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Highlights: 

⚫ This paper presents the first combination of decision making and machine learning for water 

analysis for improvement of robot learning. 

⚫ It includes the analysis results of water samples with the development of a robotic system. 

⚫ We present the current challenges in research and discuss the perspective of this work for water 

analysis on Earth and other planets with the developed robotic system. 

Abstract: This study presents a new investigation on the improvement of robot learning for water 

analysis with the combination of decision making and machine learning (ML) processes for a robotic 

system. The aim of the study was to perform simulations for the distinction of drinking and undrinkable 

water for further implementation in a robot. The decision-making process was performed with the 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The data analysis with ML 

was done by using Microsoft Visual Studio. The TOPSIS analysis showed that the candidates having 

high values of profit criteria and low values of cost criteria had a better rank. The same result was 

obtained in the analysis of the physicochemical properties of water as well as its ingredients. The 

differences in the closeness coefficient values of the best and the worst candidates were 35%, and 45% 

in the first and second series of analyses, respectively. The ML simulation showed that using the 

modified code could improve the learning accuracy to 69%, which improved to 73% after using the 

Synthetic Minority Over-sampling Technique (SMOTE) for class balancing and applying 

GridSearchCV to tune the hyperparameters. The electronic components of a robotic system and the 

remote control of its prototype for further application of the current work have also been presented. The 

obtained results could be used for the implementation of the combined software in a robotic system for 

water analysis. 
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1. Introduction 

Robot learning is an important ability required for the development of robots that can make them learn 

tasks and perform activities efficiently. This procedure is based on the application of leveraging skills 

and training of robots [1,2]. Robot learning has been investigated for the development of robots’ different 

tasks such as object manipulation, item cleaning and interactive or multi -task learning [3–5]. 

However, it has not been performed for water analysis considering the combination of  

decision-making and machine learning (ML) processes. The novelty of the current work lies in the 

combination of a decision-making process and ML for the analysis of water for a further application in a 

robotic system. 

Water is an important vital source for human life. Ions and organic contaminants affect the quality 

of water. These toxic materials have caused health and environmental problems worldwide [6]. Heavy 

metals that are persistent in the environment are among the most toxic water pollutants [7]. Wastewater 

is released from the industrial process contains many heavy metals and can pollute surface water [8,9]. 

The application of a decision-making process using the Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS) has led to the analysis of the physicochemical properties of water for a further 

application with the new generation of robots [10,11]. This method has been widely used for categories 

distinction, decision making and classification. The output of TOPSIS is obtained according to the 

candidates’ similarity to the ideal solution and the ranking is performed using the values of their 

closeness coefficient [12–16]. Previous investigations revealed the efficiency of TOPSIS for the analysis 

of drinking and undrinkable water for robotics on Earth and other planets. These research works showed 

that water samples could be classified according to their physicochemical and contaminant 

concentrations with this method. The unmodified and modified TOPSIS were used for the analysis of 

water samples according to their properties and concentrations of their ions and organic contaminants for 

the analysis of drinkable and undrinkable water on Earth and other planets with a further application of 

robotics [10,11]. 

Decision making and learning are studied separately in most research works. However, these 

processes are related to each other. In human cognition, the categorization of concepts, decision making 

and learning are the three fundamental cognitive processes. Decision making based on categorization is 

a preliminary step for learning. These processes have been investigated in artificial intelligence (AI), 

previously [17–19]. 

Decision making and ML as different processes of AI can be performed using the TOPSIS algorithm 

and Microsoft Visual Studio software, respectively. The robotic system is an autonomous machine 

designed and developed for the applications of simulation software [20–22]. 

Python is an appropriate, efficient and flexible high-level programming language in which several 

decision-making algorithm and ML codes have been implemented, previously. Programming in Python 

is simple and easy to understand. Moreover, its open-source nature is beneficial, which has given a wide 

range of applications in AI [23,24]. 

The processes of AI including categorization, decision making and ML to be considered for the code 

in Python are shown in Figure 1. As shown in the figure, categorization is essential for decision making, 

which in turn is the preliminary step for machine learning. In other terms, ML is related to decision 

making, which is based on categorization. 
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Recently, several studies that could have great impacts on robotics have been performed on mobile 

robot localization and its optimization [25,26], deep learning-based big data fusion for ocean water 

monitoring [27], optimizing underwater connectivity through multi-attribute decision-making wireless 

communication and development of marine sensor networks [28] and CR-NBEER: cooperative-relay 

neighboring-based energy efficient routing protocol for marine underwater sensor networks [29,30]. 

These works could create new perspectives for the development of robotic systems for water treatment.  

 

Figure 1. Categorization, decision making and ML as different processes of AI. 

The objective of this work was to improve robot learning for water analysis. This study aimed to 

enhance water analysis by integrating decision-making (TOPSIS) and ML (Random Forest) into a 

unified framework for robotics. To the authors’ knowledge, the analysis of ions and organic 

contaminants of water using the combination of decision making and ML for the improvement of robot 

learning has not been performed for a robotic system, yet. This work will help the robot analyze and 

distinguish drinking and undrinkable water. 

2. Methods 

The World Health Organization (WHO) guideline 

The WHO guideline for naturally occurring chemicals was used for the consideration of the standard 

concentrations of ions in drinking water as described previously [11]. 

2.1. Dataset preprocessing 

Dataset preprocessing was performed before analyzing the data with TOPSIS and ML. As some data 

was lacking in the dataset, the data table was completed before use. This step was required to improve 

the results. 
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2.2. TOPSIS method 

The analysis of ions and organic contaminants and physicochemical properties of water samples such as 

their total dissolved solids, hardness, electrical conductivity and cost was performed with TOPSIS, 

previously [10,11]. The TOPSIS code in Python is available on the Glitchfix page on the GitHub 

website [10]. The total weight values of each candidate’s characteristics, which were those of the profit 

and cost criteria for each analysis, were set to 1.0. 

The investigated water contaminants were calcium, magnesium, boron, copper, nitrite, sodium, 

chloride, 1,2-dichlorobenzene, monochloramine, dichloroisocyanurate and toluene. The analyses were 

performed according to the model of the tree, a developed model designed for modeling the categories 

of concepts and the demarcator theory, a new cognitive theory of categorization, which considers the 

dynamic characteristics change of the members of categories in human cognition [10,11,17]. In the 

model of the tree, each category was considered as a tree on which the category members and their 

characteristics were added. This model with the combination of logic helped determine why, when and 

how human beings would confuse the categories. The demarcator theory considered three types of  

characteristics for the category members, which were a strong demarcator, weak demarcators and marginal 

demarcators, which helped strongly the distinction of categories, helped weakly their distinction, and did 

not help for it, respectively. The modified TOPSIS was used according to the model of the tree and  

demarcator theory, in which the algorithm modification allowed the non-consideration of the size and color 

of the category members (marginal demarcators) that did not have any impact on their distinction [17]. 

In the current work, several series of analysis were performed. In both analyses, the mean values of 

the triangular fuzzy data were used in the evaluation matrices. The criteria were grouped into a benefit 

indicator such as optimal pH and cost indicators such as turbidity, hardness and dissolved oxygen. The 

process involved constructing a normalized decision matrix, followed by a weighted normalized matrix. 

Subsequently, the Positive Ideal Solution and the Negative Ideal Solution were identified. The closeness 

coefficient for each sample was calculated using the formula: 

CCi =
Di

−

Di
− +  Di

+ (1) 

where 𝐷𝑖
−  and 𝐷𝑖

+  represent the distances to the negative and positive ideal solutions, respectively. 

Samples having the closeness coefficient with higher values were interpreted as more likely to be drinkable. 

In the first series of analysis, 10 water samples were considered as candidates and their physicochemical 

properties such as pH, turbidity, hardness and dissolved oxygen were analyzed. The first, second, third to 

tenth candidates are indicated as C1, C2, C3 to C10, respectively. The candidates having high values of 

profit criteria and low values of cost criteria have a better rank. The pH value should not be low in 

drinking water because the acidic pH is not appropriate in drinking water samples. Therefore, pH was 

considered as a profit criterion. It is worth noting that very high pH values are not appropriate for 

drinking water and the neutral pH value is appropriate for water consumption. High levels of dissolved 

oxygen in drinking water do not directly cause health risk to humans, but they can affect water quality. 

Moreover, it can lead to increased corrosion in pipes and may impact the taste and odor of drinking 

water. High amount of turbidity and hardness in water could also affect its quality. Therefore, they were 

considered as cost criteria. The ingredient concentration of the first, second, third to tenth candidates are 
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indicated in the second, third, fourth to eleventh rows in the table representing the evaluation matrix. In the 

second series of analysis, 4 water samples were analyzed considering the concentrations of their 12 ions and 

4 organic contaminants such as calcium, magnesium, boron, copper, cadmium, chromium, arsenic, 

nickel, lead, nitrite, sodium, chloride, 1,2-dichlorobenzene, monochloramine, dichloroisocyanurate and 

toluene. The first, second, third and fourth candidates are indicated as C1, C2, C3 and C4, respectively. 

Calcium and magnesium were considered as profit criteria, whereas other ingredients were considered 

as cost criteria. The ingredient concentrations of the first, second, third and fourth candidates are 

indicated in the second, third, fourth and fifth rows in the table representing the evaluation matrix. 

Another series of analysis was also performed in combination with ML. 

2.3. Machine learning for water analysis 

Machine learning (ML) was done by using Microsoft Visual Studio Code of Python. The dataset 

including the information on more than 3200 water samples used for the analyses was available in 

the dataset section of the Kaggle website; “Water Quality and Potability Dataset [31].” Microsoft 

Visual Studio was used as the integrated development environment (IDE) for implementing and testing 

the Python-based TOPSIS and ML models due to their robust debugging tools, ease of code management, 

and compatibility with Python libraries. 

In the current work, we used the Random Forest Classifier, a supervised ML algorithm, for water 

analysis. This algorithm was employed to classify water samples as drinkable or undrinkable based on 

physicochemical properties. 

In the first step, a dataset was constructed comprising various water samples, each characterized by 

a range of physicochemical properties such as pH, turbidity, electrical conductivity and dissolved oxygen 

level. These features were used to classify the samples as either “Drinkable” or “Undrinkable,” based 

on established World Health Organization (WHO) thresholds. 

In the second step, the TOPSIS method was applied to assess and rank the water samples according 

to multiple evaluation criteria. 

In the third step, the closeness coefficients and rankings derived from the TOPSIS analysis were 

used to refine the class labels of the dataset. This approach was particularly useful for handling 

ambiguous or borderline cases. By incorporating expert-based multi-criteria decision-making into the 

labelling process, the dataset was enhanced with more reliable supervision prior to training the ML model. 

In the fourth step, a Random Forest classifier was trained using the refined dataset, with 

physicochemical attributes as inputs and the adjusted labels as targets. To address the imbalance in class 

distribution, the Synthetic Minority Over-sampling Technique (SMOTE) was applied. Additionally, 

hyperparameter tuning was performed using GridSearchCV to optimize the model’s configuration, 

including parameters such as the number of trees and maximum depth. Cross-validation was also 

employed to ensure model generalizability and reduce overfitting risks. We chose SMOTE over random 

oversampling and under sampling because it generates synthetic minority class samples rather than 

duplicating existing ones or removing majority instances. This helps reduce overfitting and preserves 

information from both classes. In our tests, SMOTE provided better classification performance and 

generalization, making it the most suitable choice for our imbalanced dataset. 

In the fifth step, the performance of the ML model was evaluated. The baseline model, trained 

without the benefit of TOPSIS-based label refinement, achieved an accuracy of 69%. After integrating 
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the TOPSIS-enhanced labelling along with class balancing and hyperparameter optimization, the 

model’s accuracy increased to 73%. This improvement highlights the added value of combining 

decision-making techniques with ML, particularly in domains involving noisy or limited data, such as 

robotic water analysis. 

3. Results and discussion 

3.1. TOPSIS analysis 

Several series of analysis were performed with the TOPSIS algorithm. The first series of analysis was 

performed on the physicochemical properties of 10 candidates (water samples) with pH values close to 7. 

Table 1 shows the matrix of the means values of fuzzy data used for classification of water samples 

with the TOPSIS method. 

Table 1. Mean values of fuzzy data for water samples. 

Candidates/Criteria pH Turbidity Hardness Dissolved oxygen 

C1 6.936350 0.102922 202.963224 10.467904 

C2 8.376786 4.849549 84.873465 6.534717 

C3 7.829985 4.162213 123.036162 5.585464 

C4 7.496646 1.061696 141.590461 13.539970 

C5 6.390047 0.909125 164.017496 13.690688 

C6 6.389986 0.917023 246.293990 12.275576 

C7 6.145209 1.521211 99.918446 7.741524 

C8 8.165440 2.623782 178.558610 5.879049 

C9 7.502788 2.159725 198.103642 11.158097 

C10 7.770181 1.456146 61.612603 8.961372 

Table 2 shows the matrix of the weight values applied for each water sample. 

Table 2. Weight values applied for each water sample. 

Alternatives/Values pH Turbidity Hardness Dissolved oxygen 

C1–C10 0.25 0.25 0.25 0.25 

Table 3 represents the criteria matrix for water samples. 

Table 3. The criteria matrix for water samples. 

Alternatives/Values pH Turbidity Hardness Dissolved oxygen 

C1–C10 True False False False 

Table 4 shows the distances from the ideal solutions, the similarity coefficients, and the ranking 

of candidates. 
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Mean values of fuzzy data concerning pH, turbidity, hardness and dissolved oxygen have been 

provided for 10 water samples in Table 1. As shown in Table 2, the weight values of pH, turbidity, 

hardness and dissolved oxygen for water samples have been set to 0.25 and their total value has been set 

to 1.0. As shown in Table 3, pH has been considered as a profit criterion as low pH value would not be 

appropriate for drinking water, whereas turbidity, hardness and dissolved oxygen which high values 

would be inappropriate in samples have been considered as cost criteria. The ranking of water samples 

has been obtained according to their similarity coefficients as shown in Table 4. The results presented 

in Tables 1 to 4 show the impact of selecting criteria and their fuzzy values on the candidates’ ranks. 

Table 4. The distances from the ideal solutions, the similarity coefficients and the ranking of candidates. 

Candidates di* di− CCi Ranking 

C1 0.08124835 0.1574548 0.65962599 10 

C2 0.15428165 0.1006233 0.39474831 7 

C3 0.13500519 0.09285198 0.40750079 1 

C4 0.08094839 0.13389381 0.62321932 4 

C5 0.08824742 0.13391575 0.60278106 5 

C6 0.11074069 0.12783012 0.53581626 6 

C7 0.05773852 0.13799795 0.7050191 8 

C8 0.10004669 0.10287733 0.50697462 9 

C9 0.10489376 0.09361219 0.47158378 3 

C10 0.05168493 0.14863701 0.74199066 2 

Figure 2 shows the parameters of table 4 for candidates. 

 

Figure 2. The candidates’ best alternative is represented in blue, the worst alternative in red and 

similarity coefficients in yellow. The spots from left to right represent candidates 1 to 10, respectively. 

The results presented in Table 4 and Figure 2 showed that low values of cost criteria and high value 

of profit criterion could have a significant impact on the candidates’ ranks. The second and the tenth 

candidates were ranked as the worst and the best candidates, respectively. The difference in their 
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closeness coefficient values was 35%. Other candidates had other positions in the ranking according to 

the values of their profit and cost criteria. 

The second series of analysis was performed on the contaminant concentrations of 4 candidates. 

Table A1 shows the matrix of the means values of fuzzy data used for classification of water samples 

with the TOPSIS method, table A2 shows the matrix of the weight values and table A3 represents the 

criteria matrix for water samples (see the Appendix). 

Table A4 shows the distances from the best and worst alternatives (di* and di−), the similarity 

coefficients (CCi), and the ranking of candidates (see the Appendix). 

Figure 3 shows the best and worst alternatives (di* and di−) and the similarity coefficients (CCi) 

of candidates. 

 

Figure 3. The candidates’ best alternative is represented in blue, the worst alternative in red and 

similarity coefficients in yellow. The spots from left to right represent candidates 1 to 4, respectively. 

The results presented in Table A4 in Appendix and Figure 3 showed that low concentrations of 

water contaminants and high concentrations of appropriate ions could have a significant impact on the 

candidates’ ranks. The third and the first candidates were ranked as the worst and the best candidates, 

respectively. The difference in their closeness coefficient values was 45%. Other candidates had other 

positions in the ranking according to the values of their profit and cost criteria. 

In the first series of analysis, the best ranked and the worst ranked water samples were differentiated 

with a 35% difference in their closeness coefficient values whereas in the second series of analysis, this 

reached 45%, which revealed the appropriate candidates’ ranking with TOPSIS. 

3.2. ML results 

The ML results obtained in the current work were as below. 

Confusion Matrix: 

363 49 

159 85 

Table A5 represents the classification report and table A6 shows the characteristic data (see  

the Appendix). 
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The data in the table above used for analysis with TOPSIS correspond to the samples 1955, 2768, 

3162, 2630 and 3150 in the dataset, respectively. The potability values of 1 and 0 are attributed to the 

drinkable and undrinkable water samples, respectively. 

The samples 1955, 2768, etc. were selected based on their TOPSIS scores—specifically, they were 

among the highest-ranked samples according to the TOPSIS method. However, whether they were 

representative or edge cases depended on a few factors: 

These Samples have been selected by using the following methods: 

(1) TOPSIS Ranking 

The dataset was ranked by TOPSIS Score, which evaluates how close each sample is to the “ideal” 

water quality conditions. The highest-ranking samples were displayed at the top of df_sorted.head(). 

(2) ML Classification 

After sorting by TOPSIS Score, the classifier’s predictions (Model_Prediction) were compared with 

the actual Potability labels. The selected samples likely represent cases where the model and TOPSIS 

agreed on classification. 

Regarding the question, are these samples representative or edge cases, in most of the dataset has 

similar feature distributions, these samples may be representative. If these samples have extreme values 

(e.g., very high pH, solids, or sulfate levels), they may be edge cases that were ranked highly by TOPSIS 

but may not represent typical water samples. 

The model achieves 68.3% accuracy, which is reasonable but could be improved. The precision for 

drinkable water (1) is 63%, meaning the model is slightly weaker at correctly classifying safe water. The 

recall for drinkable water (1) is 35%, which suggests many drinkable samples are being misclassified as 

not drinkable. The model favours “Not Drinkable” predictions, which could be due to class imbalance.  

The improvement of the ML results could be obtained with the following procedures. 1) Feature 

Engineering: Refining water quality parameters using domain knowledge. 2) Hyperparameter Tuning:  

Optimizing the Random Forest model. 3) Balancing the Classes: Applying Synthetic Minority  

Over-sampling Technique (SMOTE) or cost-sensitive learning.  

The recall for drinkable water being only 35% suggests that the model does not identify all the true 

positives (i.e., all the cases where the water is drinkable). In other words, only 35% of the actual drinkable 

water samples are correctly identified by the model. The reason why this could happen and the risks it 

poses in real-world deployment are important to consider. Improving the recall for drinkable water 

would be critical for the real-world performance of the system, ensuring that it can safely and accurately 

identify water that is suitable for consumption. 

The obtained results with the modified SMOTE code were as follows: 

Best Parameters from GridSearch: {'learning_rate': 0.2, 'max_depth': 7, 'n_estimators': 200} 

Confusion Matrix: 

274 120 

130 276 

Table A7 represents the classification Report (see the Appendix). 

Concerning model improvement when introducing SMOTE (Synthetic Minority Over-sampling 

Technique) and hyperparameter tuning, here’s an overview of how these techniques work and how they 

might have improved the model accuracy. 



Robot Learn.  Article 

10 

• Application of SMOTE 

Typically, SMOTE is used to oversample the minority class in a binary classification task. For instance, 

in the context of predicting drinking water potability, if the dataset has more “Not Drinkable” samples 

than “Drinkable” samples, SMOTE would create synthetic examples of the “Drinkable” class. 

This ensures that both classes (e.g., Potability = 0 for “Not Drinkable” and Potability = 1 for 

“Drinkable”) are equally represented, helping the model learn better to distinguish between both classes. 

• Hyperparameter Tuning 

Hyperparameter tuning involves adjusting the settings (hyperparameters) of the ML model to optimize 

its performance. In this case, for RandomForestClassifier, hyperparameters such as number of estimators 

(trees), learning rate, and other model-specific parameters can be fine-tuned. 

By using SMOTE and hyperparameter tuning together, the model’s performance has been improved 

in several ways: 

This combination can lead to: 

Higher accuracy on the test set, as the model is better equipped to learn from the minority class (thanks 

to SMOTE) and make more informed predictions (thanks to hyperparameter optimization). Improved 

precision and recall for both classes, particularly for the minority class (e.g., “Drinkable” water samples), 

where the model may have struggled without SMOTE. 

The obtained results with the modified SMOTE code and hyperparameter tuning are as follows:  

We obtained the following results: 

Best Parameters: 'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 

200} Accuracy: 0.72625. 

Confusion Matrix: 

287 107 

112 294 

Table A8 represents the classification Report (see the Appendix). 

By using SMOTE for class balancing and applying GridSearchCV to tune the hyperparameters, the 

model was able to improve overall accuracy to 72.6%, achieve a balanced performance across both classes 

(not drinkable and drinkable), with precision, recall, and F1-scores close to 0.73 and avoid overfitting by 

selecting appropriate hyperparameters, leading to better generalization. 

These results reflect a significant improvement in performance due to the combination of class balancing 

(via SMOTE) and hyperparameter optimization (via GridSearchCV). 

Feature engineering, scaling, and normalization were performed in the study to improve the 

effectiveness of both the Random Forest classifier and the TOPSIS decision-making process. The 

key steps taken are as follows: 

Feature Engineering: The dataset included multiple physicochemical properties of water (e.g., pH, 

turbidity, hardness). Irrelevant or redundant features were removed to focus on critical parameters affecting 

potability. The TOPSIS ranking score was added as an additional feature, integrating decision-making into 

the ML process. 

Data Scaling & Normalization (Random Forest): Random Forest does not require explicit feature 

scaling because it is tree-based, and splits data based on thresholds rather than distances. 
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For TOPSIS: Feature normalization (min-max scaling) was applied to ensure all variables had a 

common scale. Each feature was transformed as: 

Xnormalized =
X − Xmin

Xmax − Xmin

 (2) 

This prevented features with larger numerical ranges from dominating the decision-making process. 

(3) Handling Missing Values 

Missing values were replaced with the mean of the respective feature to maintain consistency. 

The confusion matrix analysis revealed that most misclassifications occurred in samples near the 

decision boundary particularly those with physicochemical values close to the threshold limits defined 

by WHO standards. 

False positives (undrinkable samples predicted as drinkable) were primarily associated with samples 

that had borderline pH or nitrate levels, which, although not severely non-compliant, leaned toward 

unsafe levels. These cases highlight the challenge of modeling slight deviations in multi-parameter data 

where no single feature dominates the classification. 

False negatives (drinkable samples predicted as undrinkable) typically occurred in cases with safe 

values overall but one or two atypical parameters—such as slightly elevated turbidity—which could 

have influenced the model’s decision disproportionately. This suggests that further feature scaling or 

weighting could be investigated in future work. 

4. Design of a robotic system 

A robotic system has been designed and developed for the application of simulation software, 

previously [20,21]. The electronic devices we used were DC thruster or drive motors, battery, solar 

panel and DC/DC converter. Figure 4 shows a) the drive motors b) battery c) solar panel and d) DC/DC 

converter and Figure 5 shows remote control of the system prototype. 

As shown in Figure 4, the electronic components required in the robotic systems including drive 

motors, battery, solar panel and DC/DC converter were used in the developed system. 

 

Figure 4. The electronic components of the robotic system for water analysis. 
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Another part related to the motors is their control. Control is done via a remote control and a 

command receiver (Figure 5).  

As shown in Figure 5, 100 meters long distance for controlling the speed and direction of the motor, 

the remote control has four channels, and an adjustable speed, the direction can be adjusted well and 

easily to make the model go straight, the information receiving board at the input end has reverse 

connection protection, the output has a self-recovery fuse, frequency: 2.4G high frequency, to adapt and 

stable signal. 

The connection between the battery and the motors is made to the receiver or ESC as is depicted in 

Figure 6. 

 
Figure 5. The remote control of the robotic system prototype for water analysis. 

 

Figure 6. Remote controller receiver on the board. 

As shown in Figure 6, the connection for the battery supply and the connection of the motors are 

made. Also, through the receiver, we can control the direction and speed of the motors. The receiver is 

a circuit that manages to transfer the energy obtained from the batteries to the motors and make them 

function. It has various capacitors for energy accumulation and other electrical elements for protection 

against current and voltage overloads, etc. 

Figure 7 shows a prototype of a ship that could serve navigation and collection of water samples. 

 

Figure 7. Ship prototype. 
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The designed system would be able to deposit the water samples in the storage area where they are 

collected by steering the ship via a robotic arm. The equipment needed to build the ship’s platform 

contains motors, battery, solar panel, DC/DC converter, robotic arm, and sensors for monitoring the 

physical and chemical parameters of water (Figure 7). 

In addition, we describe the components working together with the ML model to perform water 

analysis. The robotic system collects water samples using the motorized platform and robotic arm. 

Sensors measure the physicochemical parameters of the samples in real time. These sensor readings are 

processed by the onboard system, where the trained ML model classifies the water samples as drinkable 

or undrinkable. The classification results guide the robot’s decision-making process, such as storing the 

sample or discarding it, thereby integrating hardware control with intelligent analysis. 

In this study, hyperparameter tuning was not performed before using SMOTE (Synthetic Minority 

Over-sampling Technique) or Grid Search. However, we can address the general considerations and 

explain the approach taken: 

• Hyperparameter Tuning 

The Random Forest model used in the study was trained with default hyperparameters. These 

parameters, such as the number of estimators (n_estimators = 100), were chosen based on common 

practice and initial experimentation to ensure the model performed well on the dataset. 

Hyperparameter tuning could be an important step to improve the model’s performance, 

especially regarding max_depth, min_samples_split, and min_samples_leaf, which can affect 

complexity and overfitting. 

• SMOTE 

SMOTE was not used in the initial phases of the study. The dataset was assumed to be well-balanced 

based on the existing distribution of “Potability” (drinking vs. undrinkable water samples). 

If SMOTE were to be used, it would be applied after hyperparameter tuning and cross-validation, 

ensuring that the synthetic data generated is used to train a well-tuned model. 

In the current work, class imbalance was not explicitly addressed from the start. The dataset was 

assumed to have a balanced distribution of the “Potability” (drinking vs. undrinkable water) classes, and 

no specific steps were taken in the early stages to address class imbalance. Future work could explore 

the impact of class imbalance by incorporating techniques like SMOTE, class weighting, or other 

balancing methods to improve model accuracy and robustness. 

Figure 8 shows the flowchart including data input, TOPSIS, ML and output applied in the current 

work for water analysis for a further application in robotics. 

 

Figure 8. The flowchart including data input, TOPSIS, ML and output. 
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As shown in Figure 8, data input is followed by the application of combined TOPSIS and ML, which 

leads to the obtainment of output. In the current work, these approaches have been used together to 

improve the analysis results. 

Table 5 shows the comparative results of the methodology used in the current work with the 

previous ones. 

The current investigation following the previous published works has the advantages below in 

comparison with the other works. 1) The previous investigations for the current work have been based 

on modeling. The implementation of data using the developed model (model of the tree) have led to a 

better understanding of the obtained results with TOPSIS [10,11,17]. 2) The combination of TOPSIS 

and ML in the current work has led to the improvement of the water sample analysis. 3) The design and 

development of a new robotic system has helped a better investigation for water analysis with TOPSIS 

and ML and application in further works. 

Table 5. The comparative methods and results of the current investigation and previous works. 

Authors Methods Results 

Hu XC, et al. [32] ML Prediction of water contaminants 

Rajitha A, et al. [33] ML Simulation for water analysis 

Gupta S, et al. [34] Design of a robotic system Design of a robotic system without 

water analysis 

Javanbakht T [10,17] Unmodified and modified TOPSIS Decision making for analysis of water 

samples based on modeling 

Javanbakht T [11] Unmodified and modified TOPSIS Automated decision making for 

analysis of water samples 

Javanbakht T, Pajaziti A, Buza S 

(current work) 

TOPSIS combined with ML, design 

and development of a robotic system 

Improved water analysis with design 

and development of a robotic system 

As shown in Table 5, several topics such as the prediction of water contaminants with ML, 

simulation for water analysis with this approach, design of a robotic system without water analysis have 

been performed, previously. Moreover, two recent studies showed the efficacy of TOPSIS for the 

prediction and ranking of water samples [10,11,17]. 

Further investigations including the application of sensors would be required for the implementation 

of the results of the current work in the developed robotic system. The next step of this study would be 

to use the ion detection sensors for detecting water contaminants and distinction of undrinkable and 

drinking water by a robotic system. Chemical sensors will be used to measure pH, turbidity, dissolved 

oxygen, and salinity. Conductivity meters will help determine water salinity and ion concentration. Total 

dissolved solids sensors will be applied to measure the concentration of dissolved particles. Also, 

microbial sensors will detect harmful bacteria and pathogens like E. coli and coliforms, which may be 

available in water samples [35]. 

In real-world applications, several factors can impact on the accuracy and reliability of water analysis 

using a robotic system. The main concerns include sensor accuracy, data noise, and scalability.  

• Sensor accuracy 

The precision of water quality sensors can vary due to environmental factors such as temperature 

fluctuations, sensor aging, and calibration issues. Some physicochemical parameters, such as pH 

and turbidity, require frequent recalibration to maintain accuracy. To mitigate errors, sensor fusion 

techniques or redundancy (using multiple sensors for the same parameter) can be implemented. 
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• Data noise 

Real-world water samples can contain unpredictable variations caused by contaminants, sensor 

drift, or measurement inconsistencies. Preprocessing techniques such as data smoothing, filtering 

(e.g., Kalman or moving average filters), and anomaly detection can help reduce noise. The TOPSIS 

method and ML algorithms can be optimized to handle noisy data by incorporating feature selection 

and robust training datasets. 

• Scalability for Large-Scale Water Analysis 

As the dataset size increases, computational efficiency becomes a challenge, particularly when 

processing high-dimensional physicochemical data. The scalability of Random Forest and TOPSIS 

depends on the number of samples and features. While Random Forest can handle large datasets 

relatively well, TOPSIS may require optimization techniques such as parallel computing or 

dimensionality reduction (e.g., PCA). In a large-scale deployment, a distributed computing approach 

(such as cloud-based data processing) can help manage extensive water quality data collected from 

multiple robotic units. While the robotic system shows potential for real-world application, its 

deployment in industrial or rural environments may face challenges such as varying water conditions, 

limited connectivity, energy constraints, and the need for ruggedization of components. To address these 

challenges, future work will focus on improving sensor calibration, implementing noise-reduction 

techniques, and optimizing computational efficiency for large-scale water analysis. The integration of 

AI-based adaptive learning models could also enhance robustness and accuracy. 

To address the growing need for efficient water resource management and exploration, it would be 

required to develop advanced robotic systems equipped with autonomous water sample analysis 

capabilities. These enhancements will be realized through the integration of cutting-edge technologies 

in robotics, sensor systems, and AI. Robots will be designed for diverse terrains, such as urban 

environments, rural areas, or remote planetary landscapes. Compact, mobile units will enable 

accessibility to challenge locations, including disaster zones or extraterrestrial surfaces. Autonomous 

sampling and self-optimization will be developed for the robotic system. Robots will autonomously 

identify and extract water samples from natural or artificial reservoirs. Utilizing AI, they will 

dynamically adjust their processes to maximize efficiency in sampling and analysis. The system will 

include wireless communication modules to relay findings to human operators or centralized systems. 

A user-friendly interface will provide real-time feedback and actionable insights for decision-makers. 

The benefits of autonomous water sample analysis robots will be as below: 1) Rapid Response in 

Crisis Situations: During natural disasters or environmental crises, robots can quickly identify safe 

drinking water sources, aiding emergency response efforts. 2) Sustainable Resource Management: 

Robots can monitor water bodies regularly, ensuring early detection of pollution or resource depletion. 

3) Planetary Exploration: Autonomous robots can play a vital role in space missions by identifying 

potential water sources on extraterrestrial surfaces, contributing to the search for life and the 

establishment of habitable zones. 4) Reduction in Human Intervention: These robots minimize the need 

for human presence in hazardous or inaccessible areas, reducing risks and increasing efficiency.  

The challenges related to sensor accuracy, data noise, and system scalability provide a balanced 

perspective on the feasibility of our robotic water analysis system by highlighting both potential 

limitations and strategies for overcoming them. Addressing these issues ensures that the system remains 

practical and effective for real-world applications. Despite the challenges, our results demonstrate that 
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combining decision-making (TOPSIS) with ML (Random Forest) enhances the system’s ability to 

analyse water quality effectively. With continuous improvements in sensor technology, data processing, 

and robotic control, the proposed system is feasible for both small-scale and large-scale applications. 

Random Forest was selected for ML in this study due to its robustness, accuracy, and ability to 

handle complex datasets in water analysis. Below are the key reasons for this choice: 

Handling of Nonlinear Relationships and Complex Data: Water quality datasets often include 

nonlinear relationships between physicochemical properties (e.g., pH, turbidity, and contaminant 

concentration). Random Forest, being an ensemble learning method, builds multiple decision trees and 

combines their results, making it effective in capturing complex patterns in water quality data. 

Resilience to Noisy and Incomplete Data: Real-world water quality data can contain missing values 

or noise due to sensor inaccuracies. Random Forest can handle missing data by using surrogate splits 

and is less sensitive to noise compared to single decision trees. 

Feature Importance for Decision-Making: The algorithm provides insights into the importance of 

each water quality parameter in classification. This helps in identifying the most critical factors for 

distinguishing drinking water from non-drinkable samples. 

Generalization and Overfitting Prevention: Unlike traditional decision trees, Random Forest reduces 

overfitting by averaging predictions from multiple trees. This ensures that the model generalizes well 

when applied to new water quality samples. 

Performance and Interpretability: The high classification accuracy (69% in our first step of 

simulations) demonstrated the algorithm’s effectiveness. Additionally, Random Forest provides 

interpretable results, making it easier to analyze and validate predictions. 

The results presented in this work can lead to the application of robots for analysis and distinction 

of drinking and undrinkable water on Earth and other planets based on autonomous water testing in 

remote areas and early contamination alerts. 

5. Conclusion 

This work focused on the improvement of robot learning for the optimization of water analysis with the 

decision-making and ML processes for a robotic system. The combined algorithms were used for several 

series of analysis. The results with TOPSIS showed the impact of the high values of profit criteria and 

low values of cost criteria on the candidates’ ranks. This was obtained in two different analyses of the 

water physicochemical properties and ingredient concentrations. The differences in the closeness 

coefficient values of the best and the worst candidates in the first and second analyses were 35%, and 

45%, respectively. These analyses were made on different numbers of candidates considering different 

criteria in each series of analysis. In the first series of analysis, the best ranked and the worst ranked 

water samples were differentiated with a 35% difference in their closeness coefficient values. In the 

second series of analysis, the difference of these values for the best and the worst ranked water samples 

reached 45%, which revealed the appropriate candidates’ ranking with TOPSIS. The ML simulation 

showed the improvement of the learning accuracy to 69% using the modified code. After using SMOTE 

for class balancing and applying GridSearchCV to tune the hyperparameters, the model was able to 

improve overall accuracy to 73%, achieving a balanced performance across both classes (not drinkable 

and drinkable). Further investigations would be carried out using a robotic system for which the 

electronic components and the remote control of its prototype have been designed and developed. The 
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obtained results could be used for further development of robot learning in science and engineering for water analysis. 
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Appendix 

(A) Tables 

Table A1. Mean values of fuzzy data for water samples. 

Candidates/ 

Criteria 

Calcium Magnesium Boron Copper Cadmium Chromium Arsenic Nickel Lead Nitrite Sodium Chloride 1,2-

Dichlorobenzene 

Monochlo-

ramine 

Dichloroiso-

cyanurate 

Toluene 

C1 0.8 0.6 0.02 0.02 0.00003 0.0005 0.0001 0.0007 0.0001 0.5 0.05 0.03 0.01 0.02 0.4 0.01 

C2 0.2 0.2 0.02 0.02 0.00003 0.0005 0.0001 0.0007 0.0001 0.5 0.05 0.03 0.01 0.02 0.4 0.02 

C3 0.2 0.2 0.04 0.04 0.00005 0.001 0.0004 0.0028 0.0004 0.1 0.1 0.06 0.03 0.04 0.1 0.02 

C4 0.4 0.3 0.04 0.08 0.00001 0.002 0.0002 0.0014 0.0002 0.1 0.1 0.01 0.01 0.02 0.2 0.04 

Table A2. Weight values applied for each water sample. 

Alternatives/ 

Values 

Calcium Magnesium Boron Copper Cadmium Chromium Arsenic Nickel Lead Nitrite Sodium Chloride 1,2-

Dichlorobenzene 

Monochlo-

ramine 

Dichloroiso-

cyanurate 

Toluene 

C1–C4 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.05 0.05 0.05 0.05 
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Table A3. The criteria matrix for water samples. 

Alternatives/ 

Values 

Calcium Magnesium Boron Copper Cadmium Chromium Arsenic Nickel Lead Nitrite Sodium Chloride 1,2-

Dichlorobenzene 

Monochlo-

ramine 

Dichloroiso-

cyanurate 

Toluene 

C1–C4 True True False False False False False False False False False False False False False False 

Table A4. The distances from the ideal solutions, the similarity coefficients and the ranking of candidates. 

Candidates di* di− CCi Ranking 

C1 0.04828959 0.13201336 0.73217526 1 

C2 0.09768143 0.09908455 0.50356547 4 

C3 0.13564753 0.05183078 0.2764628 2 

C4 0.0901123 0.09844483 0.5220955 3 

Table A5. Classification report. 

 Precision Recall f1-score Support 

0 0.70 0.88 0.78 412 

1 0.63 0.35 0.45 244 

Accuracy 0.68 656 

Macro avg 0.66 0.61 0.61 656 

Weighted avg 0.67 0.68 0.66 656 

Table A6. The characteristic data. 

pH Hardness Solids Chloramines Sulfate Conductivity Organic 

carbon 

Trihalomethanes Turbidity Potability TOPSIS 

score 

Model 

prediction 

9.014357 225.367519 49009.924660 6.002653 296.630899 445.768812 16.254112  83.891129 4.549419 1 0.645133 Drinkable 

9.097617 263.824120 38413.057090 7.634362 274.959028 437.263531 18.285882 74.512565 5.473663 1 0.644199 Drinkable 

9.079715 222.042631 53735.899190 6.894915 254.040977 382.896166 12.704887 101.615346 4.551724 1 0.631491 Drinkable 

9.961503 276.699765 18743.222490 9.160740 361.221165 457.551559 21.564489 93.740334 5.215590 0 0.617467 Undrinkable 

6.563357 241.286323 56320.586980 5.365558 333.775777 415.817219 11.651929 70.637648 5.292950 1  0.615420 Drinkable 
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Table A7. The classification report. 

 Precision Recall f1-score Support 

0 0.68 0.70 0.69 394 

1 0.70 0.68 0.69 406 

Accuracy 0.69 0.69 

Macro avg 0.69 0.69 0.69 800 

Weighted avg 0.69 0.69 0.69 800 

Table A8. The classification report. 

 Precision Recall f1-score Support 

0 0.72 0.73 0.72 394 

1 0.73 0.72 0.73 406 

Accuracy 0.73 800 

Macro avg 0.73 0.73 0.73 800 

Weighted avg 0.73 0.73 0.73 800 

(B) The combined TOPSIS and ML quasi-code below was used to classify water samples as drinkable or undrinkable. 

 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report 

from topsis import Topsis # Ensure you have a TOPSIS implementation 

# Set display options to show all values 

pd.set_option('display.max_columns', None) 

pd.set_option('display.max_rows', None) 

pd.set_option('display.float_format', '{:.6f}'.format) 

np.set_printoptions(threshold = np.inf) 

# Load dataset 
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file_path = "water_quality.csv" 

df = pd.read_csv(file_path) 

 

# Handle missing values (replace with mean of column) 

df.fillna(df.mean(), inplace=True) 

 

# Extract features and target 

X = df.drop(columns = ['Potability']) 

y = df['Potability'] 

 

class Topsis: 

 def __init__(self, data, weights = None, criteria = None): 

 self.data = data 

 self.weights = weights 

 self.criteria = criteria 

 # Your logic here 

import numpy as np 

 

 

# Normalize the feature matrix for TOPSIS 

X_normalized = (X - X.min()) / (X.max() - X.min()) 

 

# Define weights and criteria (+ for benefit, - for cost) 

weights = np.ones(X.shape[1]) / X.shape[1] # Equal weights 

criteria = ['+'] * X.shape[1] # All features considered beneficial 

 

# Apply TOPSIS ranking 

topsis_model = Topsis(X_normalized, weights, criteria) 

topsis_model.calc() 

rankings = topsis_model.rank_to_best_worst() 

 

# Add rankings to dataset 

df['Topsis_Score'] = rankings 

 

 

 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(df.drop(columns=['Potability']), y, test_size=0.2, 

random_state=42) 

 

# Train Machine Learning model 

clf = RandomForestClassifier(n_estimators=100, random_state=42) 
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clf.fit(X_train, y_train) 

 

# Predictions 

y_pred = clf.predict(X_test) 

 

# Print results 

print("Accuracy:", accuracy) 

print("Confusion Matrix:\n", conf_matrix) 

print("Classification Report:\n", class_report) 

 

# Get decision matrix (features only, no target) 

decision_matrix = df.drop(columns=['Potability']).values 

 

# Now, integrate the model's predictions and the TOPSIS ranking 

df_sorted['Model_Prediction'] = np.where(df_sorted['Potability'] == 1, 'Drinkable', 'Not Drinkable') 

 

# Show the final output with model predictions and TOPSIS ranking 

print(df_sorted[['Potability', 'Topsis_Score', 'Model_Prediction']].head()) 

 

The improved code was as below. 

 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split, GridSearchCV 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report 

from imblearn.over_sampling import SMOTE 

# Load dataset 

file_path = "water_quality.csv" 

df = pd.read_csv(file_path) 

 

# Handle missing values (replace with mean of column) 

df.fillna(df.mean(), inplace=True) 

 

# Extract features and target 

X = df.drop(columns=['Potability']) 

y = df['Potability'] 

 

# Apply SMOTE for class balancing 

smote = SMOTE(random_state=42) 

X_resampled, y_resampled = smote.fit_resample(X, y) 

# Train-test split 
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X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, 

random_state=42) 

 

# Define parameter grid for hyperparameter tuning 

param_grid = { 

    'n_estimators': [100, 200, 300], 

    'max_depth': [10, 20, 30], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [1, 2, 4]  # Adjusted terminology to reflect water samples 

} 

 

# Initialize classifier 

clf = RandomForestClassifier(random_state=42) 

 

# Perform GridSearchCV 

grid_search = GridSearchCV(clf, param_grid, cv=5, scoring='accuracy', n_jobs=-1) 

grid_search.fit(X_train, y_train) 

 

# Get best model 

best_clf = grid_search.best_estimator_ 

 

# Predictions 

y_pred = best_clf.predict(X_test) 

 

# Evaluate model 

accuracy = accuracy_score(y_test, y_pred) 

conf_matrix = confusion_matrix(y_test, y_pred) 

class_report = classification_report(y_test, y_pred) 

 

# Print results 

print("Best Parameters:", grid_search.best_params_) 

print("Accuracy:", accuracy) 

print("Confusion Matrix:\n", conf_matrix) 

print("Classification Report:\n", class_report) 
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