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Abstract: With the continuous advancements in robotics, household robots are increasingly becoming
an integral part of daily life. To enhance robots’ functionality and improve accessibility, we propose
the development of an intelligent household robot designed to serve as a family assistant. The robot’s
automation capabilities enable it to independently perform various tasks, including object retrieval and
interactive entertainment. By integrating a movable chassis, robotic arm, lifting platform, and flexible
gripper, the robot is capable of grasping objects of varying sizes and types. The robot’s vision system is
built in conjunction with the YOLOv11 model, allowing it to detect target objects using a depth camera.
Additionally, the robot employs 2D LiDAR and the Navigation2 framework in ROS2 to generate a 2D
radar map of its environment. Through this pre-generated map, the robot can autonomously navigate
indoor spaces. In addition, a speech recognition system was used to achieve efficient human-robot
interaction. A functional prototype has been tested in an indoor setting, demonstrating the effectiveness

and feasibility of the proposed design.
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1. Introduction

In recent years, there has been significant progress in artificial intelligence technology, and the field of
robotics has emerged as a vital technology driving the future development of artificial intelligence [1,2].

Based on their specific application scenarios, the International Federation of Robotics (IFR) categorizes

Copyright©2025 by the authors. Published by ELSP. This work is licensed under a Creative Commons

|@ ® | Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction

in any medium provided the original work is properly cited.
Xu B, et al. Robot Learn. 2025(1):0005



Robot Learn. Article

robots into two main types: industrial robots and service robots. The latter can be categorized into
household and professional service robots. Household service robots primarily prioritize domestic tasks,
assisting users with leisure and entertainment, which is in contrast to professional service robots designed
for public service purposes [3—5]. On October 8, 2024, the International Federation of Robotics (IFR)
released the 2024 World Robotics Report: Service Robots, which reported a 30% increase in global
sales of professional service robots. In 2024, the service robotics industry experienced explosive growth,
with consumer service robots reaching 4.1 million units and professional service robot sales exceeding
200,000 units for the first time. The service robot market continues to expand, and the household service
robot market is also steadily growing. On January 22, 2025, IFR predicted that in Germany humanoid
robots would continue to attract widespread attention in 2025. This forecast indicates that there is still
room for growth in the humanoid household robot market.

Currently, some household robots can provide companionship and simple functions such as desk
cleaning, object transportation, and video playback. The HSR robot, developed by Jia Yin et al. [6], was
designed to perform cleanliness checks and clean food waste from tables using deep learning technology.
The robot has a robotic arm and a mobile chassis, allowing it to grasp a rag using its arm and wipe waste
from table surfaces. Although the HSR robot demonstrates high accuracy in detecting desktop waste,
its functionality is highly specialized and limited to desktop cleaning tasks. Similarly, the CHARMIE
robot, developed by Tiago Ribeiro et al. [7], incorporates multiple hardware components, including a
kinematic platform, a robotic arm, a lifting mechanism with a torso, and a robotic head, enabling it to
perform more complex tasks. It has omnidirectional wheels and an independent suspension system to
enhance operational stability. However, CHARMIE is constrained by its single gripper, which can only
handle objects of specific sizes, such as cans, and cannot manage slightly larger objects. In contrast, the
APR-02 robot, developed by Jordi Palacin et al. [8], represents a second-generation design to increase
the robot’s anthropomorphic characteristics to improve user affinity and social acceptance. This robot
features two robotic arms and hands, but these components are primarily aesthetic and lack practical
utility. Nevertheless, APR-02 has made notable advancements in naturalness and personalization during
user interactions compared to other robots. However, the design does not adequately address safety
considerations, particularly preventing potential damage to people or objects when grasping objects.
The object detection algorithm also exhibits limitations, requiring further enhancement to improve its
robustness and adaptability for handling diverse tasks.

To sum up, the three robots discussed above have each demonstrated their respective strengths
in human-robot interaction, achieving varying degrees of success in physical execution, basic
decision-making, and user interaction. In terms of physical execution, the HSR robot is capable of
performing preset basic tasks such as wiping tables. Regarding basic decision-making, the CHARMIE
robot can make fundamental judgments based on sensor feedback, such as avoiding obstacles. Regarding
user interaction, the APR-02 robot communicates with users through its display screen to provide
information and engage in simple interactions. However, despite their strengths, all three robots
have significant limitations. They cannot perform tasks in complex situations and fail to meet users’
expectations for performing diverse and challenging tasks.

Currently, the latest version of household robots are capable of providing emotion recognition

functions and offering companionship services to family members. The functions of emotion recognition
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and companionship provision require robots to read and analyze human facial expressions, vocal tones,
and verbal content through cameras, thereby assessing human emotions and responding appropriately [9].
Additionally, certain companion robots are equipped with an early-stage education function for children.
However, in order to transform household robots into family members with a higher level of human-robot
interaction, a significant amount of effort is still required, as opposed to using a simple dialogue function.
In conclusion, the household robots previously mentioned are primarily designed to fulfil a single function,
which is insufficient to satisfy the objective of using household robots to perform multiple tasks.

In summary, we focuses on enhancing autonomous navigation and object detection and grasping
capabilities of domestic robots, and proposes a complete design solution. In hardware, we independently
designed a lightweight chassis and flexible gripper, and optimized the camera position to expand the
field of view. In software, we compared the performance of the YOLOv8 and YOLOv11 algorithms, and
combined depth camera data to improve navigation and grasping accuracy. Through the integration of
hardware and software and experiments, the robot achieved full functionality, from speech recognition
to autonomous navigation, object recognition, and grasping, offering new ideas for domestic robot
applications. This article is an extended version of a conference paper [10]. It provides more detailed

descriptions of the design, fabrication, and grip finger.

2. Hardware design

Usually, moveable robots rely on motor-driven wheels for their movement [11]. The kinematics of robots
are completely different depending on the chassis structure. To facilitate the autonomous movement
of the robot, a two-wheel differential kinematics configuration, which is flexible and simple, has been
chosen as the basis. As is shown in Figure 1, the two power wheels of the two-wheel differential robot
are set on the left, and right sides of the chassis, and the speeds of the two wheels can be controlled
independently so that the chassis can move in a straight line or steered by controlling the speed of each
wheels. Simultaneously, the chassis is equipped with an auxiliary support universal wheel to ensure
balance, resulting in a three-wheeled wheel system structure. The lower sides of the circular robot chassis,
which has a diameter of approximately 45 cm, have been powered by active wheels. The robot is able to
freely navigate passageways that are wider than 50 cm due to the vehicle’s center-symmetric design.
The proposed household robot comprises six parts: a depth camera, a digital crystal display, a robot
arm, a flexible gripper, a lifting platform, and a movable chassis. In the middle layer of the chassis, the
robot is equipped with environmental perception and positioning capabilities through the arrangement of
a Raspberry Pi, LiDAR, Inertial Measurement Unit (IMU), speakers, motor speed controller, battery, and

power management module. Key components with their parameters are shown in Table 1.

Table 1. Components and main parameters.

Components Main Parameters
LiDAR (LS-M10P) Scan frequency 12 Hz
Inertial measurement unit (GY-95T) Refresh rate 1 kHz

Wheel Odometer Integrated in ESC

Battery Rated Voltage 22.2 V (6S)
Depth camera Range 0.6-8 m
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Figure 1. Hardware design of the proposed household robot.

This research designed and proposed a comprehensive object-picking strategy that included a
pneumatic flexible gripper, a lifting platform, and a mechanical arm to address the necessity of organizing
toys dispersed across the ground in Figure 2. This arm utilizes large-area 3D printing to reduce the
use of metal materials, resulting in a lighter overall weight and allowing for more flexible gripping
movements compared to traditional robotic arms. The drive scheme is based on the basic open-source
stepper motor SmallRobotArm project and consists of two 57-stepper motors, one 42-stepper motor, two
28-stepper motors, and one 20-stepper motor. It uses a synchronous belt drive, which transmits motion
through the mesh of equally spaced transverse teeth on the inner surface of the belt and the corresponding
tooth grooves on the pulleys. This design ensures a strict transmission ratio with higher precision than

traditional friction-type belt drives, as it eliminates relative sliding between the pulley and the drive belt.

Figure 2. 3D printed foldable robot arm with pneumatic gripper.

Unlike traditional mechanical grippers made from rigid materials, this soft gripper is flexible and
agile, as illustrated in Figure 3. It features three lightweight, easy-to-dissemble flexible fingers made from
soft material, which adds to its safety. The gripper can adjust its size by modifying the distance between
the clips on the flexible fingers. When a toy falls to the ground, the robot utilizes a camera to identify the
object and then moves the gripper closer by adjusting the chassis and arm. The air valve is controlled by

an electrical signal from a relay through the Raspberry Pi’s GPIO, which opens and closes to manipulate
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the internal air pressure. This air valve allows the flexible fingers to bend inward or outward to grasp the
toy effectively.

Due to the need for significant vertical range lifting, the use of a platform is incorporated in the robot’s
design. This upgraded platform enhances the robot arm’s movement using a ball screw slide, enabling
movement of approximately 45 cm upwards and downwards. The lifting platform makes retrieving objects
from the ground easier and placing them on higher surfaces, such as sofas and coffee tables. The robot’s
upper platform surface has a depth camera and a touch-sensitive liquid crystal display to improve visual
recognition and child interaction.

Figure 3. 3-pneumatic fingers-based gripper.

In the early design stages, the first generation of movable household robots featured an important
design element: the distance between the camera and the ground was 92 centimeters. This height allowed
the robot to capture objects in its environment from a high angle. The working distance of the robot
arm is approximately 22.7 cm. The common mobile platform for item retrieval using a mechanical arm
typically involves directly mounting the arm onto an Automatic Guided Vehicle (AGV). However, the
combined volume of the robot arm and chassis is relatively large, making it less practical for confined
spaces commonly found in home environments. Additionally, the structural expansion of the arm body
poses challenges in terms of flexibility and adaptability. Furthermore, this design introduces potential
safety hazards, particularly concerning domestic settings. For these reasons, such configurations are not
well-suited for residential environments and require further refinement to ensure functionality and safety

in home-based applications. Figure 4 shows the entire process involved on the robot grasping the object.

Figure 4. Objects gripping procedure.
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To address the robot’s operational requirements, which involve a greater demand for movement in the
vertical direction and a relatively smaller demand for the horizontal plane range, we have introduced a
lifting platform based on a ball screw sliding table along the vertical Z-axis. This modification enhances
the longitudinal working range of the manipulator, allowing for an upper and lower movable range of
approximately 45 cm. This adjustment enables the robotic arm to effectively reach items on sofas, tables,
and other surfaces of similar height. Furthermore, the expanded vertical mobility enhances the robot’s
ability to interact with users more effectively, adapting to various scenarios in household environments.

To enhance target detection accuracy, it was crucial to prevent the robot arm’s movement from
obstructing the depth camera. Therefore, the depth camera was placed on the robot’s chassis, specifically
at a height of approximately 23 centimeters. This position provides a better viewing angle for a specific
tilt. This adjustment also simplifies the subsequent process of recognizing the target object through
coordinate transformation. The design concept of the second generation of moveable household robot
has changed significantly as technology has advanced and user needs have changed. From the initial
intelligent mobile tool, it becomes a more intelligent and interactive family member. In Figure 5, we can
see the progress of this generation of robots.

58.4°

58.4°

(a) Different viewing angle ranges of the camera  (b) The location of the updated camera

Figure 5. Hardware design of the proposed household robot.

3. Software implementation
3.1. Environment configuration

The robot uses highly reliable buses such as RS485 and CAN to control the robot’s mechanical structure,
reducing the risk of mechanical damage due to bus communication errors. The Raspberry Pi is a
low-power and low-cost computer for the robot, as it operates on the Linux operating system and provides
programmable GPIOs for hardware expansion. The GPIO interface is used to control each drive and
sensor individually. At the same time, the robot communicates with the rest of the various modules using
various methods, such as USB and GPIO switches. The Raspberry Pi is a single master controller for all
devices, reducing system complexity. The Raspberry Pi also makes deploying subsequent upgrades and
new features on the robot more straightforward and efficient. Furthermore, the Raspberry Pi can support
deep learning algorithms compatible with object detection algorithms. ROS2, an open-source software
development kit for robot applications, has been selected as the development environment. This kit offers
a standardized software platform for robot applications [12].

Robots frequently employ vision sensors to detect information in the context of perception [13].
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Traditional RGB color cameras and RGB-D depth cameras are the most frequently used devices for object
detection. The distance between the object and the camera is unknown, as 2D cameras are limited to
capturing objects at the viewing angle. Additionally, the intrinsic data of the model is the sole means by
which the distance from the object can be determined. Consequently, a depth-integrated 3D sensing camera
with high accuracy and reliability has been selected. This camera can calculate the X, Y, and Z coordinates
of each point from the object to the camera, which is necessary for object detection, robot navigation,
and grasping using robotic arms. Selecting distinct versions makes it straightforward to switch between
short-range, long-range, and high-resolution RGB cameras to accommodate individual requirements.

3.2. Model configuration

Object detection is the core of computer vision in intelligent systems [14—16]. Its primary objective
is to identify a particular target and its location within a real scene or input image and to assign a
pre-labeled category to each detected object. Deep learning object detection algorithms are classified
into two series: RCNN (Region-based Convolutional Neural Network) and YOLO (You Only Look
Once). RCNN is a deep learning model primarily designed for target detection tasks. It combines
CNNs (Convolutional Neural Networks) with region proposal methods to detect objects in images
effectively [17]. The introduction of RCNN represents a significant breakthrough in deep learning for
target detection, substantially improving detection accuracy.

The YOLO algorithm has been a revolutionary technology in computer vision since its inception. It is
well-known for its fast, accurate, and efficient target detection capabilities. Regarding RCNN and YOLO,
the former introduces a cyclic structure, which requires computation at each time step. Consequently, the
computational complexity of the model is high, leading to relatively slow training and inference speeds.
In contrast, the algorithms of the YOLO series excel in processing speed and are capable of real-time
target detection. Additionally, the YOLO algorithm boasts a simple structure and efficient computational
performance, making it highly suitable for deployment on mobile devices or embedded systems. Thus,
we selected the YOLO for the proposed household robot.

Over time, YOLO has gradually evolved from YOLOv1 to YOLOv12 [18], with each version making
significant improvements and innovations to the original. These iterations not only improved detection
accuracy but also broadened the application scenarios. Among the two versions, YOLOvS and YOLOv11,
the former has received widespread attention for its rich educational resources. These resources provide
researchers with valuable data for training more powerful models to solve complex image recognition
problems. The main advantage of YOLOVS is its significant improvement in target detection. It achieved
an average accuracy of 50.5% on the COCO dataset, marking a massive leap in recognition accuracy.
Compared to its predecessor, YOLOVS performs even better in handling small objects.

YOLO updated its newest version, v11, in September 2024, marking another significant advancement
in image recognition technology. After conducting a careful comparative analysis of YOLOvS, YOLOVS,
and YOLOv11, we arrived at a key finding: YOLOvV11 reduces the number of parameters in the model
while maintaining an excellent balance between accuracy and performance. Among the versions of
YOLOV11, the YOLOvV11m variant stands out for its higher mean average precision (mAP) score on the
COCO dataset. Notably, YOLOv11m uses 22% fewer parameters than YOLOvV8s while demonstrating
a substantial improvement in computational efficiency. This improvement makes YOLOv11m highly

suitable for both real-time applications and resource-constrained environments. Considering these
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advantages, we decided to replace YOLOV8s with YOLOv1 1m to achieve better results. This decision
results from an in-depth evaluation of model performance and a forward-looking consideration of future

application scenarios.

3.3. Object detection

The control structure has been divided into different functional modules with specific steps to achieve
object detection and follow up with a more organized structure for different functions. The complete
detection framework is shown in Figure 6.

[ 1. Speech recognition node l

Command
Y
7. Object detection node I 2. Robot position node I
A
Final object location b Initial object location Robot location
es v
( 6. Grasp target object \—{ 3. Navigation planning node
) No
. No
[ 5. Robot arm control node ( 4. Reach target location
? Yes\

Figure 6. Overall control framework.

Step 1: The robot position node publishes its location into the robot system through radar.

Step 2: The object detection node publishes the initial object location to the robot system through the
depth camera.

Step 3: The navigation node receives the information Steps 1 and 2 sent. The robot starts
autonomous navigation.

Step 4: The robot determines whether it has arrived at the intended location. It advances to the
subsequent task upon reaching the designated location. Otherwise, the navigation is repeated.

Step 5: After reaching the target location, the robot controls the robot arm. The robot arm control node
accepts the latest location information of the target object from the object detection node and grasps it.

Step 6: The robot determines whether it has successfully grasped the object. Otherwise, the task
should be re-executed. If it is successfully grasped, this pickup will enter a new cycle.

The visual recognition process in Figure 7 begins with the depth camera, which captures the depth
information of the scene. The depth camera acquires both the original image and uses the intrinsic
parameters of the camera, such as focal length and optical center, which are critical for subsequent
image processing and coordinate conversion. Since the camera lens may introduce distortion, the raw
image is processed at this stage to eliminate or reduce distortion and improve image quality. After
distortion correction, the processed depth image is made available for visualization or further analysis.
Object Detection is performed on the CPU using the YOLOv11 algorithm, an advanced target detection

model capable of recognizing multiple objects in an image and determining their locations and classes.
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A critical step in this process is converting the detected object coordinates from the image coordinate
system to the 3D spatial coordinate system. This step is essential for applications requiring precise spatial
information, such as robotic manipulation and augmented reality. The converted object position and
category information are then published through the ROS2 system, enabling user integration with other
systems or access. Finally, the object detection results are visualized, typically in an image in which
detected objects are framed and labeled with their corresponding categories.

l 1. Depth Camera l

'

[2. Original image and camera intrinsics]

l

l 3. Anti-distortion image process l

l | | Object Detection
]

4. Show depth image l [ 4.YOLOv11in CPU ]

l 5. Coordinate conversion ]

T
Target object
|

6. Publish the location and classes

‘ 6. Images labelled with boxes and classes

Figure 7. Framework of depth camera-based computer vision for this robot.

The depth camera captures high-precision images and utilizes the YOLOv11 object detection
algorithm. This algorithm significantly enhances the accuracy of target object detection through advanced
deep-learning techniques. In practice, YOLOvVI11 enables detailed labeling within bounding boxes (b-boxes).
Measurements become intuitive by combining the depth camera with the YOLOv11 algorithm. During
the testing process, we present preliminary results, as shown in Figure 8. A crucial aspect of this process
is extracting useful information from the raw image data. We calculate the “bias” to achieve this by
determining the depth relationship between the center point coordinates and the pixels in each bounding
box. This bias is not fixed. Instead, a randomly selected location serves as the starting point and gradually
expands in all directions, forming a list with multiple depth values. The goal is to enable the system to
analyze each detected data point better. This entire process illustrates the refinement and intelligence of
data processing, ensuring both the efficiency of image processing and the accuracy of the final results.

Bubble sort is the primary algorithm for object sorting. Median filtering is essential for image
processing, as it enhances image smoothing by selecting the intermediate value as the new pixel value.
Median filtering reduces noise while preserving the image’s edge information. Median filtering is more
effective at preserving the edge information in the image while smoothing it than linear filtering methods.
As aresult of the bubble sort, the pixel values’ size order is altered without introducing new grey levels.
Additionally, the median filtering algorithm is computationally efficient and straightforward. Even though
the bubble sort necessitates many comparisons and exchanges during the sorting process, it remains
real-time when the number of pixels in the window is low. Therefore, the depth values in this list are

sorted using bubble sort and subsequently subjected to median filtering.
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(a) Original image (b) YOLO labelled results (c) Depth image

Figure 8. Vision result testing.
3.4. Coordinate conversion

Coordinate system conversion in STEP4 is converting a camera coordinate system to an image coordinate
system. Image processing typically involves four coordinate systems: the real-world coordinate system,
the camera coordinate system, the image coordinate system, and the pixel coordinate system [19].
Mathematical transformations are implemented in each of these coordinate system conversions. Using the
principle of similar triangles to establish the relationship function [20], the camera coordinate system to
pixel coordinate system is a perspective projection relationship. The conversion process from 3D to 2D is
represented by coordinates, as illustrated in Figure 9. This information can be further processed using
an algorithm.

Yc v Image coordinate system(x,y)

Xc

Focal length Oc Focal length

Camera Coordinate System Pixel coordinate system(u,v)

Figure 9. Coordinate conversion process.

In the field of vision, the camera plays a crucial role. Its primary function is to capture and process
images through a computer to produce results. The optical center, which is the geometric center of the
camera lens, is essential for the camera’s imaging capabilities. We need a matrix of internal parameters
to describe the relationship between the scene observed by the camera and its internal structure. This
matrix comprises a specific set of elements representing the camera’s interior’s geometric parameters
and physical properties. The internal parameter matrix not only reflects the camera’s characteristics but
can also be used to enhance the image processing workflow. Different cameras possess unique internal
parameter matrices based on their design. Therefore, the right camera is essential to ensure image quality
and accuracy.

10
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When analyzing the connection between the camera and image coordinate systems, we identify some
fundamental axes common to both. For instance, the X, and Y, axes in the camera coordinate system are
parallel to the x and y axes in the image coordinate system. The camera’s optical axis is also designated as
the Z axis, which serves as a bridge between the two coordinate systems. The mapping from the camera
coordinate system to the image coordinate system is typically performed using the right-hand rule based
on the focal length’s magnitude. Points are still measured in the camera coordinate system regarding
pixels, where each pixel corresponds to a position in the image. The size and location of these pixel points
are quantified in pixel units. Since the image coordinate system is measured in millimeters and the pixel
coordinate system is expressed in pixel points, a proper conversion of the central point is essential.

Combined with the depth camera, we can further simplify the above process. We can express the
transformation from the camera coordinate system to the image coordinate system in matrix multiplication.
This form can intuitively represent the interactions among various components in the camera system,
making image processing more accurate and efficient. Specifically, this transformation relationship can be

formulated as the following Equation (1):

Xc

X Ye
Zc| v | =[K|0] 5 (1)

1 1C

Where K is the camera’s internal reference matrix, it is inherent to the depth camera.

3.5. Mapping

The robot control system includes navigation algorithms and simultaneous localization and mapping (SLAM).
LiDAR is the primary method for constructing a 2D planar map of the environment. The robot autonomously
moves to the destination point after utilizing Cartographer [21,22] to achieve its localization and path
planning within the map’s range. Furthermore, when moving, the robot automatically avoids obstacles
such as scattered toys and nearby children.

LiDAR is an essential sensor in robotic applications. It measures the distance between an object and
a receiver by emitting a laser beam. LiDAR technology can primarily be categorized into two main types,
which are further classified based on their functions and application scenarios in Table 2.

Table 2. Comparison of different kinds of LiDAR.

Categories Effects Usage Scenarios Prices
2D LiDAR Scanning plane Commonly used in SLAM Hundreds to thousands RMB
3D LiDAR In 3D coordinate system Commonly used outdoors Generally over ten thousand RMB

The layout of an indoor environment is typically straightforward, making 2D LiDAR sufficient for
effective navigation and obstacle detection in fixed indoor settings. Additionally, 2D LiDAR is generally
more cost-effective compared to 3D LiDAR. Given that our robot’s operational environment is within a
home, we concluded that the functionality of 2D LiDAR is adequate for indoor applications. Considering
its capabilities and cost advantages, we selected 2D LiDAR for the household robot.

However, when a robot relies solely on LiDAR data for navigation, it encounters a significant

11



Robot Learn. Article

challenge: accurately determining its precise location. This difficulty arises because the data provided
by LiDAR is not always reliable. Ambient noise can disturb the data, and terrain changes can introduce
bias. As a result, the map’s construction and the robot’s localization may drift a little, causing them to
appear stationary while they are actually moving. Consequently, the accuracy of the localization could
be influenced.

Additional data is needed to accurately determine a robot’s location and prevent localization drift
to enhance LiDAR localization. The robot uses a data fusion strategy incorporating LiDAR, a wheeled
odometer, and an inertial measurement unit (IMU) to mitigate cumulative errors. Using sensor data beyond
LiDAR, the odometer can improve localization accuracy by tracking the robot’s relative displacement,
orientation, and trajectory. Precisely, the robot measures its speed, distance, and direction by collecting
readings from the encoder of the wheeled odometer, which allows it to plot its relative displacement on a
plane. Additionally, to reduce data jitter, the direction data from the wheel odometer is supplemented
with data from the IMU. After implementing filtering algorithms, this approach yields more stable and
accurate results.

After conducting a thorough technical comparison and analysis, we chose the Cartographer
algorithm [23] for our mapping needs. This algorithm is designed for 2D LiDAR measurement and
localization, making it a mature option with stable and reliable performance. The algorithm has been
successfully integrated into ROS2’s Navigation2 framework, a widely used software library in the
driverless vehicle field. By adjusting the necessary parameter files, the Cartographer algorithm can
seamlessly embed into the proposed robot’s driving systems.

The navigation algorithm can generate a predetermined behavioral tree that determines the expected
path from the vehicle’s current position to the destination on the pre-generated map. It then issues
a continuous movement command to the motor controller. This path circumvents impassable areas,
including walls, unknown areas, user-marked no-go zones, and other obstacles detected on the map in
real-time and updated. This component of the robot functions as a sequence of ROS2 nodes. Upon
receiving the most recent coordinates of the goal point from the visual recognition module, this navigation
module updates the destination position and autonomously advances toward the goal. The navigation
module broadcasts the successful arrival message to the other nodes in the system that are awaiting the

following command once it has successfully reached the target.
3.6. Robot movement control

The robot performs self-localization at startup through a meticulously coordinated calibration between the
LiDAR and depth camera. This process involves aligning the robot’s sensor data with a pre-constructed
map to determine its position within the environment accurately. Additionally, SLAM allows the robot to
navigate through unfamiliar environments while continuously updating its map in real-time.

After completing its initial localization, the robot utilizes the depth camera to identify and estimate
the precise position of the target object relative to itself. The resolution is chosen as 640 x 480, and the
accuracy of the robot’s estimation of the target object’s position is approximately between 5 millimeters
and 2 centimeters. This step is crucial for subsequent path planning, ensuring the robot can accurately
approach the target object’s location. During the path planning phase, the robot system ensures that the
target object is positioned at a specific distance directly in front of the robot for efficient interaction. The
path planning algorithm incorporates considerations such as obstacle avoidance and other environmental

12
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factors to guarantee both the safety and efficiency of the robot’s movements.

When the robot reaches the target location along the planned path, the lifting platform and robotic arm
are activated and ready for grasping. The robot arm uses open-loop control. By controlling the rotation of
the 2-axis, 3-axis and 4-axis motors of the robot arm, the end of the arm is extended beyond the range of
the robot chassis and accurately positioned directly above the target object. The elevated platform begins
to descend, placing the gripper portion of the robotic arm into the target object. The gripper control node
turns on the air pump to inflate and close the gripper to securely grasp the target object. Throughout the
process, the robot’s sensors and control system work closely to ensure every step. From localization to
path planning to gripping, the robot is executed precisely.

4. Result and analysis

4.1. YOLO algorithm recognition capability

Qualitative analysis has a vital place in the process of detecting objects. This analysis is usually based on
experiments and relies on our subjective judgment to determine which objects are successfully identified.
Observing the detection results gives us access to a large amount of valuable data. This data is essential
for the training and optimization of machine learning models. In order to better simulate scenarios typical
of home life, we selected a relatively closed and spacious indoor environment for testing. We conducted
a series of object detection and grasping-related experiments in this environment on eight everyday
household objects using the YOLOV 11 algorithm. Thus, these objects included an orange, a bowl, a
bottle, a bear, a book, an umbrella, a handbag, and a potted plant. To thoroughly evaluate the robot’s
grasping ability, we carefully measured and recorded the size and weight of each object. Based on the
data presented in Figure 10 and Table 3, it is evident that the robot demonstrates the capability to grasp
objects of varying sizes and weights effectively. This capability highlights the adaptability of the robotic
system in handling diverse household items.

ar 0.92 dis:0.61m

(a) Orange

(e) Book (f) Umbrella (g) Handbag (h) Potted plant

Figure 10. Experimental tests of YOLOv11.
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Table 3. Dimensions and weights of objects for detection.

Categories Dimensions Weight
L W H
Orange 0.06 m 0.06 m 0.04 m 107.5¢g
Bear 0.19 m 0.14 m 0.27 m 117.7 g
Potted Plant 0.17 m 0.17 m 0.52 m 1054.6 g
Bowl 0.12m 0.12m 0.06 m 186.4 g
Umbrella 0.32 m 0.07 m 0.24 m 3042 ¢
Handbag 0.41 m 0.09 m 0.28 m 3055¢
Book 0.18 m 0.25m 0.01 m 5155¢
Bottle 0.06 m 0.06 m 0.26 m 1124 ¢

Table 4 presents the measured distances and accuracy of different object categories at three distinct
distances (0.6 m, 0.8 m, and 1 m). In the YOLO algorithm, accuracy is a comprehensive probabilistic
metric. It refers to the precision with which the YOLO model predicts the category of target objects
rather than indicating the distance or size of the objects. The YOLO algorithm generates many prediction
bounding boxes during object detection when processing an image. Accuracy can exclude those bounding
boxes less likely to contain the target objects. For instance, hundreds of prediction bounding boxes may be
generated in a complex image detection scenario. By setting an accuracy threshold, bounding boxes with
an accuracy below this threshold are preliminary filtered out. This approach reduces the computational
load for subsequent processing and lowers the false positive rate. Among the tested objects, the “Bear”
achieved the highest accuracy, which maintained consistently high accuracy across all distances. Similarly,
the “Bottle” demonstrated relatively high accuracy at 0.6 meters. These findings suggest that the accuracy
of bears and bottles is relatively stable across different distances, while the accuracy of other categories
exhibits fluctuation.

Table 4. Measured distance and accuracy of objects.

Categories Distance: 0.6 m Distance: 0.8 m Distance: 1 m
Measured Accuracy Measured Accuracy Measured Accuracy
distance distance distance

Orange 0.62 m 0.47 0.82 m 0.27 0.98 m 0.31
Bear 0.61 m 0.92 0.82 m 0.85 0.98 m 0.74
Potted plant 0.6 m 0.38 0.77 m 0.37 0.99 m 0.28
Bowl 0.61 m 0.68 0.82m 0.67 0.98 m 0.54
Umbrella 0.58 m 0.32 0.78 m 0.41 0.98 m 0.39
Handbag 0.61 m 0.44 0.79 m 0.43 0.92 m 0.3
Book 0.6 m 0.31 0.8 m 0.26 0.98 m 0.34
Bottle 0.59 m 0.76 0.83 m 0.44 0.98 m 0.44

The “Book,” on the other hand, was relatively inaccurate at all distances. This reason may be attributed
to its shape, which complicates accurate measurement by the depth camera. Books can be placed in
various orientations in different scenarios, such as lying flat, standing upright, or leaning at an angle.
When we conducted our tests, the books were either laid open or stood upright. We think that these
different orientations can alter the shape and contour of the book as perceived by the depth camera, thereby
increasing the difficulty of recognition and measurement. Despite these variations, the measured distances
for all categories were generally close to the actual distances, albeit with some deviation.
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A common trend observed was a decrease in accuracy for most categories as the distance increased,
likely due to the inherent challenges in precise measurements over longer distances. Because the robot
detects the objects in real-time, as the robot approaches the objects, the accuracy improves, ensuring that
the object recognition and grasping functions run successfully.

In Table 5, we compare the accuracy and measured distances of two object detection models, YOLOv8
and YOLOVI11, across four object categories (Bowl, Bottle, Umbrella, Handbag) and three measured
distances (0.6 m, 0.8 m, 1 m). Notably, YOLOV8’s accuracy in the Bottle category decreases at distances
of 0.8 m and 1 m, indicating possible challenges in detecting this object at longer ranges. In contrast,
YOLOvI11 demonstrates higher accuracy in the Bowl and Handbag categories (0.68 and 0.44, respectively)
than YOLOVS (0.63 and 0.33). Based on the test results for these four objects, YOLOv11 consistently
outperforms YOLOVS or achieves comparable results in nearly all scenarios. To further analyze the
models’ overall performance, we calculated the average accuracy of each model across all categories and
distances. The average accuracy for YOLOVS is 0.487, while for YOLOvVI11, it is 0.495. These results
indicate that YOLOv11 performs slightly better in these testing environments. Given these findings, we
conclude that YOLOv11 performs superior object detection and localization under the tested conditions.

As a result, we selected YOLOV11 for our robotic system.

Table 5. Comparison of YOLOvS8 and YOLOvI1.

Categories Bowl Bottle Umbrella Handbag
Distance: 0.6 m Measured
ModelYOLOVS distance 0.59 m 0.59 m 0.64 m 0.61 m
Accuracy 0.63 0.77 0.32 0.33
Distance: 0.6 m Measured
Model YOLOV11 distance 0.61 m 0.59m 0.58 m 0.61 m
Accuracy 0.68 0.76 0.32 0.44
Distance: 0.8 m Measured
Model YOLOvV8 distance 0.75 m 0.75m 0.8 m 0.72'm
Accuracy 0.39 0.5 0.43 0.55
Distance: 0.8 m Measured
Model YOLOVI11 distance 0.82m 083 m 0.78 m 0.79 m
Accuracy 0.67 0.44 0.41 0.43
Distance: 1 m Measured
Model YOLOVS distance 0.98 m 0.98 m 091 m 0.86 m
Accuracy 0.27 0.47 0.34 0.32
Distance: 1 m Measured
Model YOLOV11 distance 0.98 m 0.98 m 0.98 m 0.98 m
Accuracy 0.54 0.44 0.39 0.3

4.2. Robot grasping capability

The initial generation of mobile home robots has already demonstrated the ability to grasp objects at a
fixed point, as illustrated in Figure 11.

In Table 6, we have listed the dimensions and weights of the three objects shown in Figure 11. The
doll measures 0.15 m in length, 0.15 m in width, and 0.23 m in height. The bottle measures 0.07 m in
length, 0.07 m in width, and 0.16 m in height. The trash bag measures 0.18 m in length, 0.15 m in width,
and 0.12 m in height. These objects vary in size. The robot’s ability to grasp these objects indicates its

adaptability to items with different lengths, widths, and heights and demonstrates its capability to handle
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common household items within a certain size range.

Toys collection Bottles collection Waste collection

Figure 11. Objects grasping test.

Table 6. Dimensions and weights of objects for robot grasping.

Categories Dimensions Weight
L W H

Doll 0.15m 0.15m 0.23 m 1503 g

Bottle 0.07 m 0.07 m 0.16 m 250 ¢g

Garbage Bag 0.18 m 0.15m 0.12 m 10g

Among the three objects, the bottle is the heaviest at 250 g, followed by the doll at 150.3 g, while
the trash bag is the lightest at only 10 g. The robot’s ability to grasp these objects with varying weights
shows that it has a certain weight-carrying capacity and can handle common lightweight and small
household items.

The doll is relatively regular in shape, the bottle is slender, and the trash bag is flat. These objects have
different shapes. The robot’s ability to grasp them indicates that its grasping mechanism is compatible

with handling objects of various shapes which may be found in a home environment.

4.3. Speech recognition capability

In addition, the robot system is equipped with a speech recognition module, which is integrated into
the robot’s control framework to enable the recognition and processing of user voice commands. The
Automatic Speech Recognition (ASR) system is the core module that enables efficient interaction between
users and the robot. To more clearly illustrate the system’s workflow, we have supplemented Figure 12,
which primarily includes stages such as voice input, preprocessing, feature extraction, recognition, and
result output. In Figure 12, the speech is input into the system and then preprocessed to remove noise
and other interfering factors. Subsequently, feature extraction is performed on the preprocessed speech
to obtain parameters that represent the characteristics of the speech. The extracted features are used for
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training, with a portion serving as reference templates in the template library. Meanwhile, test templates
are generated based on the speech features of the recognition signals. After matching with the reference

library, the template with the highest score is output as the recognition result.

Voice input

l

Preprocessing

A 4

Feature extraction

Recognition training

|

Template library Recognition s] Accuracy assessment
template l
Expert knowledge »| Recognition decision

|

Recognition result

Figure 12. The process of speech recognition.

The robot’s voice interaction flow design is tailored to meet specific requirements and functionalities,
incorporating elements such as user commands, the robot’s responses, and the execution of corresponding
actions. This structured interaction ensures seamless communication between the user and the robot. The
integration of the speech recognition module enhances the system’s usability, allowing users to control
the robot with a high degree of accuracy and efficiency.

To comprehensively evaluate the performance of the speech recognition system, we designed a
series of experiments focusing on recognition accuracy, recall rate, and user experience, among other
aspects. The experimental environment simulated daily home scenarios, including different areas such
as the living room and kitchen, and considered factors such as varying background noise and speaking
distances. The participants in the experiment comprised a small group of five individuals ranging in
age from 16 to 55 years old, ensuring that the experimental results could reflect the impact of speech
interaction across different age groups. During the experiment, participants were asked to repeat the
same commands 30 times. We conducted experiments for each command and calculated the accuracy of
speech recognition.

Each participant issued a series of predefined voice commands to the robot under different
experimental conditions. The commands were related to common household tasks, such as “turn left”
or “follow”. Upon receiving the voice commands, the robot processed them through its built-in speech
recognition system and provided feedback to the participants. The participants then judged the accuracy
of the recognition and recorded the relevant data. Additionally, we collected subjective evaluations
from the participants regarding their experience with the speech interaction, including aspects such as
recognition speed, response accuracy, and interaction friendliness. We define recognition accuracy as
“whether the robot accurately completes the commands issued by the user.” The measurement method
is as follows: “Each tester repeats the same command 30 times. We measure the recognition accuracy
by repeating each command and calculating the proportion of accurate responses.” User interest is “the
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user’s emotional state after the test and willingness to participate in future tests.” We use a five-point scale
(one representing very dissatisfied and five representing very satisfied) to measure user interest. Feedback
is collected from participants at the end of the experiment.

We employed metrics such as accuracy, recall rate, and F1 score to assess the performance of the
speech recognition system. Precision, Recall, and F1 are commonly used metrics when evaluating a
speech recognition system’s performance.

TP
Precision = ———— 2)
TP+FP

where TP is the number of correctly recognized samples, and FP is the number of samples incorrectly
identified as positive. In a quiet environment, the system’s average recognition accuracy is 85%, which
means that 85% of the recognized samples are correctly identified.

TP

Recall = ———— 3)
TP+FN

where FN is the number of missed samples (false negatives).

F1=2x PI’€Cl:Sl:OI’l X Recall @)
Precision + Recall

which provides a balanced measure of precision and recall.

Based on statistical analysis of the experimental data in Table 7, the system achieved an average
recognition accuracy of 83.8%, a recall rate of 80%, and an F1 score of 81.8% in quiet environments.
In environments with background noise, the accuracy slightly decreased but remained above 75%. In
a quiet environment, the system’s average recognition accuracy is 83.8%, indicating that 83.8% of the
recognized samples are correct. In environments with background noise, the accuracy drops slightly but
remains above 75%. This data suggests that while noise impacts system performance, the system still
demonstrates a certain level of robustness. Initially, we considered that individuals of different ages might
vary in terms of speaking rate and familiarity with commands. Therefore, we deemed it necessary to
test whether age would have an impact on the performance of the speech recognition system. However,
after further understanding the working principles of the speech recognition system, which primarily
relies on analyzing acoustic features and semantic information of speech for recognition, we realized
that age should not theoretically have a direct impact on these aspects of speech recognition. Based on
the subjective evaluations provided by the participants, most users highly praised the convenience of
the speech interaction. However, some issues were noted, such as occasional recognition errors in noisy
environments and misunderstandings of specific commands.

Our robot is currently in the prototype stage. Experiments have been conducted primarily in controlled
environments, such as laboratories, to ensure accurate evaluation and performance testing. However,
due to the inherent complexity of the system and the potential risks, full-scale testing in real-home
environments has not yet been undertaken. We recognize that such real-world testing will be critical
in refining and perfecting the robot’s various functions. Future research will focus on continuously

improving and optimizing the robot’s design.
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Table 7. Test results of speech recognition.

Environmental Recognition Recall F1
Condition Accuracy Rate Score User Feedback Common Issues
(%) (%) (%)
Occasional
Most users misunderstandings of
Qmet 338 30.0 318 highly prglsed specific commands
Environment the convenience may be related
of speech interaction to accent or
speaking speed
Some users Occasional recognition
No1sy 750 700 724 reporteq QCca510nal ~ errors anq
Environment recognition errors misunderstandings of
in noisy environments specific commands in

noisy environments

4.4. Merits and limitations

We believe that robot development must align with the demands for personalization, intelligence, cost
efficiency, and high reliability. In the future, intelligent household robots are poised to become an
indispensable part of human life.

Our proposed robot is designed to navigate indoor environments autonomously and collect loose
objects based on a safe soft gripper. By leveraging object detection technology, the robot can identify
various items and sort them into appropriate locations using a robotic arm. While the robot has a display
screen, there remains considerable potential for enhancing human-robot interaction.

To address this, we aim to maximize the display’s functionality to improve the robot’s communication
capabilities. For instance, we plan to integrate large-scale language models into the robot’s language
interaction module. These models, trained on extensive textual data, can acquire rich linguistic knowledge
and semantic understanding, enhancing the robot’s ability to comprehend, generate, and interact through
language. This improvement will further bridge the gap between humans and robots, fostering more
seamless and intuitive interactions. Currently, the robot is still in the prototype stage, and there is a gap
between the current version and mass production. Therefore, at this stage, our primary focus for the
speech recognition function was to test its effectiveness. We plan to leverage large language models to

further enhance the robot’s speech recognition capabilities in future work.

5. Conclusion

The proposed household robot aims to assist the new generation of parents and children by independently
performing tasks such as storage and companionship, as specified by pre-programmed rules and
instructions. The main contributions of this research can be summarized in three aspects. First, we
completed the innovative hardware design by independently creating a lightweight chassis and fitting
a flexible gripper. Second, we enhanced the robot’s adaptability to complex home environments
by optimizing camera placement to expand the field of view. Third, we successfully implemented
full-function capabilities in the robot by integrating soft and hardware systems, accomplishing speech

recognition, autonomous navigation, object recognition to grasping. A series of experiments confirmed
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the algorithm’s viability, providing a strong reference for domestic robot development. Future work
will address the evolving demands of household environments by combining practical applications with
ongoing analysis. Efforts will be directed toward enhancing object detection accuracy and integrating

large language models into the speech module to improve the robot’s semantic understanding capabilities.
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