
in applications requiring real-time control and data feedback. Hydroacoustic signals’ relatively slow
propagation speed (1500 m/s) leads to significant delays when communicating over long distances. The
delay can be expressed as Equation (5):

Td =
d
v

(5)

where Td is the delay time, d is the propagation distance and v is the propagation speed. When
heterogeneous robots in water work together, communication delays may lead to synchronization problems
of control commands and sensing data, affecting the system’s overall performance. For example, in
underwater detection and rescue missions, robots must respond quickly to commands and transmit
real-time video and data, which requires very low latency in the communication system.

In order to reduce data transmission delays, various approaches can be taken. For example, developing
efficient modulation and coding techniques to increase data transmission speed. Designing intelligent
routing algorithms to optimize data transmission paths and reduce the number of relay nodes and the
number of hops for data transmission. Use caching and preprocessing techniques to transmit important
data in advance to reduce the burden of real-time data transmission. In addition, combining multiple
communication technologies and utilizing their respective advantages to select the optimal communication
method in different scenarios to minimize the transmission delay.
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2.2.3. Communication distance and coverage

Heterogeneous robots in the water domain usually perform their tasks in vast marine environments, which
poses a challenge to the coverage of communication systems. Although hydroacoustic communication
is suitable for long-distance transmission, its limited bandwidth cannot meet the demand for high data
rates. Radio communication has a wide coverage on the surface of the water, but has a limited effective
transmission distance underwater. Optical communications are suitable for short-range, high-bandwidth
transmission, but their coverage is limited by the propagation characteristics of optical signals.

In order to solve the problem of coverage, multi-hop network and relay node technology can be
used to expand communication coverage through relay transmission between multiple robots. In addition,
the application of a hybrid communication system can effectively combine the advantages of different
communication technologies to optimize the system’s coverage and transmission performance. Multi-hop
networks are used to forward signals through multiple relay nodes, allowing the signals to cover a larger
range. This method can significantly improve the communication distance, but it needs to solve the
problems of routing, node coordination, and signal synchronization. The application of intelligent routing
algorithms and self-organizing network protocols can improve the efficiency and reliability of multi-hop
networks. The performance of a multi-hop network can be expressed as Equation (6):

De f f =
N

∑
i=1

di (6)

where De f f is the effective communication distance, and di is the distance per hop. Relay nodes can
be fixed or mobile, and they are responsible for receiving, processing, and forwarding signals. Mobile
relay nodes (e.g., unmanned ships or unmanned submarines) can dynamically adjust their position
according to mission requirements to optimize communication paths and improve coverage. The
design of relay nodes needs to take into account their energy consumption, processing power, and
durability. The development of hybrid communication systems by combining different technologies such
as hydroacoustic, radio, and optical communications allows for the selection of optimal communication
methods in different environments and mission requirements. For example, hydroacoustic communication
is used for long-distance communication, radio communication is used between surface and shore-based
equipment, and optical communication is used for short-distance, high-bandwidth transmission. The
design of hybrid communication systems needs to consider the compatibility and co-optimization of
different communication technologies.

2.3. Frontier research and development trends

As watershed heterogeneous robotics evolves, so do communication technologies. Researchers are
committed to overcoming existing technological challenges and exploring new communication methods
and systems to improve the performance and application range of water heterogeneous robots. In this paper,
we will discuss the current cutting-edge research directions and future trends, including three aspects of
novel communication technologies, intelligent communication systems, and cross-domain cooperation.
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2.3.1. New communication

Hydroacoustic communication is the main means of communication for underwater robots, and research
in recent years has focused on improving its reliability and data transmission rate. For example, the
hydroacoustic communication system based on orthogonal frequency division multiplexing (OFDM)
improves spectral efficiency and anti-interference capability through multicarrier transmission [94–96].
However, a major limitation of hydroacoustic communication is the high attenuation of acoustic signals in
water, which restricts the communication range. To mitigate this, possible solutions could involve the use
of signal amplification techniques at regular intervals or the development of more energy-efficient acoustic
transducers. Additionally, the complex underwater environment can cause multipath interference, which
may be addressed through advanced equalization algorithms. Researchers have also explored adaptive
modulation and coding techniques to optimize signal transmission and adapt to different underwater
environments and communication conditions.

Optical communication has the advantages of high bandwidth and low latency and is suitable
for short-range, high-data-rate transmission. In recent years, researchers have developed underwater
optical communication systems based on blue and green lasers, which take advantage of the lower
attenuation characteristics of these wavelengths to significantly increase transmission distances and
data rates. Nonetheless, optical communication in water is highly sensitive to water turbidity and
particle content. When the water is turbid, the laser beam can be scattered and absorbed, reducing the
communication quality. Possible solutions might include using pre-processing algorithms to clean the
received optical signals or developing optical communication systems that can adjust the wavelength
according to the water quality. Also, the limited transmission range restricts its widespread application in
large-scale underwater scenarios. To overcome this, a relay-based optical communication network could
be established. In addition, underwater communication systems incorporating optical fiber technology are
also being explored, with the aim of achieving long-distance, stable, and high-speed data transmission.

Magnetic induction communication utilizes a low-frequency magnetic field for signal transmission,
which has good penetration capability and is suitable for communication in complex environments such as
shallow water and mud. Researchers have developed novel magnetic induction antennas and modulation
and demodulation techniques to improve communication efficiency and transmission distance. However,
magnetic induction communication has relatively low data transfer rates compared to other methods. To
enhance the data rate, new modulation schemes that can pack more information into the magnetic field
could be investigated. Also, the need for a relatively large antenna size to achieve efficient transmission
can be a hindrance in some applications. Miniaturization of magnetic induction antennas through advanced
materials and manufacturing techniques could be a potential solution. Magnetic induction communication
is expected to play an important role in specific application scenarios as a complement to hydroacoustic
and optical communication.

2.3.2. Intelligent communication system

The Ad-hoc Network is capable of dynamically forming a network without pre-planning and
is adaptive and suitable for heterogeneous robots working together in water. Researchers have
developed self-organizing network protocols and routing algorithms based on machine learning
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and artificial intelligence to improve the adaptability and robustness of the network. For example,
reinforcement learning algorithms can optimize routing and reduce communication delays and energy
consumption [97–99]. However, a significant limitation of using machine-learning-based self-organizing
network protocols in an underwater Ad-hoc Network is the high computational complexity. Underwater
robots often have limited computing resources, which may lead to slow response times. To address this,
possible solutions could be to develop lightweight machine-learning models specifically tailored for
underwater robot computing capabilities or to offload some of the computational tasks to shore-based or
cloud-based servers through long-range communication when available. Additionally, the dynamic nature
of the underwater environment, such as water flow and temperature changes, can affect the stability of the
Ad-hoc Network. To enhance stability, more advanced environmental sensing and prediction models
could be integrated into the network protocols to proactively adapt to these changes.

Collaborative communication improves communication reliability and coverage by multipath
transmission and relay enhancement of signals through cooperative work among multiple
robots. Researchers have explored multi-hop relaying, cooperative coding, and multiple-input
multiple-output (MIMO) techniques to improve the system’s spectral efficiency and anti-jamming
capability. In addition, collaborative communication strategies based on game theory can optimize
resource allocation and communication scheduling among robots. Nonetheless, implementing
collaborative communication in a real-world scenario with heterogeneous robots faces challenges. One
major issue is the synchronization problem among different robots. As robots may have different hardware
and software configurations, achieving precise synchronization for multi-hop relaying and cooperative
coding can be difficult. Possible solutions might involve developing standardized synchronization
protocols or using time-stamping techniques to ensure accurate signal alignment. Another limitation is
the potential for increased energy consumption due to the additional communication and cooperation
requirements. To mitigate this, energy-aware cooperative communication algorithms could be designed to
balance performance and energy usage.

Cognitive radio technology enables communication systems to sense their surroundings and
dynamically adjust communication parameters to adapt to changing spectrum resources and environmental
conditions. Researchers have developed cognitive engines and intelligent spectrum management
algorithms that enable watershed heterogeneous robots to achieve efficient and reliable communications in
complex environments. Through spectrum sensing, dynamic spectrum access, and interference avoidance,
cognitive radio technology improves the flexibility and performance of communication systems. However,
cognitive radio technology in the context of underwater communication has its own set of limitations.
The underwater electromagnetic environment is complex and often subject to interference from various
sources, such as marine life and underwater electrical equipment. This can make accurate spectrum
sensing challenging. Possible solutions could include developing more advanced interference-filtering
techniques or using redundant sensing methods to improve the accuracy of spectrum sensing. Also, the
dynamic nature of the underwater environment means that the spectrum availability can change rapidly.
To better adapt to these rapid changes, more responsive and real-time spectrum management algorithms
are needed.
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2.3.3. Cross-cutting cooperation and applications

The development of heterogeneous robotic communication technologies in water requires multidisciplinary
collaboration, including the fields of acoustics, optics, electrical engineering, computer science and
artificial intelligence. Interdisciplinary research teams can synthesize their strengths to develop innovative
communication systems and solutions. For example, high-performance underwater sensors and
communication devices can be developed by combining advanced materials science, and computer vision
and image processing technologies can be combined to enhance underwater image transmission and
processing capabilities. However, achieving effective multidisciplinary collaboration faces significant
challenges. Different disciplines often have their own terminologies, research methods, and work
cultures. This can lead to miscommunication and inefficiencies in the development process. Possible
solutions include organizing regular interdisciplinary workshops and training sessions to promote
better understanding among team members. Also, establishing a common framework or ontology for
communication-related concepts can help bridge the gap between different disciplines. Additionally,
coordinating the research timelines and resource allocation among multiple disciplines can be difficult.
To address this, a dedicated project management team with cross-disciplinary knowledge could be formed
to ensure smooth progress [100–102].

The research of heterogeneous robot communication technology in water should be closely integrated
with the needs of practical applications, such as ocean exploration, environmental monitoring, underwater
archaeology, and disaster rescue. Researchers verify and optimize communication technology and promote
its transformation to practical applications through cooperation with practical application fields. For
example, in ocean exploration, a high-precision sensing data transmission system is developed to improve
the efficiency and accuracy of ocean data collection; in disaster rescue, a rapid response communication
system is developed to improve the coordination and efficiency of rescue operations. Nevertheless,
the integration of research with practical applications is not without obstacles. One major issue is the
translation of research findings into practical, deployable solutions. The gap between the ideal conditions
in a research laboratory and the harsh, variable conditions in real-world applications can be substantial.
To bridge this gap, more field-testing and prototyping in realistic scenarios are needed during the research
and development process. Another limitation is the high cost associated with developing and deploying
communication systems for some practical applications, especially in large-scale or remote areas. This
can be mitigated by exploring cost-effective technologies and business models, such as shared-resource
platforms or open-source hardware and software solutions.

With the diversity and complexity of heterogeneous robotic communication technologies in the
watershed, the issues of standardization and interoperability have become increasingly important.
Researchers and industry should work together to develop unified communication protocols and
standards to ensure interoperability and compatibility between different systems and devices. Through
standardization, the popularization and application of the technology will be promoted to facilitate the
development of the industry and the expansion of the market. However, the process of developing and
implementing unified communication protocols and standards is complex. There are often competing
interests among different research groups, companies, and industries. Coordinating these interests to reach
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a consensus on standards can be time-consuming and difficult. Possible solutions involve establishing
neutral, industry-wide standard-setting organizations with representation from all stakeholders. These
organizations can use a transparent and inclusive decision-making process to develop standards. Also,
ensuring compliance with the established standards can be a challenge. Incentives such as certification
programs and regulatory support may be required to encourage adoption of the standards.

3. Perception technology of heterogeneous aquatic robots

Perception technology for heterogeneous aquatic robots is pivotal in advancing multi-robot systems,
particularly in applications like ocean exploration and environmental monitoring. These robots encompass
a variety of types, such as AUV and ASV, each requiring robust perception capabilities for effective
operation in aquatic environments. Key components of this technology include sensor integration,
data fusion techniques, and advanced algorithms to achieve comprehensive environmental awareness
and precise localization. Current research focuses on enhancing sensor capabilities, optimizing data
processing methods, and developing adaptive algorithms to overcome challenges such as varying
water conditions, sensor limitations, and environmental complexities. Ultimately, advancements in
perception technology for heterogeneous aquatic robots promise to significantly enhance their functionality
and expand their applications in marine sciences, resource exploration, and underwater infrastructure
inspection. Technologies and future trends of heterogeneous robotic systems in aquatic environments as
shown in Figure 4.

Figure 4. Perception technologies and future trends of heterogeneous robotic systems
in aquatic environments.

3.1. Multimodal sensor technology

Heterogeneous aquatic robots are typically equipped with multiple types of sensors to meet the
requirements of different environments and tasks. The main commonly used sensors and their operating
principles are as follows:
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3.1.1. Visual perception

Based on optical principles, a variety of advanced sensors are employed. Cameras capture high-resolution
images that provide detailed visual information about the environment. Light Detection and
Ranging (LiDAR) sensors, utilizing laser pulses, create precise 3D maps by measuring the time it takes
for light to reflect back from objects, enabling accurate spatial perception. Laser rangefinders, or laser
scalers, complement LiDAR by providing precise distance measurements for objects within the sensor’s
range. Hyperspectral irradiance sensors detect and analyze electromagnetic radiation across numerous
wavelengths [103–105], offering insights into the spectral composition of light and its interaction with
surfaces. Together, these sensors enable comprehensive scene recognition, precise object detection, and
accurate localization across various aquatic environments [106–109].

3.1.2. Acoustic perception

Acoustic sensors can be categorized into two types: active and passive. Active sensors measure the
position and characteristics of an object by emitting acoustic pulses, while passive sensors analyze
background sounds in the natural environment. Sonar systems [106, 108] represent typical examples
of active acoustics, including echolocation and multibeam sonar, used for obstacle detection, terrain
mapping, and target tracking. Besides, within active acoustic sensors, an acoustic altimeter for measuring
altitude from the seafloor [106] and an acoustic profiler [105] are capable of gathering data such as water
depth and flow velocity. Acoustic sensors are widely utilized in marine science, marine engineering,
and environmental monitoring, providing crucial underwater environmental information. They support
applications in marine resource management, marine engineering design, hydrological research, and other
related fields.

3.1.3. Chemical monitoring

Chemical monitoring in underwater environments utilizes sophisticated sensors to assess various
parameters, including dissolved oxygen, pH, salinity, nutrients, chlorophyll levels, colored dissolved
organic matter (cDOM), total suspended solids (TSS), and conductivity [110–112]. These parameters are
critical for assessing water quality, detecting pollutants, and monitoring ecosystem health.

Unlike traditional sampling methods, heterogeneous underwater multi-robot systems enable
real-time, in situ chemical sensing with higher spatiotemporal resolution. However, sensor drift,
biofouling, and communication constraints affect measurement accuracy. Recent advancements
incorporate adaptive calibration techniques and machine learning-based compensation models to enhance
reliability. Multi-robot coordination allows for dynamic adaptation to environmental changes, optimizing
sampling efficiency and coverage. Future advancements involve the development of bio-inspired chemical
sensors to improve selectivity, along with the use of machine learning for predictive modeling to detect
environmental anomalies at an early stage.

3.1.4. Pressure and depth measuring

Pressure and depth sensors are essential for estimating the diving depth and maintaining the stability of
underwater robots. These sensors operate based on hydrostatic pressure variations, providing real-time
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depth measurements crucial for navigation, buoyancy control, and mission planning [106,108,111,112].
However, factors like sensor drift, nonlinearity in deep-water environments, and variations

in temperature and salinity can impact measurement accuracy. To overcome these issues, recent
developments combine real-time sensor fusion with inertial navigation systems (INS) and acoustic
positioning, enhancing the reliability of depth estimation. Additionally, adaptive calibration techniques
and machine learning-based corrections help mitigate long-term sensor degradation, ensuring robustness
in heterogeneous underwater multi-robot systems.

3.1.5. Temperature measuring

Temperature sensors, such as thermistors and resistance temperature detectors (RTDs), are widely used in
underwater robots to monitor water temperature variations, which are critical for understanding thermal
stratification, detecting climate change effects, and assessing marine ecosystem health [111,112].

However, measurement accuracy can be affected by sensor drift, response time, and environmental
factors such as biofouling and water flow dynamics. To enhance reliability, modern systems integrate
temperature data with depth and salinity measurements for compensation, while machine learning-based
corrections help mitigate long-term sensor degradation. In heterogeneous multi-robot systems, distributed
temperature sensing enables large-scale environmental monitoring, improving spatial resolution and
adaptability in dynamic aquatic environments.

3.1.6. Flow velocity and direction measuring

Accurate underwater flow velocity and direction measurement are crucial for navigation, station-keeping,
and environmental monitoring in heterogeneous underwater multi-robot systems. Acoustic Doppler
current profilers (ADCPs), electromagnetic flow meters, and mechanical propeller sensors are
commonly used to capture real-time flow dynamics. These measurements assist in trajectory planning,
energy-efficient path optimization, and detecting underwater currents influencing robotic operations.

However, sensor noise, turbulence-induced fluctuations, and calibration drift can impact measurement
accuracy. Sens fusion techniques combining ADCP data with inertial measurement units (IMUs) and
machine learning-based filtering methods are employed to enhance reliability. Additionally, distributed
sensing among multiple robots enables more comprehensive flow mapping, improving adaptability in
dynamic underwater environments.

3.1.7. Pose estimating

Accurate pose estimation is essential for underwater robots to maintain stability, execute precise
maneuvers, and coordinate within multi-robot systems. This is usually accomplished by combining
inertial measurement units (IMUs) with Global Navigation Satellite System (GNSS) data. IMUs supply
real-time orientation updates, and GNSS provides absolute position references when accessible [112].

However, underwater environments pose challenges such as GNSS signal loss at depth and IMU
drift over time. To overcome these limitations, contemporary systems utilize sensor fusion methods that
integrate IMU data with Doppler velocity logs (DVLs), pressure sensors, and acoustic positioning systems.
Moreover, filtering techniques like extended Kalman filters (EKF) and factor graph optimization are
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applied to improve accuracy and ensure long-term stability in pose estimation for multi-robot operations.

3.1.8. Biological sensing

Biological sensing in underwater environments involves using specialized sensors to detect and monitor
aquatic organisms such as fish, corals, and plankton. These sensors leverage optical imaging, acoustic
techniques, and environmental DNA (eDNA) analysis to assess biodiversity and ecosystem health. Passive
acoustic monitoring (PAM) is handy for detecting marine life based on characteristic sound patterns,
while fluorescence and hyperspectral imaging help identify specific biological markers.

However, challenges such as turbidity-induced signal attenuation, species differentiation accuracy,
and data processing complexity affect measurement reliability. To overcome these issues, sensor fusion
techniques combining optical, acoustic, and biochemical data are employed, along with machine learning
algorithms for automated species classification. In heterogeneous multi-robot systems, distributed
biological sensing enables large-scale, high-resolution ecological monitoring, improving conservation
efforts and habitat assessment.

3.1.9. Communication perception

Underwater communication is crucial for coordinating multi-robot operations, enabling data exchange
between robots and base stations. Unlike wireless communication on land, underwater environments
mainly depend on acoustic modems and transducers because electromagnetic waves quickly lose strength
in water [106]. Acoustic communication enables long-range transmission but is hindered by limited
bandwidth, high latency, and vulnerability to multipath interference.

To mitigate these limitations, modern systems integrate adaptive modulation techniques, error
correction algorithms, and network protocols optimized for dynamic underwater conditions. Additionally,
hybrid communication frameworks combining acoustics with optical and radio-frequency (RF)
methods are being explored to enhance reliability. In heterogeneous multi-robot systems, distributed
communication strategies and delay-tolerant networking (DTN) approaches further improve data
exchange efficiency in complex marine environments.

To optimize environmental perception, it is crucial to use multi-sensor data fusion methods, including
Kalman filtering and particle filtering algorithms. These techniques can integrate data collected from
different sensors to provide more accurate and reliable information. Additionally, ensuring spatiotemporal
data synchronization is crucial for improving perception accuracy and consistency, as it allows data
from various sensors to be synchronized in both time and space. Furthermore, the application of deep
learning and artificial intelligence in processing and analyzing multimodal data significantly enhances the
capabilities of target recognition and environmental understanding. The integration of these technologies
can substantially improve the environmental perception performance of robots.

3.2. Key technologies and their applications

The perception technology of heterogeneous aquatic robots is of great significance in applications such
as environmental perception, water sampling, underwater archaeology, and underwater cleanup. To
successfully perform tasks in these typical scenarios and more general contexts, heterogeneous aquatic
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robots need to possess capabilities such as real-time environmental modeling, dynamic environmental
monitoring, and target detection and recognition.

3.2.1. Environmental perception

Environmental perception involves the systematic investigation and interpretation of unknown or partially
known environments. It supports heterogeneous aquatic robots in executing tasks by enabling object
detection, tracking, and mapping. Lindsay et al. [113] proposed a multi-robot system equipped with
above-water, surface, and underwater sensors to capture data for 3D reconstruction of floating targets.
The sensor data are fused at the waterplane using a sliding correlation algorithm.

For swarm control, Yu et al. [114] developed a real-time visual tracking subsystem for multiple
moving objects in biomimetic robotic fish. This system estimates both position and direction of all robots
and a ball in real time. In unstructured 3D underwater environments, Shkurti et al. [107] introduced
a robust convoying method using model-based object detection and temporal filtering to minimize
tracking drift. Cooperative perception is essential for collaborative operations. Berlinger et al. [115–117]
developed a fish-inspired robot swarm that uses visual impressions and blue-light LEDs for implicit,
decentralized 3D neighborhood sensing, achieving complex group behaviors like synchrony and
search-capture without centralized control, as shown in Figure 5.

Figure 5. A swarm of fish-inspired miniature underwater robots [115].

To align sensor data from multiple robots, Sture and Ludvigsen [118] proposed a data-driven method
for fusing AUV transect data using optimization and a Student-T process to eliminate outliers. This
approach enhances multibeam echosounder data alignment across varying altitudes and directions.

Due to limited underwater visibility, working far from structures causes image degradation, while
close proximity increases uncertainty. To address this, Xanthidis et al. [103] presented a dual-robot
framework where proximal observers capture detailed images and distal observers provide localization
and situational awareness. SLAM frameworks play a crucial role in autonomous underwater mapping.
Leonardi et al. [119] introduced a scale-agnostic visual SLAM system optimized for station-keeping.
Rahman et al. [108] proposed SVIn2, a tightly coupled SLAM system integrating sonar, vision, inertial,
and pressure data, improving performance under challenging visibility and lighting conditions.
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Underwater hyperspectral imaging (UHI) enhances optical characterization of seabed features.
Løvås et al. [120] proposed a method for georegistering UHI data by building a photogrammetric 3D
model using overlapping RGB images. Dumke et al. [121] demonstrated UHI as a taxonomic tool to
identify megafauna based on spectral signatures, eliminating the need for physical sampling.

3.2.2. Water sampling

Water sampling evaluates the physical, chemical, and biological properties of aquatic environments,
addressing the spatiotemporal variation within the water column. Adaptive and decentralized sampling
strategies are employed to improve sampling efficiency.

Kemna et al. [122] introduced a decentralized coordination framework for multi-robot adaptive
sampling using dynamic Voronoi partitions. Each robot performs informative sampling within its
designated region. Ge et al. [110] proposed an AUV with an onboard Gaussian random field model for 3D
salinity sampling in river plume systems. Fossum et al. [111] developed methods for fine-scale mapping
of phytoplankton biomass in 3D using AUVs with chlorophyll and water quality sensors. These systems
employ Gaussian Process models for spatial inference and GPU-based real-time data processing. Later
work [123] leveraged remote sensing data to guide autonomous deployment and sampling strategies.

Figure 6. The system of coordinated autonomous robots [124]. (a) Illustration of
the coordinated, fully autonomous operation of LRAUVs Aku and Opah, and Wave
Glider Mola; (b) Tracks of Aku, Opah, and Mola from 31 March 10:03 to 10:40 UTC
(from triangle to square). Aku was in the process of collecting one sample within the
DCM, while Opah spiraled downward using Aku as the centroid navigational target.
The color of the subsurface lines depicts the fluorescence-derived concentration of
chlorophyll. Mola, on the sea surface (black line), tracked Aku and is seen dithering
above for a short time as Aku’s drift slowed and then accelerated.

Zhang et al. [124] addressed the challenge of in situ deep chlorophyll maximum (DCM) sampling
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using a coordinated system of AUVs and a surface vehicle, as shown in Figure 6. The system captures
microbial community features by integrating environmental sensing, acoustic tracking, and satellite
communications. For broader ocean monitoring, McCammon et al. [112] designed a heterogeneous
ASV/AUV system to autonomously identify and track ocean salinity fronts using Gaussian Processes to
model salinity and current vectors.

To investigate polar night zooplankton behavior, Ludvigsen et al. [105] deployed an ASV with
hyperspectral and acoustic sensors. They revealed that artificial light from vessels alters zooplankton
distribution, highlighting the importance of minimally invasive sampling platforms. For comprehensive
freshwater monitoring, Kalaitzakis et al. [125] proposed a “marsupial” system combining UAV and ASV
platforms. The UAV is carried by the ASV and deployed in remote areas, enabling extended-duration
missions and high-resolution mapping.

3.2.3. Underwater archaeology

The significance of underwater archaeology lies in its preservation and study of valuable cultural heritage,
as well as its exploration of past environments and human activities’ impact on marine ecosystems. The
use of robots for underwater exploration is essential because they can safely, efficiently, and accurately
conduct tasks in extreme environments such as deep-sea and polar regions, providing crucial support for
continuous observation and data collection.

Underwater Cultural Heritage (UCH), which spans several millennia, serves as a testament to our
shared history. Oceans, seas, lakes, and rivers conceal and protect this invaluable heritage beneath
their surfaces, yet it remains largely unknown and underestimated. Effective protection of UCH is
impossible without raising awareness. Currently, these underwater relics face numerous threats, including
looting, commercial exploitation, industrial trawling, coastal development, natural resource extraction,
and seabed exploitation. Additionally, global warming, water acidification, and pollution further damage
these historical remnants. To safeguard, understand, and promote this heritage, the United Nations
Educational, Scientific and Cultural Organization (UNESCO) has been developing and implementing the
2001 Convention on the Protection of Underwater Cultural Heritage for over 20 years [126].

Wrecked ships are a significant part of Underwater Cultural Heritage. The Figaro, a floating whaling
station, sank in 1908 after catching fire. It contained a variety of specialized equipment, including steam
boilers and cooking vats for processing whale oil. Mogstad et al. [104] note that, to the best of their
knowledge, the Figaro is the northernmost shipwreck in the world to be investigated by archaeologists.
An interdisciplinary project was initiated to research the wreck along three main axes:

(1) Technology—to explore various non-intrusive technology-based methods using underwater robotics
and sensors for mapping and investigating shipwrecks in high Arctic or other challenging environments.

(2) Archaeology—to gather data for a comprehensive mapping of the wreck using high-resolution
sensors, aiding in the understanding of the Figaro’s role in the history of whaling in Svalbard.

(3) Biology—to acquire and analyze sensor data that helps understand the wreck site as a human-made
substrate for biofouling organisms.

Based on their research on the Figaro, Mogstad et al. [104] discovered that archaeological
objects with strong protrusions support significantly higher levels of biofouling compared to their

18



Robot Learn. Survey

surrounding areas. As a result, high-density biological assemblages could serve as indicators for
identifying human-made artifacts on the seafloor.

3.2.4. Underwater cleanup

Underwater environmental cleanup is crucial for maintaining the health of underwater ecosystems
and ensuring the functionality of marine infrastructure. It involves the removal of pollutants, debris,
and invasive species from underwater environments, thereby supporting biodiversity and ecosystem
balance. Utilizing robots for underwater environmental cleanup is essential due to their ability to
navigate challenging underwater terrain and execute precise cleaning operations efficiently and safely,
minimizing human exposure to hazardous conditions and enhancing the effectiveness of environmental
conservation efforts.

Pipeline inspection is a significant application of underwater environmental management. To
minimize the reliance on divers for pipeline inspection, Patel et al. [106] developed two Shallow Water
Inspection & Monitoring Robot (SWIM-R) vehicles and a companion ASV. The two SWIM-Rs are
respectively for cleaning, which is responsible for removing marine growth from the pipe surface, and for
inspection, which performs contact Ultrasonic Testing (UT) and Cathodic Protection (CP) measurements.

3.3. Frontier research and development trends

The perception technology of heterogeneous aquatic robots faces various challenges and opportunities for
future development. Considerations include: (1) novel sensor technologies, encompassing high-quality
imaging, high payload capacity, low environmental impact, and compatibility with edge computing
platforms; (2) complex environment adaptability, where robustness challenges are prominent due to
the dynamic and unpredictable nature of the surroundings; (3) real-time data processing, necessitating
continuous advancements in algorithms and computational capabilities; and (4) collaborative perception
technologies, leveraging multiple heterogeneous aquatic robots to achieve comprehensive, accurate, and
efficient environmental sensing.

3.3.1. Novel sensor technologies

High-quality imaging sensors provide clearer and more detailed image data, aiding in precise identification
and analysis of target objects and features in underwater environments. High payload capacity demands
sensors that are lightweight and compact, enabling installation on various types and sizes of aquatic
robots, while ensuring minimal impact on robot maneuverability and endurance. Low environmental
impact emphasizes minimizing disturbance and damage to underwater ecological environments during
sensor operation, thereby protecting marine life and ecosystems. Sensors adapted for edge computing
platforms can perform real-time processing and analysis of collected data, reducing latency and bandwidth
requirements for data transmission, and enhancing overall system responsiveness and decision-making
capabilities. However, the development and implementation of such novel sensor technologies face
several limitations. Developing high-quality imaging sensors with all the desired characteristics, like
high resolution in low-light underwater conditions, is challenging and costly. The cost of research
and production may limit their widespread adoption. Possible solutions could involve government
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subsidies or industry-university cooperation to share the cost of research and development. In terms
of high payload-capacity sensors, achieving the right balance between weight, size, and functionality
is difficult. New materials and manufacturing techniques need to be explored to develop sensors that
are both lightweight and highly functional. For sensors with low environmental impact, ensuring that
they truly cause minimal harm to the ecosystem requires extensive long-term environmental monitoring,
which is time-consuming and resource-intensive. To address this, pre-deployment environmental impact
assessment models could be developed. Regarding sensors for edge computing platforms, the integration
of sensor hardware with edge computing software often requires significant engineering efforts due to
differences in architecture and communication protocols. A standardized interface or middleware could
be developed to simplify this integration process.

3.3.2. Complex environment adaptability

The aquatic environment is characterized by high dynamics and uncertainty, including variations in factors
such as water currents, turbidity, temperature, and pressure, all of which impact the performance of
perception systems. To enhance adaptability, perception systems require high robustness, capable of stable
operation even under adverse conditions such as noise interference, low light, and signal attenuation.
Furthermore, advanced algorithms and technologies need to be developed to enable robots to maintain
efficient perception and navigation capabilities when encountering obstacles, complex terrains, and
dynamic targets. Adaptive capability of perception systems is also crucial, allowing them to automatically
adjust perception strategies and parameters in response to environmental changes, thereby enhancing
adaptability and reliability across different task scenarios. Despite the importance of complex environment
adaptability, current efforts face significant hurdles. Developing highly robust perception systems that
can handle all the environmental factors simultaneously is extremely difficult. For example, while some
algorithms may be effective against noise interference, they may not perform well under rapidly changing
water currents. A possible solution is to develop modular perception systems, where different modules
can be swapped or adjusted according to the dominant environmental factor. Another limitation is
that the development of advanced algorithms for complex terrains and dynamic targets often requires
a large amount of training data, which is challenging to collect in real-world underwater environments.
Simulation-based training, combined with limited real-world data augmentation, could be a viable
solution. Additionally, the real-time adjustment of perception strategies in response to environmental
changes requires fast-acting and accurate environmental sensing. Improving the accuracy and speed of
environmental sensors, such as developing more sensitive turbidity and temperature sensors, is necessary.

3.3.3. Real-time data processing

Real-time data processing is a crucial component of perception systems for heterogeneous aquatic
robots, requiring systems to rapidly and accurately process large volumes of sensor data to support timely
decision-making and actions. With advancements in sensor technology, the volume and complexity of data
continue to increase, placing higher demands on the speed and efficiency of data processing. Therefore,
there is a need to develop more efficient algorithms capable of fast data processing and analysis within
limited computational resources. Additionally, leveraging parallel computing and distributed computing
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technologies can significantly enhance data processing capabilities and speed. The introduction of edge
computing has greatly strengthened real-time processing capabilities, allowing some data processing
tasks to be completed at the data collection site, thereby reducing latency in data transmission. Continual
improvement of computing capabilities and optimization of algorithms ensure that perception systems can
provide efficient and reliable real-time data processing support in complex and dynamic environments.
Nonetheless, the pursuit of efficient real-time data processing has its own set of limitations. Developing
algorithms that can process large volumes of data quickly while operating within the limited computational
resources of aquatic robots is a major challenge. Existing algorithms may be computationally intensive
and not suitable for the low-power processors typically used in these robots. One solution could be to
develop specialized hardware-software co-design solutions, where the hardware architecture is optimized
for the specific data processing algorithms. In terms of parallel and distributed computing, ensuring
seamless communication and synchronization between different computing nodes in the underwater
environment, which may have poor or intermittent communication channels, is difficult. Redundancy
in communication links and more robust communication protocols need to be developed. For edge
computing, the limited energy supply of aquatic robots may restrict the continuous operation of edge
computing devices. Energy-harvesting technologies, such as using water-flow or solar energy (where
applicable), could be integrated to power edge computing devices.

3.3.4. Collaborative perception technologies

The core of collaborative perception technology lies in enhancing overall system performance and
reliability by enabling information sharing and complementarity among multiple robots. Each robot can
be equipped with different types of sensors to collect environmental data from various dimensions, which
are then integrated and analyzed through data fusion techniques to provide more comprehensive and
accurate environmental information. Furthermore, collaborative work among robots extends coverage over
larger areas, thereby enhancing task efficiency and effectiveness. In complex underwater environments,
collaborative perception also improves system robustness and fault tolerance; for instance, if one
robot encounters a malfunction, others can compensate to ensure task continuity. Developing effective
collaborative control and communication algorithms enables robots to autonomously coordinate and divide
tasks in dynamic and uncertain environments, which is crucial for achieving collaborative perception.
Through the application of these technologies, heterogeneous aquatic robots can play a greater role
in environmental monitoring, resource exploration, disaster response, and other domains. However,
implementing collaborative perception technologies has its own set of difficulties. The development of
effective data fusion techniques for different types of sensors is complex. Different sensors may have
different sampling rates, data formats, and levels of accuracy, making it challenging to integrate the
data seamlessly. Developing a unified data model and pre-processing steps for different sensor data
could address this issue. Another limitation is the communication overhead in collaborative perception.
Transmitting large amounts of sensor data between multiple robots in real-time requires significant
bandwidth, which may not be available in the underwater communication environment. Compression
algorithms specifically designed for underwater sensor data and more efficient communication protocols
need to be developed. Additionally, ensuring the security of communication and data sharing among
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multiple robots is a concern, as underwater communication channels may be vulnerable to eavesdropping
and interference. Encryption and authentication mechanisms need to be implemented to protect the data.

4. Navigation of heterogeneous aquatic robot system

Heterogeneous aquatic robot systems comprise various types of robots, each with distinct navigation
requirements and challenges, yet unified by the goal of achieving precise and reliable positioning and
navigation in aquatic environments. Collaborative navigation is a pivotal research area within these
systems, focusing on information exchange and coordinated actions among multiple robots to enhance
navigation efficiency and accuracy. This collaboration necessitates that each robot possesses a high degree
of autonomous navigation capability and the ability to share environmental perception data, path planning
information, and task execution status, thereby optimizing the overall system performance. Current
research in the navigation of heterogeneous aquatic robots is progressing towards enhancing navigation
accuracy, improving environmental adaptability, and achieving multi-robot collaborative navigation. The
framework diagram of navigation and collaborative navigation for heterogeneous aquatic robotic systems
is shown in Figure 7.

Figure 7. Navigation and collaborative navigation of heterogeneous aquatic
robot system.

4.1. Navigation of heterogeneous aquatic robot system

4.1.1. Inertial navigation optimization

Inertial navigation holds a foundational role in autonomous unmanned systems. Using only inertial
navigation results in unbounded errors, but there are still some methods that can optimize the performance
of inertial navigation, making the final integrated navigation scheme more effective. For example, the
inertial sensor offsets and other errors can be explicitly tracked, reducing the overall inertial navigation
errors [127]. With some external sensor-based [128–130] schemes, water flow conditions can be detected
and incorporated into the robot dynamics, reducing positioning and navigation errors. During navigation,
using appropriate filtering methods, such as the variants of the Kalman Filter (KF) [131–133], the
particle filter (PF) methods [134] or the cross-entropy based filter methods [135], can make better use of
inertial sensor data and improve navigation accuracy. Overall, inertial navigation needs to be combined
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with various navigation and positioning methods mentioned next, serving as a fundamental method for
high-precision navigation.

4.1.2. Acoustic navigation

In aquatic environments, due to the strong obstruction of electromagnetic signals by water, acoustic
devices are more commonly used to achieve communication, positioning, sensing, and other functions
for underwater robots. In acoustic navigation technology, positioning is achieved by measuring the Time
of Flight (TOF) of acoustic signals to estimate distance. Specifically, acoustic positioning uses various
forms of triangulation techniques to calculate the distance and orientation between sensors and beacons.
Different acoustic positioning methods are distinguished by the deployment methods of the sensors and
beacons. The Ultra-Short Baseline (USBL) method uses sensor distances on the order of 10 cm and
determines the beacon’s orientation based on the phase difference of sound signals [136–138]. This
method is less dependent on sensor size but has a limited positioning range. The Long Baseline (LBL)
method involves pre-setting multiple beacons on the seabed at the task site and uses the integrated sound
signal TOF distance measurements to achieve AUV positioning [139]. In terms of technical details, the
LBL method especially needs to consider the situation of abnormal TOF distance measurements [140]
and handle the errors caused by TOF distance measurement delays using various methods [141]. The
main drawback of the LBL method is the high cost and dependency on the working environment due to
the need for pre-installed fixed beacons, but when conditions are suitable, the LBL method offers the
highest accuracy, stability, and reliability. Due to the high cost associated with multiple beacons in LBL,
some methods consider using only one fixed beacon to position the AUV, achieving good positioning
results when the AUV’s operating trajectory meets specific requirements [132,142,143].

4.1.3. SLAM-based navigation

With the development of Simultaneous localization and mapping (SLAM) algorithms, a large body
of research has applied SLAM methods to underwater environments, achieving good results in AUV
navigation and positioning [144–146]. SLAM-based navigation methods can be categorized into optical
and sonar, based on the perception method.

A series of vision-based SLAM techniques using optical cameras have also been applied to AUV
navigation and positioning, as shown in Figure 8. SLAM methods have bounded localization errors
and can simultaneously generate maps of the mission area, making them suitable for certain types of
tasks [147]. The limitations of visual methods include the performance deficiencies of underwater
optical cameras, the obstruction, scattering, and insufficient illumination of visible light in underwater
environments, which affect the perception range of visual methods. Moreover, most visual methods rely
on rich, small-scale feature matching in the environment [148]. Therefore, visual methods are suitable for
environments with abundant visual features and short working distances, such as coral reef exploration
and shipwreck detection [149].
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Figure 8. Vision-based SLAM example [119] on sequence 4 of the aqualoc
dataset [150] (an underwater dataset for visual-inertial-pressure localization).

Compared to optical technology, sonar technology is a more mature underwater detection technology.
Extensive research has developed corresponding SLAM algorithms for AUV navigation based on the
technical characteristics of different types of sonar. Side-scan sonar achieves high-resolution imaging of
seabed material by identifying varying echo intensities from the seabed, but it requires more complex
post-processing. Forward-looking sonar is primarily used for mapping vertical features [151], making it
suitable for environments with man-made underwater structures. Mechanical scanning imaging sonar has
a slower update rate and is suitable for artificial environments with clear edges and boundaries. Synthetic
aperture sonar (SAS) achieves high resolution through coherent processing of continuously displaced
echoes, making it suitable for long-distance detection [152], but it requires complex image processing
and precise micro-navigation. Multibeam sonar records depth data using multiple transducer arrays
to create depth maps, enabling large-area seabed mapping [153]. Overall, imaging sonar is suitable
for high-resolution imaging and feature detection, while ranging sonar is more advantageous for depth
mapping and navigation.

4.1.4. Geospatial navigation

Geospatial navigation for heterogeneous aquatic robots involves integrating results from various navigation
methods into a unified global coordinate system. By combining geographic information systems (GIS),
global navigation satellite systems (GNSS), and multi-sensor data, this technology accurately determines
the robot’s position in complex aquatic environments. It enables high-precision perception of the
surroundings and mapping. Geospatial navigation not only consolidates outputs from different navigation
techniques but also facilitates precise navigation and localization over extensive geographic areas for
aquatic robots, supporting applications in exploration, monitoring, and task execution.

4.2. Collaborative navigation of heterogeneous aquatic robot system

Based on the navigation technology of individual heterogeneous aquatic robots, multi-robot systems,
particularly those with underwater, surface, and aerial collaborative operations, can achieve better
navigation results through collaborative localization methods.
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4.2.1. Collaborative navigation of robots

Theoretical research on collaborative navigation among robots [154] has long indicated that even without
external positioning aids, multi-robot systems can achieve better localization results through mutual
communication of their respective poses and relative distance measurements. Extensive studies have been
conducted on the collaborative navigation of AUV clusters, focusing on error analysis [155], complexity
analysis [156], and diverse application advancements [157,158]. The primary approaches in this technical
route include convergence and stability analysis of multi-robot systems and iterative updates based on
posterior probability using various filters and estimators [159]. For the application of heterogeneous
aquatic robots, additional considerations must be given to the impact of communication bandwidth and
latency on the system’s performance.

4.2.2. Collaborative navigation of heterogeneous aquatic robots

Beyond theoretical analyses of collaborative navigation, some studies leverage the distinct functions,
operating environments, and performance characteristics of different robots within heterogeneous groups
to propose low-coupling and intuitive collaborative localization methods. For instance, some AUVs are
equipped with superior navigation systems or periodically surface to obtain GNSS positioning. These
accurately positioned AUVs within the heterogeneous robot system can achieve precise cluster localization
through communication and relative distance measurements [160]. In acoustic navigation, some methods
deploy beacons on GNSS-equipped buoys, vessels, or ASVs, avoiding the need for pre-positioned beacons
in other acoustic localization methods. Beacons on ASVs can remain mobile during mission execution,
providing multi-perspective range measurements for AUVs, thus avoiding the complexity of fixed beacon
networks. ASVs, located at the water surface, can communicate acoustically with underwater robots
and use radio signals to communicate with aerial or remote operators while continuously obtaining
GNSS global positioning information. This makes ASVs effective as signal relays or tracking beacons
for underwater robot groups, enhancing the operational capabilities of heterogeneous robot groups.
Additionally, some works utilize the high mobility of UAVs, employing optical sensing to perform precise
mapping and localization of task areas [161], thereby improving the navigation and localization accuracy
of heterogeneous aquatic robot systems.

4.3. Frontier research and development trends

With continuous technological advancements, research and development in heterogeneous aquatic robot
navigation systems are witnessing several frontier trends:

4.3.1. Collaborative navigation

Future research will focus on advancing collaborative navigation algorithms to enable real-time
information exchange, decentralized decision-making, and coordinated movement among heterogeneous
underwater robots. Effective collaboration improves navigation accuracy, expands operational coverage,
and enhances robustness in dynamic environments.

However, challenges such as communication latency, bandwidth limitations, and inconsistent sensor
data across different robot platforms must be addressed. To overcome these limitations, multi-robot
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systems will leverage predictive modeling, consensus-based control strategies, and adaptive task
allocation mechanisms. Additionally, integrating reinforcement learning and swarm intelligence
approaches will enable robots to dynamically adjust their behaviors based on environmental conditions
and mission objectives. By enhancing cooperation and optimizing networked navigation strategies, future
heterogeneous underwater robot systems will achieve greater efficiency in large-scale environmental
monitoring, resource exploration, and autonomous surveillance.

4.3.2. Dynamic task assignment and replanning

Future navigation systems will increasingly incorporate dynamic task assignments and real-time path
replanning to enhance adaptability in complex underwater environments. These systems will leverage
real-time environmental data, robot status monitoring, and predictive modeling to autonomously adjust
mission objectives, redistribute tasks, and optimize path selection.

However, uncertain ocean currents, limited communication bandwidth, and computational constraints
make real-time decision-making difficult. To address these issues, multi-robot coordination strategies will
integrate decentralized optimization algorithms, reinforcement learning-based planning, and bio-inspired
swarm intelligence approaches. These methods will enable robots to adapt to changing conditions
while maintaining efficiency and robustness collectively. By incorporating adaptive task allocation and
intelligent replanning mechanisms, heterogeneous underwater multi-robot systems will achieve greater
operational efficiency in applications such as environmental monitoring, underwater exploration, and
search-and-rescue missions.

4.3.3. Autonomous learning and adaptation

Integrating machine learning and artificial intelligence enables underwater navigation systems to
learn environmental features and adapt to dynamic conditions autonomously. Robots can refine their
decision-making processes by analyzing historical and real-time sensor data, improving localization,
obstacle avoidance, and mission planning in uncertain underwater environments.

However, challenges such as limited computational resources, noisy sensor data, and the scarcity of
labeled underwater datasets hinder the effectiveness of learning-based approaches. To address these issues,
future research will focus on energy-efficient deep learning models, self-supervised learning techniques,
and domain adaptation strategies to enhance model generalization across diverse aquatic conditions.
By continuously optimizing their navigation strategies, heterogeneous underwater multi-robot systems
will improve operational robustness and efficiency in complex missions, such as deep-sea exploration,
ecological monitoring, and underwater infrastructure inspection.

4.3.4. Standardization and modular design

Navigation systems’ standardization and modular design play a crucial role in ensuring interoperability
among heterogeneous underwater robots from different manufacturers. Establishing standard
communication protocols, sensor interfaces, and software architectures enables seamless integration and
cooperative operations in multi-robot deployments.

Achieving standardization faces challenges such as varying hardware specifications, proprietary software
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constraints, and the need for real-time adaptability in diverse underwater environments. To address these
issues, future research will focus on developing open-source frameworks, flexible middleware architectures, and
universal communication standards that enhance cross-platform compatibility.

4.3.5. Safety and ethical considerations

Safety and ethical concerns have gained significant attention with the increasing deployment of underwater
robots. These systems must be designed to operate without disrupting marine ecosystems, harming aquatic
life, or interfering with human activities. Additionally, ensuring reliable performance in unpredictable
underwater environments remains a fundamental challenge.

One of the primary difficulties lies in real-time hazard detection and avoidance, particularly in
dynamic conditions with limited communication and sensor accuracy. Addressing these issues requires the
integration of fail-safe mechanisms, robust collision-avoidance strategies, and environmentally conscious
design principles. Furthermore, the ethical implications of autonomous decision-making demand careful
consideration, especially in scenarios involving resource exploration or military applications.

Moving forward, establishing standardized safety protocols and ethical frameworks will be crucial.
Regulatory compliance, transparent AI decision-making, and sustainable deployment practices will play a
key role in fostering the responsible adoption of heterogeneous underwater multi-robot systems across
scientific, industrial, and environmental applications.

5. Control of heterogeneous aquatic robot system

The control technology for heterogeneous aquatic robot systems refers to the precise operation and
coordination methods for various surface, underwater, and aerial robots, including ROVs, AUVs, ASVs,
and UAVs. These robots require precise control to maintain stability, responsiveness, and coordination
during task execution. The core goal of control technology is to ensure that robots can operate efficiently
and safely according to predetermined trajectories and task requirements.

5.1. Research status

In recent years, significant progress has been made in the control technologies for heterogeneous
aquatic robot systems. This progress spans multiple aspects, from theoretical advancements to practical
implementations, addressing the unique challenges posed by the aquatic environment. The current
research landscape can be categorized into several key areas:

5.1.1. Development and optimization of control theory

Currently, research on control theory focuses on nonlinear control, adaptive control, and robust control to
address the uncertainties and dynamic changes in aquatic environments. Researchers are developing and
optimizing various control algorithms, such as PID control, optimal control, and predictive control, to
enhance the tracking accuracy and operational efficiency of robots. These advanced control theories aim
to provide robust solutions to address the complexities and variability of aquatic environments, ensuring
reliable performance under various conditions. The following is a brief overview:
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• Proportional-integral-derivative (PID) control [162]: PID control is widely applied in various
control systems due to its few parameters, simple structure, ease of implementation, and clear
physical significance [163].

• Optimal control theory: Optimal control theory provides systematic procedures for the design of
feedback control systems, laying the foundation for modern control theory and being a key concept
in the field [164,165].

• Adaptive control: Adaptive control ensures system stability in the presence of uncertain system
model parameters [166–169]. Its characteristic lies in the design of appropriate estimation rates to
effectively estimate and compensate for uncertainties or parameter variations in the system model.

• Backstepping control: Backstepping is a recursive design method based on the Lyapunov function.
The basic idea is to decompose a complex nonlinear system into several subsystems, each with its
Lyapunov function and intermediate virtual control variables, eventually integrating them into the
overall system’s control law [170].

• Neural network control: Neural network control is a branch of intelligent control that has excellent
capabilities in estimating and identifying nonlinearity and uncertainty [171–173]. It opens new
pathways for solving control problems in complex, nonlinear, uncertain, and unknown systems.

• Fuzzy control: Fuzzy control utilizes the basic ideas and theories of fuzzy mathematics to establish
a linguistic analysis mathematical model for complex systems or processes [173,174]. It translates
natural language directly into algorithms that computers can understand, effectively controlling
systems that are overly complex or difficult to describe precisely.

• Model Predictive Control (MPC): At each sampling instant, MPC determines the optimal control
action by solving a finite-horizon open-loop optimal control problem, using the current system state
as the starting point. Only the first control input from the computed optimal sequence is applied,
and the process repeats at the next step. This approach allows MPC to anticipate and correct
potential deviations proactively, demonstrating strong robustness to system parameter variations
and environmental disturbances [175,176].

• Sliding mode control: Sliding mode control is a type of nonlinear control characterized by control
discontinuity. Its uniqueness lies in the dynamic change of the system’s “structure” based on
the current state (e.g., error and its derivatives), purposefully adjusting the system to follow a
predetermined “sliding mode” trajectory [167].

• Deep Reinforcement Learning Control (DRL) : DRL combines the perception capabilities of
deep learning with the decision-making abilities of reinforcement learning, enabling robots to
autonomously learn and control in complex environments [177]. DRL uses neural networks to
approximate value functions or policy functions in reinforcement learning problems, allowing
for environmental perception, state evaluation, and action selection. For instance, Wu Hui et al.
utilized reinforcement learning for AUV depth control [178], demonstrating the effectiveness
of DRL in managing underwater robotic tasks. Similarly, I. Masmitja et al. implemented a
reinforcement learning approach to enable AUVs to perform target tracking tasks in complex water
flow environments [179].

• End-to-end control: End-to-end control leverages deep neural networks to directly learn the mapping
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from sensor data (such as images, LIDAR signals, and tactile sensor data) to robot actuator control
signals (such as motor torque and joint angles). This approach simplifies traditional control
processes and reduces reliance on precise models.

• Large model-based control: This approach uses large-scale machine learning models, particularly
deep learning models, to process and interpret the vast amount of sensor data received by robots
and generate control commands. This method has rapidly developed in recent years, primarily due
to advances in computational power and the availability of big data.

5.1.2. Innovation in control hardware

Innovations in control hardware are also a crucial part of the research, including the development of higher
performance actuators and sensors. These hardware advancements can significantly improve the response
speed and accuracy of control systems. High-precision sensors provide detailed environmental data, while
advanced actuators enable precise movements, both of which are essential for the accurate execution
of complex tasks. Additionally, integration of advanced materials and miniaturization of components
contribute to the enhanced performance and reliability of the control hardware.

5.1.3. Development of control software

With the advancement of software technology, control software has become more user-friendly and
powerful, capable of implementing more complex control logic and data processing. Modern control
software integrates real-time data processing, advanced algorithms, and user interfaces that facilitate
easier operation and monitoring. These software systems can adapt to changing conditions and optimize
control parameters on-the-fly, enhancing the overall efficiency and effectiveness of robotic operations.

5.1.4. Real-time control and simulation

Research in real-time control technology ensures that robots can respond quickly to environmental
changes, maintaining optimal performance even in dynamic scenarios [171]. Simulation technology is
used to test and verify control strategies in a safe and controlled environment before deployment [180].
This approach helps in identifying potential issues and refining control algorithms, leading to more reliable
and robust systems. Advanced simulation tools can model complex interactions between robots and their
environments, providing valuable insights for improving control strategies.

5.1.5. Collaborative control mechanisms

Collaborative control among ROVs, AUVs, and ASVs is a current research hotspot, involving
communication, coordination, and task allocation among multiple robots [181]. Effective collaborative
control mechanisms enable robots to work together seamlessly, sharing information and resources
to accomplish tasks more efficiently. This includes developing algorithms for cooperative path
planning [182], distributed sensing, and coordinated decision-making [177], all of which are critical for
multi-robot systems operating in challenging aquatic environments.
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5.2. Frontier research and development trends

Looking ahead, the field of control technology for heterogeneous aquatic robots is poised for substantial
advancements. Future research and development efforts are expected to focus on enhancing the
intelligence, adaptability, and interoperability of control systems, as well as addressing broader societal
and ethical considerations. Key areas of future development include:

5.2.1. Intelligent control strategies

Future control strategies will become more intelligent, utilizing artificial intelligence algorithms and
collaborative control strategies to automatically adjust control parameters and adapt to different operating
conditions. AI-driven control systems will be capable of learning from experience, improving their
performance over time, and making autonomous decisions based on real-time data and predictive
models. These intelligent systems will enhance the adaptability and resilience of robots in complex
and changing environments. However, implementing intelligent control strategies in aquatic robots has
several limitations. One major challenge is the high computational demand of AI algorithms. Aquatic
robots typically have limited computing resources and power supply, which may not be sufficient to
run complex AI algorithms in real-time. Developing lightweight AI models specifically tailored for
the computational capabilities of aquatic robots, such as using neural network pruning or quantization
techniques, could be a solution. Another limitation is the need for large amounts of high-quality training
data. Collecting diverse and representative underwater data for training AI-driven control systems is
extremely difficult due to the complex and dynamic nature of the underwater environment. Employing
data augmentation techniques, using simulation-generated data in combination with real-world data,
and leveraging transfer learning from related domains could help address this issue. Additionally, the
instability of the underwater environment, such as water current fluctuations and temperature changes,
can affect the performance of AI-based control systems. Developing algorithms that are more robust to
environmental changes, for example, by incorporating environmental factors as additional input features,
could enhance the adaptability of the intelligent control strategies.

5.2.2. Cross-domain collaborative operations

With the integrated use of different types of robots, cross-domain control technology will be developed to
achieve seamless collaborative operations among underwater, surface, and aerial robots. This involves
creating unified control frameworks that can manage diverse robotic platforms, enabling them to work
together harmoniously. Cross-domain collaboration will enhance the overall capability and versatility of
robotic systems, allowing them to perform a wider range of tasks more effectively. Despite its importance,
achieving cross-domain collaborative operations in aquatic robot control has its difficulties. One key
limitation is the communication gap between different types of robots operating in different domains.
Underwater robots mainly use acoustic communication, which has low data transfer rates and high
latency, while surface and aerial robots may use radio-frequency communication. Developing a unified
communication protocol that can bridge these differences and ensure seamless data exchange among all
types of robots is a significant challenge. Another challenge is the coordination of control commands
for robots with different kinematic and dynamic characteristics. For example, underwater robots need to
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deal with buoyancy and water resistance, while aerial robots need to consider aerodynamics. Designing a
control framework that can take into account these differences and allocate tasks appropriately to each
robot type is necessary. Additionally, the differences in sensor capabilities and data formats among robots
in different domains can pose problems for integrated perception and decision-making. Developing a
common data representation and sensor fusion techniques that can handle data from various sources is
crucial for effective cross-domain collaboration.

5.2.3. Distributed control architectures

Distributed control architectures will be further researched and applied to improve system scalability
and fault tolerance. These architectures distribute control functions across multiple nodes, enhancing the
robustness and flexibility of the system. Distributed control allows for decentralized decision-making,
reducing the reliance on a central controller and improving the system’s ability to handle failures
and adapt to changing conditions. This approach is particularly beneficial for large-scale multi-robot
systems operating in dynamic environments [183]. Nonetheless, the implementation of distributed
control architectures in aquatic robot systems has its own set of limitations. One major issue is the
communication latency and reliability in the underwater environment. In a distributed control system,
nodes need to communicate with each other in a timely and reliable manner. However, the underwater
communication channels, especially acoustic-based ones, are prone to interference, multipath propagation,
and signal attenuation, which can lead to communication delays and data loss. Developing more reliable
and high-speed underwater communication protocols, such as using optical or hybrid communication
methods in combination with acoustic communication, could improve the situation. Another challenge is
the coordination of decision-making among multiple nodes. Since each node makes its own decisions,
conflicts may arise. Developing conflict-resolution algorithms and consensus-building mechanisms that
can ensure consistent and efficient decision-making across all nodes is necessary. Additionally, the
complexity of managing a distributed control system with multiple nodes, including node discovery,
configuration, and maintenance, can be high. Developing automated management tools and self-organizing
algorithms for the distributed control system could simplify the management process.

5.2.4. Safety protocols and ethical considerations

With increasing autonomy, research will place greater emphasis on developing safety protocols and
addressing ethical issues to ensure that robot actions comply with safety and ethical standards. This
includes establishing guidelines for safe operation, creating fail-safe mechanisms, and addressing the
ethical implications of autonomous decision-making. Ensuring that robotic systems operate safely and
ethically is crucial for gaining public trust and enabling widespread adoption of these technologies. Despite
the importance of safety protocols and ethical considerations, implementing them in aquatic robot control
has challenges. One key limitation is the lack of clear and comprehensive safety and ethical frameworks
for aquatic robots. Defining what constitutes safe and ethical behavior in the underwater environment,
especially in relation to potential impacts on marine life and human activities, is not straightforward.
Conducting in-depth ethical and environmental impact studies and involving experts from various fields,
such as ethics, law, marine biology, and environmental science, in the framework-building process could
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help. Another challenge is ensuring compliance with the established frameworks. Monitoring the actions
of a large number of autonomous aquatic robots in real-time to ensure they adhere to safety and ethical
standards is resource-intensive. Developing automated monitoring and auditing systems, such as using
machine-learning-based anomaly detection techniques, could be a solution. Additionally, the cost of
implementing safety and ethical measures, such as redundant safety systems and regular ethical reviews,
may be a deterrent for some developers. Government incentives, such as grants or tax breaks for compliant
projects, could encourage the adoption of safety and ethical practices.

5.2.5. Standardization of control technologies

To promote the exchange and application of technologies, the standardization of control technologies
will be an important development direction. Standardization efforts aim to create common protocols,
interfaces, and benchmarks that facilitate interoperability among different robotic systems and simplify
integration and maintenance. Establishing standards will also support collaboration among researchers and
manufacturers, accelerating the development and deployment of advanced control systems. However, the
process of standardization of control technologies for aquatic robots has its own challenges. There are often
strong vested interests among different research groups and manufacturers, which may resist the adoption
of common standards. Encouraging industry-wide cooperation through incentives, such as preferential
treatment in government-funded projects for compliant parties, could be a way to overcome this resistance.
In terms of developing common protocols and interfaces, ensuring compatibility with existing and future
robotic technologies is difficult. The rapid development of robotic technology means that standards need
to be flexible enough to incorporate new advancements. Establishing a standard-setting organization
with representatives from all stakeholders and a mechanism for regularly updating the standards could
solve this problem. Additionally, the implementation of standards may require significant modifications
to existing robotic systems, which can be costly and time-consuming. Developing migration plans and
providing technical support for companies and researchers to transition to the new standards could ease
the implementation process.

6. Decision-making technology of heterogeneous aquatic robots

The decision-making process in heterogeneous robotic systems operating in aquatic environments is
fundamental to their collaborative capabilities. It encompasses effective coordination and task allocation
in dynamic and uncertain underwater conditions. This process not only requires individual robots to make
autonomous decisions but also necessitates the entire system to achieve information sharing, coordinated
planning, and collective optimization.

6.1. Technology development

With the rapid advancement of artificial intelligence and autonomous systems, decision-making in
heterogeneous robotic systems for aquatic environments has evolved from simple independent task
execution to complex collaborative operations. This transformation requires the system to address not
only the decision-making processes of individual robots but also the coordination, communication, and
task allocation among multiple robots.
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6.1.1. Perception fusion technology

Heterogeneous robotic systems in aquatic environments achieve precise perception of complex underwater
settings by integrating various sensing modalities such as sonar and optical sensors [184]. The application
of information fusion technology allows robots to obtain richer and more reliable environmental
data, thereby supporting decision-making processes. For a detailed introduction, see Section 3. In
the fish-inspired miniature underwater robots developed by F. Berlinger et al. [115–117], implicit
communication through the observation and sensing of blue LED light enables local decision-making
based on information extracted from images of neighboring robots, allowing for the realization of
complex and dynamic 3D collective behaviors.

6.1.2. Collaborative decision-making

Collaborative decision-making algorithms encompass rule-based systems, distributed optimization
algorithms, and consensus algorithms. Rule-based systems guide robot behavior using predefined
rules, suitable for structured and predictable task environments. Distributed decision-making algorithms
enable effective task coordination and decision-making in decentralized aquatic heterogeneous robot
systems. These algorithms typically rely on local information and simple communication protocols,
allowing robots to maintain individual autonomy while achieving coordinated actions at the group level.
Consensus algorithms facilitate consensus decision-making among robot groups through the exchange
of local information, enhancing system robustness and reliability without a central controller. Through
distributed consensus algorithms, robot groups can swiftly respond to environmental changes or individual
failures during task execution, ensuring continuity and robustness of operations [185,186]. Additionally,
leveraging distributed optimization and consensus algorithms enables efficient task allocation, maximizing
overall system performance and facilitating rapid adaptation to unforeseen circumstances. In summary,
the application of collaborative decision-making algorithms significantly enhances collective intelligence
and task execution capabilities of heterogeneous aquatic robot systems, equipping them with greater
adaptability and resilience in complex environments.

6.1.3. Multi-objective optimization and reinforcement learning

Multi-objective optimization techniques in decision-making for heterogeneous aquatic robots
handle multiple and potentially conflicting objectives such as efficiency, safety, and energy
consumption [187–189]. These techniques define composite evaluation criteria and constraints to
help robots find optimal trade-offs among different objectives. Simultaneously, the application of
reinforcement learning enables robots to learn optimal behavioral strategies through interaction with the
environment, particularly in dynamic and uncertain environments. Reinforcement learning provides an
effective means for online learning and adaptation.

6.1.4. Risk perception and robustness

Risk perception and robustness are key elements in the decision-making processes of heterogeneous
aquatic robotic systems. When operating under uncertainty and potential risks, robots must evaluate the
outcomes of their actions and implement effective risk mitigation strategies. By integrating probabilistic
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models and robust optimization techniques, these systems can account for various uncertainties, thereby
improving overall safety and reliability [190]. Furthermore, the use of robust control strategies enables
robots to continue performing critical tasks even in the presence of sensor malfunctions or communication
failures. To enable secure and confidential collaboration within robotic swarms, Ferrer et al. [191] propose
a framework that encodes cooperative missions within an authenticated data structure, specifically a
Merkle tree. Within this framework, robots are required to exchange cryptographic proofs to demonstrate
their integrity to one another, ensuring trustworthy and secure cooperation throughout mission execution.

6.1.5. Human-machine interaction and collaborative decision-making

Human-machine interaction technology is crucial in heterogeneous aquatic robotic systems, enabling
operators to understand and effectively control robot behavior through intuitive interfaces and real-time
monitoring capabilities. Collaborative control strategies facilitate task planning and optimization through
this human-machine interaction, enabling robot teams to autonomously coordinate actions and dynamically
adjust task execution based on operator commands and environmental changes [192]. Additionally,
integrated decision support systems leverage artificial intelligence to provide decision recommendations,
enhancing operators’ capability to handle complex tasks. Safety and ethical standards are rigorously
integrated into the design, ensuring compliance of robot behavior. With the integration of personalized and
adaptive functionalities, operators experience more customized interaction, while multimodal interaction
methods make the interaction process more natural and intuitive. Ultimately, this human-machine
collaboration enhances task efficiency and strengthens the adaptability and flexibility of robotic systems
in diverse aquatic environments.

6.1.6. Behavioral decision-making

Behavioral decision-making for robots involves designing algorithms that enable robots to make choices
based on a combination of programmed rules, learning from their environment, and adapting to new
situations. These decisions are influenced by factors such as sensory inputs, internal states, and
interactions with other robots or humans. The approach aims to mimic human-like decision processes,
allowing robots to perform tasks efficiently, adapt to changes, and collaborate effectively in dynamic
environments. For instance, Chen et al. [193] propose a path planning method based on behavioral
decision-making to optimize energy use during the AUV’s diving process. They employ a success-history
based adaptive differential evolution algorithm with linear population size reduction to effectively plan an
energy-saving path.

6.2. Frontier research and development trends

The development of decision-making technologies for heterogeneous underwater multi-robot systems
is evolving toward greater intelligence, autonomy, and efficiency. Future advancements will emphasize
real-time adaptability, robustness in uncertain environments, ethical considerations, and cross-domain
applicability. These innovations will be driven by integrating artificial intelligence, multimodal sensing,
and human-machine collaboration, enabling underwater robots to operate effectively in dynamic and
unstructured environments with minimal human supervision.
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6.2.1. Intelligent decision-making algorithms

Future decision-making systems will incorporate advanced artificial intelligence techniques, such as deep
reinforcement learning, Bayesian decision models, and hybrid neuro-symbolic reasoning. These methods
will enhance the ability of robots to process high-dimensional sensory data, predict environmental changes,
and make optimal decisions under uncertainty. However, real-world deployment presents challenges such
as data sparsity, computational efficiency, and the interpretability of AI-driven decisions. Addressing
these issues will require the development of explainable AI models, lightweight inference frameworks,
and domain adaptation techniques to improve generalizability across different aquatic environments.

6.2.2. Real-time capability and efficiency

Making rapid and efficient decisions is critical for heterogeneous underwater robots, particularly in
dynamic and unpredictable marine environments. With advancements in onboard computing, edge AI,
and parallel processing architectures, decision-making algorithms will increasingly focus on reducing
latency while maintaining computational efficiency. Distributed decision-making frameworks, where
multiple robots collaboratively process environmental data and share real-time insights, will further
enhance operational responsiveness. However, challenges such as bandwidth limitations in underwater
communication and power constraints necessitate the development of energy-efficient decision models
that balance performance and resource consumption.

6.2.3. Autonomous learning capabilities

Heterogeneous underwater robots will progressively move toward self-learning systems capable of
adapting to new conditions without human intervention. Reinforcement learning, transfer learning, and
continual learning techniques will enable robots to refine their decision strategies based on accumulated
experience. Future research will focus on overcoming limitations such as catastrophic forgetting, where
robots lose previously learned knowledge, and the need for extensive training data. Implementing
meta-learning frameworks and self-supervised learning approaches will allow robots to generalize across
different tasks while minimizing the reliance on labeled data.

6.2.4. Multimodal data fusion

Integrating multimodal sensory data, including sonar, optical imaging, LiDAR, chemical sensors, and
acoustic signals, enhances environmental perception and situational awareness. Effective data fusion
techniques, such as Kalman filtering, deep sensor fusion networks, and graph-based inference models, will
improve decision accuracy in complex underwater scenarios. However, challenges remain in synchronizing
heterogeneous data streams, handling sensor failures, and filtering noise in low-visibility conditions.
Future research will develop real-time, adaptive fusion mechanisms that dynamically adjust information
processing strategies based on environmental conditions.

6.2.5. Robustness and fault tolerance

Ensuring the reliability of decision-making processes in underwater robots is crucial for mission success,
especially in harsh and unpredictable environments. Robust decision systems must account for sensor
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degradation, communication disruptions, and unforeseen environmental changes. Adopting redundancy
strategies, self-repairing algorithms, and uncertainty-aware decision models will improve resilience.
Additionally, integrating probabilistic reasoning and anomaly detection mechanisms will allow robots
to identify and compensate for faulty sensor readings, enhancing operational continuity even under
adverse conditions.

6.2.6. Human-machine collaborative decision-making

Advancements in human-machine interaction technologies will enable more intuitive and effective
collaboration between human operators and autonomous robots. Shared autonomy frameworks, where
human expertise is seamlessly integrated with robotic intelligence, will improve decision-making in
mission-critical applications such as deep-sea exploration and search-and-rescue operations. Future
research will enhance communication interfaces, such as haptic feedback systems and augmented
reality-based control platforms, to facilitate real-time situational awareness. Ethical considerations,
including human override mechanisms and trust calibration in autonomous systems, will also be crucial
to ensure safe and effective human-robot collaboration.

6.2.7. Cross-domain decision-making capability

As underwater robots are deployed in diverse operational domains—including marine research, resource
exploration, disaster response, and military applications—decision-making technologies must evolve to
handle cross-domain challenges. Developing universal decision models capable of adapting to different
operational constraints will be essential. Future systems will incorporate hierarchical decision architectures
that enable robots to transition seamlessly between structured (e.g., industrial pipeline inspection) and
unstructured (e.g., deep-sea exploration) environments. Integrating multi-agent reinforcement learning
and cloud-based knowledge sharing will enhance cross-domain adaptability, allowing robots to benefit
from collective learning experiences.

6.2.8. Ethical and regulatory considerations

Ensuring ethical decision-making and compliance with regulatory standards is becoming a significant
research priority with increasing autonomy in underwater robotic systems. Autonomous systems must be
designed to operate without causing ecological harm, violating maritime laws, or posing risks to human
safety. Future developments will involve formulating standardized ethical guidelines, AI transparency
frameworks, and fail-safe mechanisms to ensure responsible robotic behavior. Collaboration with
regulatory bodies and implementing compliance verification systems will facilitate the widespread
adoption of autonomous underwater robots in real-world applications.

6.2.9. Ethics and compliance

As decision-making technologies for heterogeneous underwater robots become more autonomous,
ensuring ethical behavior and regulatory compliance is becoming a fundamental requirement. Robots
must operate within established legal frameworks, respect environmental protection guidelines, and avoid
actions that could harm marine ecosystems or human activities.
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A key challenge lies in defining and enforcing ethical constraints in autonomous systems, especially
when decision-making involves trade-offs between mission objectives and environmental impact. To
address these concerns, future research will focus on developing transparent AI models, explainable
decision-making frameworks, and compliance verification mechanisms. Additionally, collaboration
with policymakers and international regulatory bodies will be essential to establish standardized ethical
guidelines, facilitating the responsible deployment of autonomous underwater robots.

6.2.10. Modularity and scalability

Modular design principles will play a crucial role in the evolution of decision-making technologies,
allowing heterogeneous underwater robots to adapt flexibly to diverse operational scenarios. By
implementing modular architectures, individual decision-making components—such as perception,
planning, and control modules—can be independently upgraded or reconfigured without overhauling the
entire system.

However, achieving seamless interoperability between different modules and ensuring compatibility
across robot platforms remain significant challenges. Future advancements will focus on developing
standardized software frameworks, plug-and-play hardware interfaces, and distributed decision-making
architectures that enhance scalability. This approach will improve maintainability and enable efficient
integration of emerging AI techniques, thereby extending the lifespan and adaptability of robotic systems.

6.2.11. Simulation and digital twin technology

Simulation and digital twin technologies are increasingly employed to refine and validate decision-making
algorithms before real-world deployment. Digital twins create virtual replicas of physical robots and
their operating environments, allowing researchers to test algorithms under various simulated conditions,
identify potential failure points, and optimize performance without the risks and costs associated with
field experiments.

Despite these advantages, challenges such as real-time synchronization between physical and
virtual models, high computational demands, and accurate environmental modeling must be addressed.
Future developments will focus on enhancing the fidelity of digital twin simulations through advanced
physics-based modeling, real-time sensor feedback integration, and AI-driven predictive analytics. These
improvements will accelerate decision algorithm optimization while reducing reliance on expensive
real-world trials, ultimately improving the robustness and efficiency of heterogeneous underwater
multi-robot systems.

7. Energy management of heterogeneous aquatic robot system

Heterogeneous aquatic robot systems are at the forefront of aquatic environment exploration and
development technologies, widely applied in marine resource surveys, environmental monitoring, scientific
research, and rescue missions. However, the unique characteristics of the aquatic environment, such as
high pressure, low temperatures, darkness, ocean currents, and communication difficulties, pose severe
energy supply challenges for these robots [194]. Effective energy management strategies are crucial for
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ensuring the continuous operation of these robots, improving operational efficiency, and guaranteeing
mission success.

7.1. Current research

With the continuous advancement of ocean exploration, the energy management of heterogeneous aquatic
robot systems has become a research hotspot. During task execution, the energy consumption patterns,
efficiency, and sustainability directly affect the success rate of missions and the survivability of the robots.
Therefore, advancements in energy management technologies are essential for driving technological
progress in the field of aquatic robotics. Currently, researchers are addressing the challenges of energy
management from multiple angles, including improving energy utilization efficiency, developing new
energy harvesting technologies, enhancing battery and energy storage systems, applying intelligent control
strategies, and achieving coordinated operations of multi-robot systems.

7.1.1. Energy efficiency optimization

Researchers are committed to developing highly efficient propulsion systems and energy use strategies
to reduce energy losses and enhance the operational efficiency of robots. This includes using advanced
hydrodynamic designs to reduce water resistance and optimizing task execution sequences and path
planning through algorithms to minimize energy consumption. Research also involves improving the
shape [195] and the movement patterns of robots, such as mimicking the swimming mechanisms of
marine organisms to reduce energy expenditure. For instance, Yang et al. [196] propose an economic
model predictive control (EMPC)-based controller to reduce the control energy of AUVs while performing
waypoint tracking.

7.1.2. Energy harvesting technologies

To achieve self-sustained operation of heterogeneous aquatic robots, researchers are exploring the
utilization of natural underwater energy sources, such as hydrodynamic energy, wave energy, solar
energy, salinity gradient energy and thermal gradient energy [197–201]. The design of these energy
harvesting systems and the enhancement of energy conversion efficiency are current research focuses,
involving the development of new energy harvesting devices and the improvement of existing technologies.
By deploying an energy-harvesting kite, Reed et al. [202] achieve efficient energy resupply and extended
operational endurance for autonomous underwater vehicles during the execution of oceanographic
observation missions.

7.1.3. Battery technologies and energy storage

Battery technology is at the core of energy supply for heterogeneous aquatic robots [203–205]. Current
research focuses on increasing the energy density, cycling stability, and safety of batteries. New energy
storage technologies, such as supercapacitors and fuel cells, are also being actively explored to provide
more efficient energy storage solutions [206]. Research also emphasizes wireless energy transfer,
Hydrogen energy storage and battery thermal management to ensure performance and longevity in
extreme aquatic environments [207–210].
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7.1.4. Intelligent control strategies

With the advancement of artificial intelligence technologies, intelligent control strategies are playing an
increasingly significant role in the energy management of heterogeneous aquatic robots. Through machine
learning and predictive algorithms, robots can adjust their energy consumption patterns in real-time based
on task demands and environmental changes, achieving more precise and efficient energy management.
Intelligent control strategies also include adaptive energy allocation algorithms that dynamically adjust
energy usage based on the robot’s real-time status and anticipated tasks. For instance, Lyu et al. [211] have
developed a gliding hybrid aerial-aquatic vehicle, with experimental results indicating that underwater
gliding consumes significantly less power than aerial propulsion. Tijjani et al. [212] have designed a ROV
named Leonard, achieving passive stability through an optimized configuration of its center of buoyancy
and center of gravity, thereby effectively reducing energy consumption.

7.1.5. Coordination

In heterogeneous aquatic robot systems, energy optimization can be significantly improved through
coordinated control strategies. Researchers are exploring communication and coordination mechanisms
to achieve energy sharing and task collaboration among robot swarms [213–217]. Further research into
swarm intelligence will promote effective cooperation among robots, enhancing overall system energy
utilization efficiency and task execution capability.

In the context of heterogeneous multirobot teams performing multiple tasks, Notomista et al. [213]
propose an energy-aware framework that dynamically assigns tasks to robots in an online manner.
Targeting long-duration autonomy, their approach emphasizes system survivability. Task prioritization
and execution are formulated as constraints within an optimization problem that aims to minimize energy
consumption at each time step, ensuring that robots operate efficiently while maintaining task effectiveness.
Building on similar principles, Wang et al. [214] introduce a time- and energy-efficient minimum input
optimization method that adjusts task priorities for individual or multiple AUVs, further enhancing the
energy efficiency of task execution in underwater robotic operations.

Besides, the energy level of USVs is not directly reflected in the observed state, but energy
consumption is primarily related to three parameters: speed, voyage, and displacement, which can
be obtained in the observed state, allowing for the indirect calculation of energy consumption. Based on
this, Zhao et al. [215] designed a formation control model that indirectly reflects the energy state. In
the formation, once certain USVs deplete their energy, they autonomously withdraw from the formation,
which is then dynamically restructured.

7.2. Unresolved issues and future research directions

In addressing the future challenges and opportunities in energy management for heterogeneous aquatic
robot systems, researchers are focusing on a range of innovative technologies and interdisciplinary
approaches to achieve breakthroughs in performance and expand the scope of applications [218]. Future
developments will not only focus on enhancing the performance metrics of existing technologies but also
on developing entirely new energy acquisition, storage, management, and utilization strategies. These
research directions will collectively push the boundaries of aquatic robotics, providing stronger and more
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reliable technical support for sustainable marine resource development, in-depth marine environment
monitoring, and frontier marine scientific exploration.

7.2.1. Limitations of existing energy storage technologies

Energy storage is key for aquatic robots. Current batteries like Li-ion, Li-Po, and fuel cells have
flaws in energy density, efficiency, lifespan, and adaptability, which restricts robots in complex marine
environments. Under extreme underwater conditions, Li-ion batteries face electrochemical instability
due to electrolyte changes under high pressure, and their enclosures may be damaged. Low-temperature
regions reduce ion transport, lessening capacity and speeding up degradation. High-energy-density
batteries also have safety risks like a thermal runaway.

Alternative technologies such as supercapacitors and fuel cells have been studied. Supercapacitors
have high power density but low energy density and need improvements for marine use. Hydrogen
fuel cells are promising, yet hydrogen storage has leakage and catalytic degradation issues in saline
environments. To address these, future research should develop high-pressure-resistant materials
like solid-state electrolytes and use nanocoatings on battery casings. Graphene-based electrodes and
self-heating can boost cold-weather performance. Hybrid systems, corrosion-resistant catalysts for
fuel cells, and solid-state hydrogen storage materials can enhance energy storage for aquatic robots.
Advancing energy storage technology is essential for better-performing aquatic robots. Integrating
material science, electrochemical engineering, and energy management can lead to better-performing
robotic systems in extreme marine environments, enabling more underwater exploration.

7.2.2. Adaptability of energy harvesting systems in complex marine environments

Aquatic robots struggle to get sustainable energy in unpredictable seas. Conventional batteries are
insufficient, so harvesting from marine resources is explored. Hydrodynamic, wave, solar, salinity
gradient, and thermal gradient energy harvesting face underwater efficiency, reliability, and adaptability
issues. Hydrodynamic energy harvesting uses ocean currents but is sensitive to velocity and turbulence,
with unstable output. Devices must resist high-pressure and biofouling. Research focuses on adaptive
turbines and biomimetic harvesters. Wave energy harvesting has offshore potential but limited depth and
structural risks in bad weather. Researchers develop flexible, submersible converters.

Solar energy benefits surface robots but is limited by clouds, turbidity, and cycles. Deep-sea use is
unfeasible. High-efficiency solar cells are in development, and storage needs optimization. Salinity and
thermal gradient energy harvesting are emerging but face membrane fouling and efficiency problems.
Nanostructured materials are being explored. Energy harvesting in seas relies on intelligent management
and integration. Autonomous regulation, hybrid systems, and machine-learning control are crucial. Future
research should enhance durability, efficiency, and deployability. Bioinspired materials and field testing
are important. Solving these can revolutionize aquatic robot autonomy.

7.2.3. Real-time adaptability of intelligent energy management systems

Efficient energy use is vital for long-term aquatic robot missions in dynamic marine settings. Traditional
pre-programmed energy management cannot adapt to real-time changes. AI and ML integration offers
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a solution, but current intelligent strategies face issues in computational efficiency, prediction accuracy,
and energy reallocation. Power distribution among robot subsystems like propulsion, sensing, and
communication is a key problem. Though used for energy optimization, AI-driven methods such as RL
and MPC are computationally complex and slow to respond. Lightweight neural networks and edge
computing are being explored to speed up intelligent energy algorithms. Current intelligent energy
systems rely on historical data for prediction, which fails during sudden environmental shifts. Adaptive
learning with real-time sensor feedback, like hybrid AI models, is needed to boost responsiveness.

In multi-robot systems, coordinated energy allocation is crucial. Existing centralized multi-robot
energy management has single-point-of-failure and communication problems. Decentralized control
based on swarm intelligence, inspired by marine organism behavior, is being studied. Real-time energy
management must also handle failures. Current fault-tolerant methods are not ideal for extended
missions. Self-healing energy networks using AI-based anomaly detection could enhance resilience.
Blockchain-based smart contracts for energy trading between robots are being explored to improve
adaptability, especially in large-scale ocean missions. Future intelligent energy management should focus
on better computational efficiency, real-time prediction, and decentralized decision-making. Combining
AI control, sensor feedback, adaptive learning, and interdisciplinary efforts will lead to more autonomous
and energy-efficient aquatic robot operations.

7.2.4. Energy coordination and optimization in multi-robot systems

Energy coordination in multi-robot systems is critical for optimizing mission efficiency and extending
operational endurance. Unlike single-robot management, multi-robot energy optimization requires
dynamic allocation strategies that consider task distribution, energy sharing, and motion planning under
varying environmental conditions. However, existing approaches face challenges in balancing energy
consumption, reducing communication overhead, and ensuring real-time adaptability.

One major challenge is the unequal energy consumption among heterogeneous robots, such as
autonomous underwater vehicles (AUVs) and unmanned surface vehicles (USVs), due to differences in
propulsion and sensing requirements. Traditional task allocation methods rely on static planning, which
fails to adapt to real-time energy fluctuations. Recent research has introduced adaptive task scheduling
using reinforcement learning and game theory, allowing robots to dynamically reassign tasks based on
residual energy and mission priorities.

Inter-robot energy sharing offers a promising solution for extending operational time, but current
wireless energy transfer (WET) technologies remain limited by transmission efficiency and alignment
constraints. Advances in adaptive resonance circuits and beamforming techniques aim to improve power
transfer effectiveness. Meanwhile, blockchain-based energy trading frameworks provide a decentralized
mechanism for fair energy redistribution among robots without centralized control.

Efficient path planning also plays a key role in energy optimization, as unnecessary movements lead
to excessive power consumption. Energy-aware trajectory planning integrates power constraints into
navigation strategies, enabling robots to minimize propulsion costs. Swarm intelligence techniques, such
as ant colony optimization (ACO), have been explored to enhance collective motion efficiency while
reducing computational overhead.
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Future research should focus on integrating real-time task allocation, energy-sharing mechanisms,
and motion planning into a unified framework. Decentralized and event-driven coordination strategies
will be crucial for reducing communication overhead while maintaining efficiency. By leveraging artificial
intelligence and adaptive control, multi-robot systems can achieve improved energy efficiency, enhancing
their potential for long-duration missions in ocean exploration, environmental monitoring, and autonomous
marine operations.

7.2.5. Transition from laboratory research to real-world applications

Despite significant advancements in energy management for heterogeneous aquatic robots, many
technologies remain confined to laboratory settings and controlled simulations. The transition to
real-world deployment poses challenges related to environmental unpredictability, system integration, and
long-term reliability. Energy management strategies that perform well in simulations often fail to account
for dynamic oceanic conditions, including variable currents, biofouling, and extreme pressure, which can
significantly impact energy efficiency and hardware durability.

One of the key barriers to real-world implementation is the lack of standardized energy management
frameworks that allow for seamless integration of different power sources, storage systems, and
energy-harvesting technologies. Current robotic platforms are often developed with proprietary energy
architectures, limiting their adaptability to new energy optimization strategies. To address this, modular
and interoperable energy management systems are needed to facilitate technology scalability and
cross-platform deployment.

Another critical issue is the validation of energy optimization algorithms under real-world
constraints. Laboratory experiments typically assume ideal energy consumption patterns and simplified
mission scenarios, whereas field conditions introduce uncertainties such as fluctuating energy demand,
communication disruptions, and unforeseen obstacles. Deploying robots in progressively complex
environments—starting from controlled test sites to open-sea operations—will be essential for refining
energy management algorithms.

Future efforts should focus on real-world testing through long-term autonomous deployments and
collaborative research initiatives. Establishing standardized benchmarking protocols for evaluating
energy efficiency in marine robotics will accelerate the transition from theoretical research to practical
applications. By addressing these challenges, energy management technologies can move beyond
laboratory demonstrations to enable robust, scalable, and sustainable solutions for real-world ocean
exploration, environmental monitoring, and maritime operations.

8. Ethical and environmental impacts

As the deployment of heterogeneous aquatic robot systems becomes increasingly widespread, evaluating
their ethical and environmental implications is crucial. While these systems offer significant advantages
in marine exploration, environmental monitoring, and resource management, their integration into natural
ecosystems introduces potential risks, including habitat disruption, pollution, and ecological imbalance.
Addressing these concerns requires the development of responsible deployment strategies that minimize
negative impacts while maximizing the benefits of robotic applications in marine environments.
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8.1. Environmental risks and challenges

One of the primary concerns associated with aquatic robotic systems is their potential to
disrupt fragile marine ecosystems. The presence of autonomous underwater vehicles (AUVs),
uncrewed surface vehicles (USVs), and remotely operated vehicles (ROVs) in sensitive habitats such
as coral reefs, deep-sea ecosystems, and coastal environments may interfere with marine life. Physical
disturbances caused by robot propulsion systems, including turbulence, noise, and sediment resuspension,
can disrupt the natural behaviors of aquatic organisms. For instance, high-frequency acoustic signals
used for underwater communication and navigation may affect marine species’ sensory perception and
migration patterns, particularly cetaceans and fish that rely on echolocation.

Additionally, the increasing use of robotic systems raises concerns regarding energy consumption
and potential pollution. Many robots rely on lithium-ion batteries or fuel cells, which pose environmental
risks if leakage or improper disposal occurs. Disposing electronic waste from decommissioned robotic
units can also contribute to marine pollution, mainly if non-biodegradable materials such as plastics and
heavy metals are used in construction. Furthermore, introducing autonomous fleets at scale may alter
predator-prey dynamics and disrupt existing food chains by influencing the distribution of marine species.

8.2. Strategies for mitigating environmental impact

To minimize the ecological footprint of aquatic robotic systems, researchers and engineers must prioritize
environmentally sustainable design and deployment strategies. One key approach is the development
of biodegradable and eco-friendly materials for robot construction. Using biodegradable polymers,
corrosion-resistant coatings, and non-toxic battery chemistries can reduce the long-term environmental
impact of robotic operations and mitigate pollution risks associated with hardware disposal.

Another essential consideration is the reduction of acoustic and hydrodynamic disturbances.
Engineers are exploring quieter propulsion mechanisms, such as biomimetic designs inspired by fish
and marine organisms, to minimize noise pollution and reduce turbulence. Optimizing navigation
algorithms to avoid sensitive habitats, such as coral reefs and spawning grounds, can prevent unnecessary
ecological disruptions.

Implementing energy-efficient and renewable power sources is also critical in reducing the
environmental burden of robotic systems. Advances in solar energy harvesting, microbial fuel cells, and
ocean thermal energy conversion (OTEC) can provide alternative power solutions that decrease reliance
on conventional batteries and fossil fuel-based energy sources. These renewable energy solutions can
extend mission durations while reducing the risk of chemical contamination from battery failures.

Furthermore, responsible deployment policies can ensure that robotic systems contribute positively
to environmental protection. Regulatory frameworks should establish guidelines for monitoring
the ecological impact of robotic operations, including requirements for environmental assessments
before large-scale deployments. Integrating robotic systems into marine conservation efforts, such as
habitat restoration projects and pollution cleanup initiatives, can also help offset their environmental
footprint. Additionally, interdisciplinary collaboration between marine biologists, engineers, and
policymakers can facilitate the development of ethical guidelines that align technological advancements
with sustainability goals.
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8.3. Ethical considerations and future perspectives

Beyond environmental concerns, deploying autonomous aquatic robots raises broader ethical questions
regarding data privacy, accountability, and equitable access to marine resources. Robotic systems for
ocean surveillance and resource exploration must be carefully regulated to prevent conflicts over territorial
waters and ensure fair distribution of oceanic resources. Transparent data collection, sharing, and usage
policies will be essential to addressing potential geopolitical and commercial disputes arising from
autonomous marine operations.

Future research should focus on advancing eco-conscious robotic technologies that prioritize minimal
ecological impact while enhancing marine conservation efforts. Integrating sustainability into the design,
deployment, and operation of robotic systems makes it possible to harness the full potential of aquatic
robotics without compromising the health of marine ecosystems. As robotics technology continues to
evolve, a balanced approach that considers technological progress and environmental stewardship will be
vital in shaping the future of autonomous marine exploration.

9. Applications and case studies

Heterogeneous aquatic robot systems have been successfully deployed in a wide range of real-world
applications, demonstrating their ability to enhance marine exploration, environmental monitoring, and
underwater infrastructure management. This section highlights several key case studies that showcase the
practical implementation of these systems in various domains.

9.1. Environmental monitoring and oceanographic research

One of the most prominent applications of aquatic robot systems is large-scale marine environmental
monitoring. For instance, the Monterey Bay Aquarium Research Institute (MBARI) has extensively
deployed autonomous underwater vehicles (AUVs) and unmanned surface vehicles (USVs) for long-term
oceanographic studies. These robotic systems are equipped with multi-sensor payloads to collect data
on water temperature, salinity, dissolved oxygen levels, and marine biodiversity. In a recent MBARI-led
study, a fleet of AUVs was used to map deep-sea ecosystems, providing valuable insights into the impact
of climate change on marine habitats.

Similarly, the Seabed Autonomous Underwater Vehicle (Seabed AUV), developed by the Woods
Hole Oceanographic Institution, has been deployed for coral reef monitoring. This system is designed
for close-range seafloor imaging, producing high-resolution 3D maps of coral reefs to assess bleaching
events and biodiversity loss. By integrating machine learning algorithms, researchers have automated
the identification of coral species and ecosystem health indicators, improving the efficiency of
conservation efforts.

9.2. Pollution cleanup and underwater waste management

Heterogeneous robotic systems have also been deployed to tackle marine pollution, including plastic
waste removal and oil spill mitigation. The WasteShark, developed by RanMarine Technology, is a
USV designed for autonomous water surface cleaning. Operating similarly to a robotic vacuum, it
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collects floating debris, algae, and plastic waste in ports and harbors. In multiple case studies across
European cities, WasteShark has successfully removed thousands of kilograms of waste while minimizing
human intervention.

For deep-sea waste retrieval, remotely operated vehicles (ROVs) such as Ocean Cleanup’s Interceptor
System have been deployed to remove submerged plastics from polluted ocean gyres. These systems
utilize machine vision and AI-based detection to locate and retrieve underwater debris, contributing to
large-scale ocean cleanup operations.

9.3. Deep-sea exploration and resource extraction

Heterogeneous aquatic robot teams have played a critical role in deep-sea exploration, particularly in
mapping uncharted territories and searching for valuable mineral resources. The Nereus hybrid remotely
operated vehicle (HROV), developed by Woods Hole Oceanographic Institution, was designed to operate
at depths exceeding 10,000 meters in the Mariana Trench. Its successful deployment in the Challenger
Deep provided high-resolution seafloor imagery, leading to groundbreaking discoveries about deep-sea
hydrothermal vent ecosystems.

In commercial applications, companies such as Nautilus Minerals have used fleets of autonomous
robots to explore seabed mineral deposits rich in rare earth metals. These robots operate under extreme
pressure conditions, using sonar mapping and robotic arms to analyze deep-sea mining sites while
minimizing human risk.

9.4. Search and rescue missions

Aquatic robots have been instrumental in disaster response and search-and-rescue operations, particularly
after maritime accidents. During the 2011 Fukushima nuclear disaster, AUVs and ROVs were deployed
to assess the condition of submerged reactor structures and detect radiation leaks. These robots, such
as the Bluefin-21, played a crucial role in post-disaster evaluations without exposing human divers to
hazardous environments.

Similarly, during the search for the missing Malaysia Airlines Flight MH370, underwater search
teams used a combination of AUVs and sonar-equipped USVs to scan the vast ocean floor. The HUGIN
4500, an advanced AUV used in deep-sea search missions, successfully mapped over 120,000 square
kilometers of the Indian Ocean, providing critical insights into oceanic topography.

9.5. Offshore infrastructure inspection and maintenance

In industrial settings, robotic systems are increasingly used for offshore oil rig inspection and underwater
infrastructure maintenance. BP and Shell have incorporated robotic solutions such as the Eelume
snake-like robot, which autonomously navigates underwater pipelines and inspects for potential leaks
or structural weaknesses. By deploying such systems, companies can reduce the need for human divers,
improving safety and reducing maintenance costs.

Similarly, the SAAB Seaeye Falcon, an ROV used for underwater pipeline inspections, has been
deployed across multiple offshore energy sites. These robots perform non-destructive testing (NDT),
using ultrasonic and laser scanning techniques to identify defects in underwater structures before they
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escalate into critical failures.
These case studies demonstrate the real-world impact of heterogeneous aquatic robot systems across

various domains, from environmental conservation and disaster response to industrial applications and
deep-sea exploration. By integrating AI-driven autonomy, energy-efficient propulsion, and multi-sensor
capabilities, these systems have revolutionized marine research and operational efficiency. As robotic
technologies continue to advance, their role in sustainable ocean management and intelligent marine
exploration will become even more significant.

10. Conclusion

In conclusion, heterogeneous aquatic robot systems have great potential for applications in environmental
monitoring, exploration, and task execution. This paper reviews the key technologies enabling these
systems: communication, perception, navigation, control, decision-making, and energy management. Key
advancements in communication technologies, such as underwater acoustic, radio, and optical systems,
facilitate efficient collaboration among robots [219–221]. Multi-sensor fusion improves environmental
awareness, while collaborative navigation and dynamic task allocation enhance system autonomy.
Advanced control methods, including deep reinforcement learning and end-to-end control, show promise
in improving task efficiency and adaptability. AI-based decision-making technologies increase the
robots’ ability to function in complex environments, and progress in energy management ensures more
efficient operations [222–224]. Despite these advancements, challenges remain in system integration
and real-time adaptability. This paper summarizes current research and identifies key areas for future
development, providing a clear roadmap for further technological advancements in heterogeneous aquatic
robot systems.
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Nomenclature

Abbreviation Description Abbreviation Description

ROV Underwater Remotely Operated Vehicle AUV Autonomous Underwater Vehicle
ASV Autonomous Surface Vehicle UAV Unmanned Aerial Vehicle
LiDAR Light Detection and Ranging IMU Inertial Measurement Unit
GNSS Global Navigation Satellite System UHI Underwater Hyperspectral Imaging
RGB Red, Green, Blue cDOM Color Dissolved Organic Matter
TSM Total Suspended Matter SLAM Simultaneous Localization and Mapping
GP Gaussian Process UT Ultrasonic Testing
CP Cathodic Protection DCM Deep Chlorophyll Maximum
OFDM Orthogonal Frequency Division Multiplexing MIMO Multiple - Input Multiple - Output
USBL Ultra - Short Baseline LBL Long Baseline
GIS Geographic Information System PID Proportional - Integral - Derivative
MPC Model Predictive Control DRL Deep Reinforcement Learning
UCH Underwater Cultural Heritage EMPC Economic Model Predictive Control

References

[1] Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries
of robot abilities. Sci. Rob. 2016, 1(1):eaah3690.

[2] Yang G, Bellingham J, Dupont PE, Fischer P, Floridi L, et al. The grand challenges of science
robotics. Sci. Rob. 2018, 3(14):eaar7650.

[3] Jiang Z, Guo Y, Jiang K, Hu M, Zhu Z. Optimization of intelligent plant cultivation robot system in
object detection. IEEE Sensors J. 2021, 21(17):19279–19288.

[4] Jiang Z, Ma Y, Shi B, Lu X, Xing J, et al. Social NSTransformers: low-quality pedestrian trajectory
prediction. IEEE Trans. Artif. Intell. 2024.

[5] Hu X, Xiong G, Zang Z, Jia P, Han Y, et al. PC-NeRF: parent-child neural radiance fields using
sparse LiDAR frames in autonomous driving environments. IEEE Trans. Intell. Veh. 2024.

[6] Yao K, Bauschmann N, Alff TL, Cheah W, Duecker DA, et al. Image-based visual servoing
switchable leader-follower control of heterogeneous multi-agent underwater robot system. In
2023 IEEE International Conference on Robotics and Automation (ICRA), London, United
Kingdom, May 29–June 02, 2023, pp. 5200–5206.
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