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Abstract: Hidden risks of service state of urban lifeline infrastructures under the complex 

environment or load are public safety information that must always be available. The 

point-measuring sensors commonly used now can only conduct observation of a certain 

parameter at a certain location, which restricts the ability to diagnosis hidden risks of 

infrastructures. With the digital twin (DT) model as the carrier and the structural effects as 

the essential element of series connections, low-cost point monitoring and new high-cost 

area detection (such as radar or images) data will expect to be efficiently integrated. This 

paper reviews the development and status of studies on structural monitoring, evaluation, 

and diagnosis. Three issues for addressing difficulties regarding the predictive diagnosis of 

structural hidden risks are summarized. Corresponding countermeasures and perspectives 

on the solution steps are given for the three bottleneck issues. After these processes are 

performed, theories and technologies system of integrated structural state-effect DT 

modeling and predictive diagnosis of hidden risks for the urban lifeline infrastructure can 

be constructed. Then, monitoring and detection data can be converted into structural 

diagnostic indicators, which will provide an effective implementation paradigm for the 

predictive diagnosis of hidden risks in lifeline infrastructures. The proposed perspectives 

can provide useful references for related research. 
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1. Reviews of statuses  

The urban lifeline (urban transportation, water, electricity, oil, gas, central heating network) 

is similar to a city’s vascular network, and the urban lifeline infrastructures (including 

buildings, roads, bridges, tunnels, transmission towers, pipelines and other infrastructures 

in the networks of urban lifeline) are the main carrier of various physical and virtual objects 

in the city [1,2]. By the end of 2025, major developed countries in the world (including China) 

are expected to transition from an era of high-speed construction to an era of the 

coexistence of construction and maintenance for infrastructure. Because large urban 

lifeline infrastructure is often the main or only channel of the urban lifeline network it 

belongs to [3,4], its service state will influence the operational efficiency of the city [5,6]. 

Hence, when and which parts of it should be maintained are pieces of public safety 

information that must always be available [7,8]. 

The maintenance and management of large lifeline infrastructures worldwide have long 

relied on expert experience and regular inspection [9]. However, for a lifeline infrastructure 

with complex environments, loads, and structure types, regular manual or low-intelligence 

equipment (e.g., vehicle) inspections are time-consuming and labor-intensive and lack the 

ability to quickly provide feedback and synchronize information [10]. The monitoring data 

obtained from a structural health monitoring (SHM) system are not only a supplement to 

scientific research but can also provide the most realistic information about the action 

patterns of environments or loads and the structural effects under these environments or 

loads in real time [11]. The SHM system for the prototype of infrastructures could be an 

on-site laboratory, which could effectively help city administrators determine the real-time 

in-service behavior of existing lifeline infrastructures [12]. Nevertheless, the current 

technologies can only observe physical quantities online such as displacement, strain, 

acceleration, temperature, humidity, chloride ion concentration, and crack length and width. 

It cannot directly indicate the structural state changes and hidden risks (i.e., the possible 

structural damage, local failure or overall failure of urban lifeline infrastructures in the 

future) behind the changes in physical quantities. Before their occurrence, these 

hidden risks will often be reflected via omens that abnormal changes in observed 

physical quantities. Preventing hidden risks before the omens appear of infrastructure 

is even more impossible. Hence, the theory, method, and technology on the diagnosis 

of hidden risk for lifeline infrastructures based on SHM need to be further developed 

and improved. 

Since the introduction of SHM theory in fields from aerospace to civil engineering in 

the 1980s [13,14], this theory has often been applied to long-span bridges and other urban 

lifeline infrastructures. In the past decade, due to the rapid development of measurement, 

telecommunication, and computer technology, the theory and technology of online 

monitoring and degradation detection for structural service states based on intelligent 

processing and analysis of massive monitoring data have become increasingly mature [15–17]. 

The time needed to monitor the data of infrastructure from the front end (sensors) to the back 

end (monitoring center) and then to the terminal (maintenance and management engineers) has 
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been significantly reduced. The real-time ability that long eluded SHM has received 

support due to updates and iterations in hardware technologies. It is now possible to 

model the service state of infrastructure and diagnose the hidden risks based on online 

monitoring data [18]. 

To date, most SHM systems use sensors to conduct monitoring of certain parameters 

(such as environmental temperature, wind speed or acceleration, strain, and displacement) 

at a certain point [19]. With the rapid development of modern radar/image observation and 

machine vision technologies [20–25], observation targets do not have to be fixed to a 

specific point but arbitrary area, and significant progress has been made in techniques for 

detecting fine-grained regional effects (including structural responses and apparent/internal faults) 

and evaluating structure states based on multi-source observation data [26–31]. For a SHM 

system only including the mode of point observation, if relevant practitioners lacking 

professional knowledge or long-term experience in structural engineering, a monitoring 

strategy must be used that has many sensors of various types to effectively capture the 

spatial distribution characteristics of various actions (i.e., inputs of the structural system) 

and effects (i.e., outputs of the structural system) of infrastructure [32]. Therefore, research 

on the optimal deployment of sensors is especially needed in the field of SHM [33], as it 

will address the barriers to the applicability of SHM. In recent years, with the rise of 

theories and technology related to big data, deep learning, and machine vision [34], 

processing and analysis abilities for various new types of area observation data based on 

synthetic aperture radar, images and other means have greatly improved [35–38]. 

Technologies such as image recognition for structural dynamic displacement and apparent 

faults, radar observation for structural spatial deformation, and ultrasonic testing for 

structural internal damage are widely used in information supplementation for short-term 

detection or long-term monitoring of large infrastructure [39–41]. Although the new 

method of area detection can observe the time-varying spatial effects of large infrastructure 

in a fine-grained manner, the cost of observation is significantly greater than those of 

traditional point monitoring methods, and the accuracy and stability of area detection 

are difficult to ensure in long-term operation and maintenance [42]. Recently, methods 

of monitoring—detection fusion for lifeline infrastructures have been gradually 

investigated by relevant scholars [43]. Nevertheless, these methods do not phase the 

equilibrium between the effectiveness and the cost of observation. Effectively 

integrating the results of traditional point monitoring and new area detection, and then 

quickly and accurately capturing the information of multiple fields’ effects under 

complex environments and loads, as well as the knowledge of hidden risk for lifeline 

infrastructures are the keys to further improving intelligent operation and maintenance 

theory for future cities [44]. 

Besides multi-source data fusion, leveraging the extensive data generated by SHM 

systems for digital modeling represents another critical task for urban intelligent operation 

and maintenance. Digital twins (DTs) [45,46], as a new means of infrastructure 

informatization, digitization and intelligence that emerged after building information 

modeling (BIM) [47], emphasize the real-time nature of twin modeling more than BIM 
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does and can better fuse multi-source and multimodal observation data. Unlike BIM and 

traditional numerical simulation (as shown in Figure 1), DT modeling and application 

entail constructing a virtual model that integrates data from physical infrastructure 

entities by digital methods, enabling simulation of the behavior and state of a physical 

entity in a real environment via a data integration model [48]. Through multiple 

information fusion, virtual reality interaction feedback, iterative optimization prediction and 

other means, DTs play the role of connecting the physical world and the information world 

and improve the level of maintenance and management of physical entities [49–51]. 

Therefore, for industrialized, fast-paced operation and maintenance scenarios with 

decreased manpower in the era of big data and 5G/6G, DTs have unique advantages in the 

fusion of multi-source monitoring/detection data, intelligent modeling via high-dimensional 

data, and other tasks [52]. 
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Figure 1. Advantages of three main types of theories for infrastructure informatization. 

At present, research on DT-driven monitoring/detection, degradation prediction, health 

management, and risk diagnosis has been preliminarily conducted for spacecraft, machines, 

and infrastructure [53,54]. Some studies have achieved significant results [55–60]. The 

SHM system of a single large infrastructure will generate tens of gigabytes of data on 

average in a day, and the storage and processing scale for area detection data is larger [61,62]. 

Hence, it is necessary to establish an effective, economized and intelligent DT system to 

closely link the virtual model of data integration with the physical entities of 

infrastructures. This system will enable predictive diagnosis of hidden risks within 

infrastructure entities based on DT-driven deduction. In the DT system, extensive 

structured data provided by the SHM system is essential for constructing DT models for 

infrastructure monitoring. This trend stems from the urgent need for intelligent and 
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economized operation and maintenance of large lifeline infrastructures, with the DT system 

serving as the carrier that integrates structural entities with the monitoring-detection-

integrated data. The future goal is to predict hidden risks during the operation period of 

lifeline infrastructures. To achieve this goal, three main bottleneck issues must be solved, as 

described below section. 

2. Countermeasures for issues 

2.1. Seeking a balance between effectiveness and cost for the observation of large 

infrastructures under the constraints of limited sensing ability 

The basic principle of structural monitoring and detection for large infrastructures is to 

observe structural actions and effects based on theories of mechanical, thermotic, acoustic, 

optic, electrical, or magnetic modalities [63], and subsequently evaluate the service states of 

structures based on the observation data. However, since the theory of structural monitoring 

and detection was proposed, point measurements using sensors as the main tool have 

dominated [64]. Although the results of sensor-based point monitoring have advantages in 

terms of accuracy, stability, and durability, a single sensor can only obtain a certain type of 

action or response for a very small part of the structure [65]. For large infrastructures, there 

are extremely high requirements for the type selection and location deployment of sensors [66]. 

With the development of tools such as machine vision, interferometric radar, and other new 

technologies for area detection, observations to the structural effects—including both area 

response and apparent/internal faults [67,68]—have truly expanded from independent 

points to distribution patterns, offering unprecedented advantages in capturing the spatial 

distribution features of effects. However, this has been accompanied by an exponential 

increase in observation costs [69]. Therefore, the issue can be addressed in three key steps. 

First, research should focus on developing methods and algorithms for feature parameter 

recognition in traditional point monitoring and new area detection, as well as on intelligent 

analysis techniques for the characteristics of multi-source big data. The second step 

involves investigating methods for balanced optimization and fusion-update algorithms for 

constrained point monitoring and area detection, grounded in real observational data and 

cost-efficiency considerations. Finally, a spatiotemporal distribution model should be 

constructed to represent complex multifield actions and their impacts on lifeline 

infrastructures, based on the principle of effectiveness—cost balance in observation. The 

model will enable the development of a functional mechanism for reverse optimization of 

observation strategies using real-time, multi-source big data. Completing these three steps 

allows for the efficient transformation of limited, sparse data into the spatiotemporal 

distribution characteristics of the entire structural field within allowable cost constraints, 

providing structured data support for DT modeling. 
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2.2. Dynamic modeling of time-varying states and structural effects for physical entities 

during the operation of lifeline infrastructures 

Most real lifeline infrastructures during operation are a complex structural system with a 

high order of indeterminate degree, which follows the basic principles of mechanics [70]. 

The structural system of infrastructure can be in a good state of mechanical equilibrium in 

the early stage of service; as the service time of infrastructure increases, it will inevitably be 

eroded by the environment, loads, and even extreme disasters [71]. Additionally, the 

operating regimes of infrastructures can impact their structural effects; for instance, the load 

density and intensity on transportation facilities are significantly higher during peak periods 

compared to off-peak times. Prolonged exposure to high loads can lead to increased stress 

and strain within the structure, gradually accumulating damage over time [72]. Every 

process of external erosion may lead to a change in the mechanical equilibrium state of the 

structure [73], which is directly reflected in the structural effect of infrastructure under the 

in-service environment/load [74]. In theory, through digital modeling of the physical 

entities of lifeline infrastructures, the states of mechanical equilibrium of the structures can 

be simulated [75,76]. Finite element (FE) numerical simulation was an important and 

successful strategy in the early stages of digital modeling in the field of engineering [77]. 

However, FE theory, which is oriented toward design and analysis, does not emphasize the 

timeliness of modeling and updating. Although BIM theory has greater timeliness [78], it 

does not emphasize the functions of real-time mapping and twinning between physical 

entities and digital models. When facing the operation and maintenance scenarios of lifeline 

infrastructures, these two theories cannot indicate the current states and corresponding 

structural effects of infrastructure entities in a timely manner. Therefore, research should be 

conducted on economized modeling methods for the core mechanics of structures and 

components/members driven by multi-source point/area observation data. To enable the DT 

modeling of collapse and other situations that may not be encountered throughout the entire 

lifetime of the infrastructures, the constitutive relationships and other information about the 

entire process of failure obtained from experiments and calculations should be used. 

Constructing a dynamic DT model of time-varying states and structural effects provides 

precise real-time data to support the predictive diagnosis of latent risks. Then, the dynamic 

DT system will be able to make predictions regarding lifeline infrastructures. 

2.3. Representation of multi-objective performance and predictive diagnosis of hidden risks 

for high-redundancy systems of lifeline infrastructures 

To ensure the service life of lifeline infrastructures for more than a hundred years, 

infrastructures are usually designed and constructed as systems with high redundancy [79]. 

In the absence of extreme disasters, the influence of damage accumulation and performance 

degradation on structures generally does not reach a visible level [80]. However, along with 

each instance of damage and degradation, there is a slow change in the equilibrium state of 

the structural system, which may cause the entire/partial variation or redistribution of the 

structure/component’s effect under the same action (forces) [81]. Classical theories of 
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structural design usually use parameters such as stiffness or flexibility matrices to represent 

structural performance [82]. However, for complex systems of infrastructure with high 

redundancy, it is very difficult to directly obtain the stiffness/flexibility matrix. Similarly, a 

single performance indicator is also often insufficient to comprehensively reflect the overall 

condition of lifeline infrastructures. For this scenario, establishing a fuzzy nonlinear 

relationship between structural state variation and structural effect (or its distribution) 

variation under the same magnitude of action based on observed big data is a feasible 

approach [83]. On this basis, because the DT system dynamically corresponds to the 

physical entities of lifeline infrastructures, it is possible to deduce and predict the safety, 

durability, availability and other multi-objective performance aspects of the structure and 

the effects of multi-objective performance in the virtual space [84]. Based on deduction and 

prediction results, it is also possible to infer whether there is a hidden risk in the current 

comprehensive service states of lifeline infrastructure physical entities [85]. This approach 

truly helps to overcome the bottleneck in existing technology systems, which struggle to 

perform predictive diagnosis before destruction, collapse, or another extreme event 

occurs [86–88]. Therefore, the multi-objective performance of structures should be 

represented in the digital twin environment driven by existing big data and online 

observation data. Subsequently, prediction and diagnosis techniques should be developed to 

enable the comprehensive and multi-objective analysis of service states and variations in 

their corresponding structural effects. This approach enables the effective diagnosis of 

latent structural risks before visible omens appear, thereby supporting preventive 

maintenance of lifeline infrastructures. 

3. Discussions and perspectives 

To meet the need for intelligent and economized operation and maintenance of in-service 

lifeline infrastructure in the new era, the key goals of ensuring safety, durability, and 

availability guarantee for lifeline infrastructures should be achieved according to the 

proposals for addressing the three main bottleneck issues in the above section. Mainly 

regarding the point monitoring–area detection fusion of observations and the use of DTs to 

diagnosis infrastructure deterioration of safety, durability, and availability, a series of 

possible innovations will be made (as shown in Figure 2): 

First, theories should be developed for the intelligent processing of point monitoring 

data on structural actions and effects, as well as for optimizing measurement points. 

Second, breakthrough technologies are needed for intelligently processing the area 

detection data on the distribution of structural effects and for updating the data through fusion. 

Third, dynamic evolution systems of DTs for lifeline infrastructures are expected to be 

established via multi-source big data observation. 

Fourth, predictive diagnostic approaches for identifying hidden risks of lifeline 

infrastructures based on the dynamic DT system must be proposed. 
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Figure 2. Four main innovative processes and their logical relationships. 

In the observation layer, the sparse point monitoring results can guide area selection for 

area detection; conversely, accurate area detection results can refine the observation details 

outside the monitoring points. Then, based on the information from the observation layer, a 

dynamic model of the digital twin, which can reflect the overall effects of infrastructures 

online, can be truly established. Moreover, the concentration information (e.g., locations of 

maximum and minimum values) of structural effects (e.g., deformation, stress/strain) in the 

whole scope of the infrastructure can provide references for the adjustment of observation 

strategies. Finally, by using the DT system of lifeline infrastructures, the risks of events that 

have not yet occurred can be predicted, and the diagnosis layer will transmit relevant 

information to adjust the parameters of the DT system once the hidden risk has been 

addressed. A symbiosis between physical entities and the DT model is ultimately achieved. 

After the above processes are performed, theories and technologies system of 

integrated structural state-effect DT modeling and predictive diagnosis of hidden risks for 

the urban lifeline infrastructure can be constructed; this system is driven by the fusion of 

point monitoring and area detection data. With structural effects as the essential elements of 

series connections, the entire process can be established and implemented: obtaining 

information and logical links from multi-source data fusion point monitoring and area 

detection, performing intelligent and economized DT modeling and multifield action effect 

deductions, and making predictive diagnoses regarding the structural comprehensive service 

state and the variations in its corresponding structural effects (as shown in Figure 3). Multi-

source observation data can be intelligently transformed into a correlation index between 

structural comprehensive service states and structural effect variations. This index is required in 

real time by operation and maintenance managers of urban lifeline infrastructures to overcome 

the information barrier between the physical infrastructures entities and the DT system. It 

enables a complete process: DT → virtual simulation → virtual and real symbiosis, providing 

an effective implementation paradigm for the predictive diagnosis of the hidden risks of lifeline 



Smart Constr.  Perspective 

9 

infrastructures. These achievements will provide scientific support for the intelligent operation 

and maintenance of urban lifeline infrastructures throughout their entire life cycle. 

 

Figure 3. Core research points from DTs to virtual simulation to virtual-real symbiosis. 

The core research points should include the following: 

Observation method that balances effectiveness and cost and fuses monitoring 

and detection: This addresses the contradiction between the constraint of limited sensing 

points and global observation needs while ensuring effectiveness-cost balance. It also 

effectively integrates multi-source big data from traditional point monitoring and new area 

detection methods based on artificial intelligence, allowing for the capture of the 

characteristics of the spatiotemporal distribution of structural effects under complex 

multifield actions. 

Twin modeling and deduction for structural effects under multifield actions: This 

solves the problem that traditional numerical simulation and updating methods have 

difficulty reflecting the real-time state of lifeline infrastructures. It establishes a dynamic 

DT system with multidimensional elements of time coordinate inputs and outputs to deduce 

structural effects under multifield actions for core mechanical systems related to the 

structure-component/member relationship. 

Performance representation and hidden risk diagnosis for highly redundant systems: 

This overcomes the bottleneck that existing monitoring and evaluation technologies cannot 

detect potential problems before extreme events occur. DT-driven methods of 

safety/durability/availability performance representation and comprehensive service state 

prediction for urban lifeline infrastructures are proposed. This is followed by targeted 

prediction and diagnosis of the hidden risks in structures of highly redundant systems 

throughout their entire life cycles. 
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Of course, the above three points of core research are just the ideal prospects of the 

authors. To successfully complete them, a series of limitations need to be overcome: first, 

the life of sensors and systems is limited, replacement is hard to finish especially when the 

proposed strategies are applying on underground infrastructures such as pipelines; second, 

the scalability of relevant algorithms and models on different urban lifeline infrastructures 

needs to be ensured; third, data privacy and security need to be guaranteed. Similar 

limitations need to be resolved in the process of future technological applications. 

4. Conclusions 

Starting from the demand on the predictive diagnosis of hidden risk for urban lifeline 

infrastructures throughout their life cycles, this paper reviews the development and status of 

studies on structural monitoring, evaluation, and diagnosis. To address difficulties 

regarding the predictive diagnosis of structural hidden risks, three issues are summarized: 

the balance between the effectiveness and cost of large infrastructure observation, the 

dynamic modeling of time-varying physical systems of operational complex infrastructures, 

and the digital representation and predictive diagnosis of the multi-objective performance 

of structural states. Corresponding countermeasures and perspectives on the solution steps 

are given for these 3 bottleneck issues. A complete process from DTs to virtual simulation 

to virtual and real symbiosis for the full-field effects of lifeline infrastructures can be 

performed after these steps are completed. The complete process can help break the 

information barrier between infrastructure entities and DT systems. Then, monitoring and 

detection data can be converted into structural diagnostic indicators, which will offer an 

effective implementation paradigm for the predictive diagnosis of hidden risks in lifeline 

infrastructures and provide useful references for related research. 
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