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Highlights:  

⚫ Swarm-intelligence collaboration model in precast concrete production.

⚫ The dynamic-interval distribution cooperation strategy is proposed.

⚫ The genetic algorithm based on Tchebycheff decomposition is used to obtain schemes.

⚫ Less production time and rescheduling cost compared with the traditional method.

Abstract: The production of precast concrete (PC) component in factory is a very influential and 

complex work for the construction of the project. The rhythm of production is often delayed because the 

production process in most PC component factories is discrete at present. This study focuses on the 

production process of PC components and aims to propose regular scheduling and dynamic rescheduling 

models in prefabricated building project management. Based on the swarm-intelligence (SI) 

collaboration mechanism, the dynamic-interval synergy auction (DISA) strategy is proposed to improve 

contract net protocol (CNP). The genetic algorithm based on Tchebycheff (TCH) decomposition strategy 

is used to obtain the optimal production scheduling schemes. In addition, this model designs a coding 

mechanism for components based on Omniclass classification standard and the attributes of components 

are extended based on IFC extension mechanism. This model was verified in a PC factory. The 

experimental results showed that the decentralized negotiation mode with dynamic time window 

mechanism can avoid local optimization of schemes. Compared with traditional calculation method, this 

method could obtain more comprehensive and lower cost schemes. Based on the collaboration 

mechanism, with improved CNP and TCH strategies introduced, the dynamic model can improve the 

integrity and intelligence of PC factory.  

Keywords: swarm-intelligence collaboration; precast concrete; IFC based on BIM; mathematical 

model; dynamic rescheduling 
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1. Introduction 

Prefabricated concrete structure is the fastest developing building form at present due to low construction 

cost, low environmental pollution, and convenient operation, so the output of precast concrete (PC) 

components is also showing obvious growth trend [1]. The number of PC components with different types 

and complex production processes in some large factories is enormous. Some research in the Architecture, 

Engineering, and Construction (AEC) field indicates that intelligent approaches can enhance management 

efficiency and reduce costs [2,3], so the production scheduling management is necessary for PC factories.  

The management task in PC factory is multi process, multi objective and multi constraint. Nowadays, 

many factories adopt enterprise resource planning (ERP) [4,5] or manufacturing execution system (MES) 

to improve the production efficiency [6,7]. However, unlike the general factory management for producing 

small products, because of the large volume and long production cycle of concrete products in PC factory, 

with more difficult to coordinate and manage, many optimization or management methods cannot 

comprehensively consider production scheduling management from the global and dynamic perspectives 

in the actual application process, whose response to the dynamic environment changes in PC factories is 

slow. Therefore, there is still space for improvement in the scheduling management of PC production.  

Many PC factories still adopt the fixed production line mode at present, which obviously cannot meet 

the current industry development needs. By comparison, the dynamic assembly line mode is one of the 

most effective ways to increase the profits of PC factories, which can be more effective in space and 

machinery utilization, reduce the conflict of production resources, saving more than 20% of production 

time [8]. However, due to the backwardness of management methods, most PC factories are still using 

inefficient and simple scheduling methods for order arrangement and production management of assembly 

lines, whose production often fall into dilemma when the number of orders or component types become 

large, or some abnormal events occur.  

PC factories involve multiple interdependent processes such as production, storage, transportation, 

and on-site delivery. Swarm intelligence (SI) models mimic decentralized decision-making, enabling each 

process to operate autonomously. For unpredictable events like order changes, machine breakdowns, or 

material delays, SI models are inherently adaptive, capable of quickly responding to such dynamic 

disruptions. Like how swarms of insects or flocks of birds coordinate their actions, SI models facilitate 

effective collaboration among different “agents” (e.g., workstations, transport vehicles, or storage 

facilities). This ensures smoother synchronization of production schedules and on-site delivery [9].  

Based on the model of swarm-intelligence (SI) collaboration, this study maps the entities and 

processes involved in order integration, scheduling decisions, and anomaly handling in the PC factory to 

eight agents, and then constructs their respective definition and collaboration modes. The dynamic-interval 

synergy auction (DISA) strategy and weighted Tchebycheff approach (TCH) concept are used, under 

multi-objective and multi-constraint conditions, to generate optimal conventional scheduling schemes and 

dynamic rescheduling schemes respectively. Finally, this model was simulated and analyzed in a 

component factory, and the scheduling schemes were obtained under different conditions. In addition, the 

special notations appearing in this paper are shown in Figure 1 as follows for convenience.  
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Figure 1. The special notations appearing in this study. 

2. Related works 

2.1. Production process and scheduling of PC components 

In the traditional operation mode of PC factory, different production regions of the components are fixed 

and independent, where the reinforcement skeleton and poured concrete are transported among them. The 
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production mode of assembly line is applied gradually, but each link of component production is 

discrete. Gradually, some researchers proposed to form a more functional and structured factory by 

computer-integrated manufacturing (CIM) in the factory [10], where the factory is divided into different 

production levels, where the upper level organization has management authority over the lower level 

organization. For example, Abdalla and Knight [11] proposed a new approach for concurrent product and 

process design of mechanical parts based on CIM. It consists of an integrated expert and computer-aided 

design system that meets the requirements for achieving the concept of design for manufacturability or 

concurrent engineering. In addition, the distributed structure and matrix organization of factory production 

have been researched more, which means that every functional production unit in the factory could have 

certain computing and decision-making capabilities, and different production modules have more 

interactions and feedback, so the entire production system is flexible and can make more optimized 

decisions and cope with more complex changes. For instance, Gu et al. [12] proposed a distributed physical 

architecture of smart factory based on intelligent agents. Experimental results in a small discrete factory 

validated that this approach has generality and superiority in solving real-time scheduling problems. 

Additionally, the Matrix Fusion Factory proposed by Siegert et al. [13] allows the production system to 

scale internal complexity and make it adaptable to external complexity. Experimental results show that 

this approach can reduce waste and improve efficiency, thereby unlocking the free potentials and capacities 

of the workforce. 

In repetitive tasks based on specific rules, human efficiency is lower compared to automated 

programs [14], especially when dealing with unexpected events. The orders of PC components have 

relatively large uncertainty because they are submitted according to the progress of the construction site 

where many changes and emergencies occur frequently. In addition, the overall production scheme may 

be affected when the assembly line falls into downtime due to that some abnormal conditions happen in a 

certain process. To achieve more efficient and objective decision-making, researchers pay more and more 

attention to the change of production demand and the handling of abnormal conditions to improve the 

robustness and anti-interference ability of the scheduling system. For example, Gong et al. [15] modeled 

an optimal setup of human-machine collaboration in a flexible smart factory to address frequently changing 

order demands. Hingst et al. [16] related the characteristics of learning curves to changeability of factories 

to develop a framework for assessing the impact of change. This framework provides a basis for factory 

planning to consider the constant improvement of factories regarding key figures to determine time frames 

which are more suitable for initiating planned change. Various anomaly handling mechanisms include the 

time-driven mechanism for troubleshooting at fixed intervals and the event-driven mechanism for response 

strategies triggered by abnormal events. However, the former has a certain hysteresis, and the latter maybe 

cause insufficient stability. Therefore, the hybrid-driven mode combining the advantages of the former 

two was proposed, which added a real-time interference trigger mechanism to the periodic anomaly check, 

improving the efficiency of the troubleshooting and the stability of the system. 

2.2. Swarm-intelligence (SI) collaboration and scheduling mechanism 

In the research of production scheduling model construction, some researchers abstracted entity units and 

production processes into multi-agent system (MAS) to make production scheduling management more 

systematic [17,18], which has been proved to improve the global optimization capability of scheduling 
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system [19,20]. The agents are more integrated and systematic through the design of the system 

framework and optimization of the cooperation mechanism, resulting in higher cooperation efficiency 

and anti-interference capability. Swarm-intelligence (SI) collaboration is originally inspired by collective 

behaviors of natural biological swarm, such as ants and bees, which is a popular multi-agent framework 

for obtaining global patterns and behaviors now. SI algorithm can be divided into two main clusters, animal 

swarm and insect swarm, wherein GWO and WOA are the former, and yet ABC, ACO, and FA are the 

latter [21]. SI is a relatively new branch direction of evolutionary computation comparing with other 

approaches with single solutions, and SI algorithms adopted approximate and non-deterministic patterns 

to efficiently explore the search space for near-optimal solutions.  

The concept of SI collaboration enables the discrete production elements in factory to have 

organization and structure [22], which is the basis of a series of optimization problems. A sophisticated SI 

system shall include distributed and parallel mechanism, dynamic adaptation to environment, resilience to 

fault, and scalability of attribute, and the collective behavior will emerge which can handle complex 

tasks through interactions with each agent and the environment if the mechanism is well-designed [23]. 

In many industrial production case studies, compared with the traditional scheduling methods, the 

swarm-intelligence collaboration method has been verified to achieve better performance. For example, 

Mahmud et al. [24] proposed an integrated framework of multi-objective supplier selection and production 

scheduling in a multi-purpose machine environment. This model integrated the supply portfolio into 

production scheduling with a customer-imposed delivery time window to increases the flexibility for a 

decision-maker in providing a higher number of Pareto solutions and more diverse and regular frontiers 

within reasonable computational time. Additionally, Aminzadegan et al. [25] applied the Adaptive Genetic 

Algorithm (AGA) and the Ant Lion Optimization (ALO) based on multi-agent scheduling, aiming to 

minimize the sum of resource allocation, transportation costs, tardiness penalty costs, and lost sale costs. 

The results show that the proposed method performs better than the other algorithms in terms of optimum 

solutions and average performance time. 

The combination of negotiation mechanism and intelligent algorithm with SI collaboration model in 

the PC factory can improve the interaction and collaboration between agents and achieve better operation 

efficiency. Some researchers introduced the bidding mechanism of contract net protocol (CNP) theory into 

the SI, which could allocate tasks among agents by signing contracts [26]. Wherein, the initiator agents 

release the tendering and the participant agents bid according to their own state and confirm the winning 

bidder according to the evaluation rules and then sign a contract with the winner. However, the production 

scheduling tasks of PC components are mutually constrained in terms of the resources or space, and it is a 

dynamic process with the continuous input of new orders. The traditional CNP mechanism has the 

shortcomings of vicious competition and local optimization, which cannot completely solve the production 

scheduling problems in large PC factories. Therefore, more and more concepts are integrated with the 

optimization of CNP mechanism, such as timing characteristics [27], constraint satisfaction [28] and some 

optimization algorithms [29,30]. 

2.3. Multi-objective optimization 

The optimization of the collaboration mechanism is to promote the interaction and cooperation between 

multi-agents to achieve production goals. Some researchers initially proposed single objective 
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optimization algorithms, such as punctual delivery [31] and minimum penalty [32]. As the optimization 

objectives pursued by factories become more and more diversified, and there is often competition and 

mutual exclusion between multiple targets, many multi-objective optimization methods are realized in 

actual production. For example, Wang et al. [33] proposed a dynamic multi-objective optimization 

evolutionary algorithm based on a particle swarm prediction strategy and a prediction adjustment strategy. 

The results indicate that this prediction adjustment strategy demonstrates competitive performance on most 

of the test problems. Furthermore, Li et al. [34] proposed a novel multi-level population hybrid search 

evolution algorithm for constrained multi-objective optimization problems. Experimental results show that 

the proposed method outperforms other multi-objective optimization algorithms. 

Three main types of multi-objective optimization methods are usually used, namely Pareto 

dominance, performance evaluation index and decomposition strategy. Pareto method and GA were 

combined to solve multi-objective problems, and then many related algorithms were proposed to find more 

optimal solutions, such as PAES [35], SPEA [36], and NSGA-II. The multi-objective optimization 

evolutionary algorithm (MOEA) with fast convergence speed and local search ability is usually adopted 

to realize balance between the convergence and diversity in the objective space and the diversity in the 

decision space [37]. Zhang and Li [38] proposed the multi objective evolutionary algorithm based on 

decomposition (MOEA/D) which had lower computational complexity at each generation than MOGLS 

and nondominated sorting genetic algorithm II (NSGA-II). The information generated by the progeny of 

the solution of each subproblem only needs the information from their respective neighbors. Based on this, 

many researchers have proposed more optimization algorithms, such as local search hybridization [39], 

selection mechanism with stable matching [40], MOEA/D-DE algorithm [41] and MOEA/D-M2M 

algorithm [42]. Wherein Tchebycheff approach (TCH) [43] can decompose multi-objective problems 

into subproblems [44,45], which is easier for fitness allocation and diversity control to well solve the 

multi-objective optimization problem of convex Pareto front. 

The PC production scheduling is a nondeterministic polynomial problem, which needs to 

comprehensively consider the objectives, characteristics and constraints at each stage based on the classic 

scheduling problem due to its complex technology and long processing cycle. With the increase of the 

number of objectives in production scheduling, the contradiction between the diversity and 

convergence of the solution set intensifies. Therefore, the optimization methods that only apply to two 

or three objectives are no longer appropriate. In addition, because most individuals in the solution set 

are non-dominated, the solution set cannot converge to the Pareto front, the evolution process is slowed 

down, and the decision of the optimal solution is difficult to implement. Therefore, it is appropriate to 

adopt improved CNP method to drive effective collaboration of SI and introduce TCH for multi-objective 

decision making of regular production scheduling and rescheduling in PC factory. 

3. Methodology 

This study takes the production process of PC components as the research object and maps the entity 

objects and scheduling processes of the production to a SI collaboration network with adaptive and 

communication cooperation capabilities, and the mutual cooperation mode between each module is 

designed. The dynamic-interval synergy auction (DISA) strategy is proposed to improve CNP by setting 

up a dynamic time window to avoid local optimization and the emergence of suboptimal solutions caused 
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by the limitations of individual TA’s data information and environment. The length of next time window 

to be opened is adjusted in real time according to the current status of assembly lines. Instead of being 

processed immediately, the tasks entering the same window will be packaged into a whole for optimization 

calculation at the end of the window to form the global optimal scheme. The optimization goals and 

resource constraints are quantified aiming at the complex processes and various environment changes in 

the PC production. This study introduces the Tchebycheff decomposition strategy into the genetic 

algorithm to improve convergence speed and reduce computational complexity, with the aim of 

aggregating different objective evaluation functions into a new fitness evaluation function. The genetic 

algorithm based on TCH decomposition strategy is used to solve the optimal production scheduling scheme 

under different conditions such as interference-free, order change, and equipment fault respectively. The 

proposed architecture for negotiation and scheduling strategy in PC factory is shown in Figure 2. In 

addition, this model designs a coding mechanism for PC components based on Omniclass classification 

standard in order to ensure the information circulation among components, and the attributes of 

components are extended based on Industry Foundation Classes (IFC) extension mechanism to achieve 

information collaboration and traceability in the prefabricated building supply chain. This model was 

verified in a PC factory. Based on market research conducted across China, the scale and production 

capacity of this factory are considered mid-range. The order information and disturbance factors used in 

this case simulation reflect typical scenarios that often occur in real-world production processes. The case 

simulation was calculated using Matlab 2021b to obtain feasible scheduling schemes and rescheduling 

schemes of the dynamic production process, providing reference and suggestions for scheduling 

optimization of other PC factories.  

 

Figure 2. The architecture for negotiation and scheduling strategy in PC factory. 
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3.1. Multi-agent and two-stage scheduling conceptual model 

This model maps production scheduling process into eight agents according to the allocation of machines, 

labors, materials and other resources in production process, which are respectively Order Agent (OA), 

Equipment Agent (EA), Assembly Line Agent (ALA), Task Agent (TA), Task Management Agent (TMA), 

Scheduling Agent (SA), Process Agent (PA), and Real-time Monitoring Agent (RMA). 

SI collaboration system is divided into cognitive agent, reactive agent, and hybrid agent. The 

cognitive agent weighs the information collected and makes some basic decisions. The structure of 

reactive agent is relatively simple which can respond quickly to environmental changes and command 

from others. The hybrid agent combines the characteristics of the former two layers. The categories and 

module functions of eight agents in this model are shown in Table 1. 

OA is responsible for sorting and recording external orders, classifying and summarizing by 

assembly line, and coding each PC component. EA is the mapping of entity resources with production 

functions, such as production machinery and labor on each workstation. ALA is the mapping of assembly 

line, which can create, manage and destroy EAs. TMA is a major decision maker in the selection of 

optimal scheme and rescheduling scheme. After receiving the orders from OA, TMA will generate TAs 

and apply to SA for feasible schemes to select the optimal scheme. TA is the mapping of each production 

task. PA is the mapping of production process, which is generated with the creation of TA. SA is a 

knowledge base that stores intelligent scheduling algorithms to calculate feasible scheduling schemes 

with real-time resources and task data. RMA is responsible for monitoring the status changes of various 

resources and agents in the production system. 

Table 1. The categories and module functions of agents. 

Category Agent Execution Database Reasoning Decision Evaluation Supervision 

Cognitive agent 

OA  ⚫ ⚫ ⚫ ⚫  

SA  ⚫ ⚫ ⚫ ⚫  

RMA   ⚫ ⚫ ⚫  

Hybrid agent TMA   ⚫ ⚫ ⚫ ⚫ 

Reactive agent 

TA ⚫  ⚫   ⚫ 

ALA ⚫  ⚫ ⚫ ⚫ ⚫ 

PA ⚫      

EA ⚫      

PC component production scheduling in the factory mainly includes two key parts: resource 

integration and component production scheduling, therefore, this study builds a two-stage scheduling 

conceptual model of PC production, as shown in Figure 3. Production scheduling in PC factory is order 

oriented, which aims to maximize benefits by consuming the least time and resources, so the order 

information obtained must be preprocessed before production. Generally, the PC factory will receive 

orders from different projects within a certain transportation radius, and each order may contain different 

types of components, such as exterior wall panels, interior wall panels, composite slabs, and other special 

components. The orders from different projects are split and merged according to the type of components 
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by order management department. The building components in the design drawings are divided into 

production units according to the demand and industry standards, and then the production units with the 

same category are merged into a new order for improving the utilization of personnel and equipment and 

realizing continuous production. After the orders are integrated to form a virtual task and sent to the 

scheduling department, the department will make optimal arrangements for component production 

according to the order information and the status of each assembly line, following the principle of 

punctual delivery and maximization of benefits. 

 

Figure 3. The two-stage scheduling conceptual model of PC production. 

3.2. Improved-CNP based collaborative scheduling mechanism of PC production 

The dynamic-interval synergy auction (DISA) scheduling strategy based on the CNP in this model is 

applied to the selection of the optimal scheme. As shown in Figure 4, firstly, whin a time interval, TMA 

decomposes the tasks and analyzes the demand after component tasks arrive, and then TMA sends TAs 

recording code, mold type, program duration and cost information to the dynamic time window. Then 

TAs enter the scheduling request set and wait for scheduling calculation until the end of the time window. 

The start time of a dynamic time window is the time when the TMA sends the first computing task TA 

to SA, and the window ends after corresponding window length, where the window length dn is affected 

by ALAs and resource status. 
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According to task information and production status, SA calculates feasible scheduling schemes 

under constraint conditions and feeds them back to TMA Then the TA will be updated by TMA to new 

TA whose attribute set will be extended including alternative ALAs and time information. TMA initiates 

the tendering-bidding process between new TAs and ALAs, and then makes the final scheme decision 

according to the objective function and evaluation function. Finally, the winning ALA signs a contract 

with new TAs and organizes production. In this process, TMA, TA, ALA and SA work together to solve 

the optimal global multi-objective scheduling scheme in a certain period of time through mutual 

information interaction and negotiation. The directional arrows in the Figure 4 indicate the 

communication direction and negotiation process between intelligent agents. 

 

Figure 4. The DISA strategy based on CNP. 

3.3. Information coding 

In this model, each PC component is encoded based on the Omniclass coding method, and a complete 

component code includes the following units in turn: Order number, Component type, Component subtype, 

Component number, Building number, Floor number, and Delivery time. As shown in Table 2, the code 

02-SL-02-03-05-02-480 means the third common composite slab in the precast slab in the second order, 

which is located on the second floor of Building 5, and the delivery time is 480 h. 

Table 2. Component type code. 

Component type Type code Component subtype Subtype code 

Precast column C Column 01 

Precast beam BE Prestressed composite beam 01 

  Common composite beam 02 

Precast slab SL Prestressed composite slab 01 

  Common composite slab 02 

  Steel-truss composite slab 03 
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Table 2. Cont. 

Component type Type code Component subtype Subtype code 

Precast wall W External wall 01 

  Non-bearing exterior wall 02 

  Interior wall 03 

  Door & window integrated wall 04 

  Parapet 05 

Precast stair ST Slab stair 01 

  Beam stair 02 

Precast balcony BA Fully precast balcony 01 

  Balcony slab 02 

Precast air conditioning slab A Air conditioning slab 01 

3.4. Swarm-intelligent based scheduling model in undisturbed state 

As shown in Section 3.1, agents have certain distributed decision-making capabilities to reduce the 

burden of the system. TA and EA communicate with TMA and ALA respectively to complete the tasks 

of their own processes. In this study, a dynamic organizational structure is designed to obtain the global 

optimal solution and improve the robustness of the SI collaboration system. The operation process of 

the whole production scheduling is as follows, and the structural forms and interaction relationships of 

eight agents are shown in Figure 5. 

Step 1: OA integrates all orders and extracts effective information for production scheduling, and 

then codes components to send order information to TMA. 

Step 2: TMA generates TAs according to order information and applies to SA for calculation, then 

selects the optimal scheme and updates the TA information to form new TAs. Then TAs and associated 

ALAs sign the contract and then ALAs will arrange TAs for production in turn by corresponding EAs. 

Step 3: The EA accesses its own task list, and it will start production of this component immediately 

if there is no component being or to be produced, otherwise, this component will be listed in the waiting 

queue. EA updates its own status information after completing the processing task, and then notifies 

ALA to release this component to the next EA.  

This organizational structure has matrix characteristics, combining the advantages of distributed 

structure and ladder structure, so information among agents can interact vertically and horizontally 

simultaneously. If the impact of abnormal interference is small, associated modules can directly 

negotiate to make local adjustments based on the distributed structure without triggering global 

rescheduling. In addition, different agents in the system have different levels of decision-making 

authority, which ensures the robustness and fault tolerance. 
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Figure 5. The SI collaboration structure in PC factory. 

3.4.1 Production constraints 

Assumptions: 

(1) There are only 7 workstations on each assembly line. Each workstation on each assembly line 

can only produce one component, and each component can only be produced on one workstation. 

(2) Each processing time is the average according to experience statistics. 

(3) Each component must complete all processes in the sequence N1 to N7. 

(4) The buffer space between workstations is limited, but the storage space of completed components 

is infinite. 

In this study, there are l assembly lines and n components to be produced in the factory. There are 

y machines in each assembly line for production. The jn  components need to be produced on the l 

assembly line, the number of the thj  component entering the l assembly line is ljJ , and the component 

entering the thk  workstation is ,l kN . The ( ), ,,l k l kS J N , , ,l j kP  and , ,( , )l j l kC J N  represent the start 

time, production time, and completion time of the thj  component in the thk  workstation of thl  

assembly line respectively. The daily working hours are divided into normal ones wH  (8 h in this 

model) and abnormal ones nH  including overtime aH  and rest time rH . 

In the production process, N1 is mold assembly, N2 is reinforcement installation, N3 is concrete 

pouring and vibration, N4 is concrete curing, N5 is mold removal, N6 is inspection and repair, N7 is 

component storage. The constraints of production in this study can be summarized into four types: 

productivity, labor, assembly line and mold quantity. 
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(1) Productivity constraints 

In the same period, a PC component can only be produced on one workstation, and a workstation 

can only produce one component, too. Therefore, except for the concrete curing (N4) and component 

storage (N7) which both can be processed in parallel, the thk  process of the thj  component cannot be 

undertaken before the completion of the , 1l kN −  process or the , 1l jJ −  component, which is expressed as 

Equation (1) and (2). 
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(2) Labor constraints 

N3 and N4 are two special processes. The N3 must be continuous, otherwise the concrete quality 

problems will be caused, so N3 must be completed in one day during normal working hours or overtime, 

and it will be put aside until the next day if the remaining working time is insufficient. In this model, it 

is considered that the curing and storage sites are infinite, so N4 does not cause additional resource 

consumption including labor or material. Therefore, the completion time of N3, N4, and other processes 

are as Equation (3)–(5) respectively. 
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where T is the point of time when the process is completed, and D is the number of consumed working days. 

(3) Assembly line constraints 

In many factories, due to the large size of prefabricated components, the buffer space between 

different workstations is limited, which serves as a necessary constraint. When the buffer space is 

insufficient (i.e., when the buffer is fully occupied), the completion time , ,( , )l j l kC J N  is expressed as 

Equation (6)–(8). 
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where , 1,l j kWT −  is the waiting time for the ( 1)thj −  component to be sent to the buffer zone between 

the thk  and ( 1)thk +  workstations. kB  is the buffer space between thk  and ( 1)thk +  workstations, 

which is determined by the layout of assembly line, and , 1l j BKj − −  means the components in the buffer 

space before the thj   component. The buffer space is occupied when the completion time of thk  
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process is less than the start time of the ( 1)thk +  process. In addition, there is no waiting time before 

N4 and N7 because they can be processed in parallel. 

(4) Mold constraints 

The number of molds available in the factory is limited, so the next component can only wait for 

the previous mold to be released when the existing molds of the same type are occupied. The constraint 

of the waiting mold α of the component J is expressed in Equation (9). 

, ,
,,

( , ) { ( , , , )}  
  j kl jS Min g  J N X  (9) 

where ω represents the priority of the component among all components of the same type, and   

represents the priority of the component among all components using mold α. The total number of mold α 

is X , and g represents the set of time occupied from ( )thX  −  to ( 1)th −  mold α released. When 

  is greater than X , it indicates a shortage of mold α, requiring the component to wait for processing. 

When w  is less than or equal to X , it indicates that the component can be processed directly 

without waiting. 

3.4.2 Objective function 

The reasonable allocation of resources is the essence of production scheduling, and the way to maximize 

benefits is to match resources and requirement. Therefore, in this model, the production mode of PC, 

relationship between operations, delivery time, machine utilization, storage cost and other factors are 

considered in the scheduling optimization problem to establish multiple optimization objectives as 

Equation (10) to (15). 

(1) Minimum working idle time WIf  of workstations: 

, , , ,, ,
[ ( , ) ( , ) ]7

1 1 11= = == − −  
nl

l

l
WI l k l k l j kL K Jl ln

C SJ Jf N N P  (10) 

(2) Minimum cost of delay and storage CSf : 

, ,, , , ,, ,
{ * [ , ( , ) ] * [ , ( , )]}7 71 1 10 0 = = == − + −  

n nl lL
CS l ll j l j l j l jl j jl j l jMax C Max CJ Jd df N N  (11) 

where ,l jD  is the delivery time of component j, ,l j  is the delay rate of j, and ,l j  is the storage rate 

caused by early completion of j. 

(3) Minimum total production time MSf : 

,| ,
( , )7+  =

nlMS ll l LN lC JMaxf N  
(12) 

where |+  l l LNMax  represents the maximum of completion time in all assembly lines. 

(4) Minimum change of component TQf : 

,( )
2

1=
=

L
l fl

f
T

ET
L

 (13) 

,
( )

2

1=
=

L
l l f

f

Q
EQ

L
 (14) 

( , )=TQ f fMin EQf ET  (15) 

Equation (13) and (14) indicate that the consistency of components can be obtained by the mean 

value of consistency of single assembly line, where fET  and fEQ  respectively represent the 

consistency of component types and change times respectively, and the smaller their values are, the 
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smaller the change degree of components are, which is conducive to productivity improvement. Wherein 

,l fT  and ,l fQ  respectively represent the number of types and change times of components on the 

assembly line l. The replacement of components is caused by a mismatch between the components and 

the molds. The removal and installation of different molds consume significant time and labor, leading 

to a decline in production efficiency. Therefore, the production process should aim to minimize the 

replacement of components and molds as much as possible. 

3.5. Dynamic rescheduling 

The production status is not always stable due to random events, such as machine breakdowns, order 

changes, or human factors. The events are defined as external disturbances and internal disturbances 

based on the event sources.  

External disturbances mainly refer to changes in order demands, which are caused by the designer, 

construction status, or material suppliers. Most order changes come from customers and directly affect 

production planning. These changes can lead to variations in component parameters, quantities, and 

delivery deadlines, which are the most significant factors influencing scheduling costs [46,47]. 

Additionally, the force majeure factors such as weather conditions, policy changes, accidents, or material 

shortages can also lead to changes in assembly deadlines. The plan changes in the construction sites are 

common, such as earlier or delayed deadlines, which can also change plans for the deliveries of 

components. If the scheduling plan cannot be adjusted promptly, it may delay the on-site construction 

and increase the costs. Conversely, if construction progress is delayed and components are produced 

according to the original schedule, it could lead to increased storage and maintenance costs for the 

prematurely finished components. 

During the component production process, there are also internal risks, which are defined as internal 

disturbances, including machine failures, worker absenteeism or leave, delays in material allocation, or 

operational errors. These random risk events can affect the timely delivery of components and increase 

production costs. 

This model establishes a dynamic cooperative rescheduling mechanism for PC components based 

on the hybrid drive mechanism in the knowledge base in advance. After the parameter changes of OA 

or EA are monitored by RMA, it will select the corresponding scheduling strategy according to the 

influence and then feedback to TMA and SA for calculation and decision. 

3.5.1 External disturbance 

Firstly, according to the change of the order, the assembly lines with lower mold conversion are selected 

to participate in rescheduling to realize local rescheduling, which is expressed as Equation (16)–(18). 

Secondly, all components are rescheduled as the method in Section 3.4. 

,
7

1 1


 = ==   j kj kT P  (16) 

, , , ,, ,
[ ( , ) ( , ) ]7

1 11= == − − 
nl

nl

l
WI l k l k l j kk jj lC SJ Jf N N P  (17) 

* { ( ) | ( ) ( ) ... ( ) , , ,..., }1 2 1 2=    =l l l l
WI WI WI WI WIi L    l Lf f f f f  (18) 
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where T  is the total production time occupied by inserted orders. The idle time l
WIf  is the difference 

between the total production time of all components and the duration of all processes in the assembly line, 

and then the set of idle time *
WIf   on the assembly line can be obtained in descending order as 

Equation (18). The number of selected assembly lines, Q, depends on T  and l
WIf . If T  is equal 

to or greater than l
WIf , all assembly lines will be selected, which is global rescheduling, otherwise Q 

assembly lines involved in rescheduling are selected and rescheduled. 

3.5.2 Internal disturbance 

When random interference occurs, firstly calculate the maintenance time T (including labor recovery), 

then judge whether the production according to the original plan after repair will result in delayed 

delivery. If the delivery can still be made on time, the initial scheme will continue to be adopted to avoid 

increasing rescheduling costs, and the production process will be postponed according to the 

maintenance time. If the component is being produced when the equipment fails, the completion time C 

of the process is expressed in Equation (19), if the workstation is idle when the equipment fails, the C is 

expressed in Equation (20). 

 + + − l k l k l j k l ke s sl j l j l j
C S    SJ J Jt t tN N P N, , , , ,, , ,

( , ) ( , ) , ( , )  (19) 

 + + l k l k l j k l ke sl j l j l j
C S    SJ J Jt tN N P N, , , , ,, , ,

( , ) ( , ) , ( , )  (20) 

where st  and et  represent start time and end time of the equipment fault respectively, and ( )e st t−  

means the repairment time. 

3.5.3 Evaluation of rescheduling 

This model uses the number of assembly lines involved in rescheduling to measure the complexity, 

expressed in 1
MRf . And the workload can be measured by the difference in the number of various 

component types on different assembly lines between the rescheduling and the initial scheme, expressed 

in 2
MRf . They are calculated in Equation (21) and (22) as follows: 

=1
MR rf L  (21) 



  = == + − + 
0v
l1

2 L
l 1MR p pl 0 0 0 0 Sum t t t tf T TSum ,,| ( , ) ( , )  (22) 

where rL  represents the number of assembly lines changed after rescheduling, the   represents the 

component type, 0t   represents the rescheduling start time, pt   represents the time of next material 

deployment, ,lSum    and 0
,lSum    represent the number of type-   components produced from 0t   to 

0( )pt t+  in the new scheme and in the initial scheme respectively.  

In addition, when the components are adjusted from the original assembly line to another one, the 

labor cost for handling is used to measure the mold conversion cost in this model, based on the above 

idle time decisions, which is expressed as Equation (23). 

  = + 
Q3 l

MR WI l ltMaxf f ',( * * * )  (23) 

where   represents the income from production using unit idle time 
l
WIf , the  represents the 

labor cost of mold handling in unit time, the t  represents the time to complete a mold handling. 
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After the above objectives are normalized, the cost of rescheduling is obtained by adding them, 

which is expressed as Equation (24). 

= + +
1 2 3
MR MR MR

MR 1 2 3
MR MR MR

f f f
f

f f f
* * *

 (24) 

where 
1*

MRf , 
2*

MRf , and 
3*

MRf  are the maximum values of 
1
MRf , 

2
MRf , and 

3
MRf  in the 

same indicator set respectively. 

3.6. IFC-based production information delivery 

Expanding IFC attributes in the production management of prefabricated component factories can 

significantly improve operational efficiency, resource optimization, and decision-making processes. By 

incorporating more detailed attributes such as materials, dimensions, quality requirements, and logistics 

information, IFC enables better data exchange between different software applications used in design, 

construction, and manufacturing. This integration allows for a seamless connection between design and 

production phases, leading to more accurate production planning, reduced errors, and faster adjustments 

to design specifications. It also enhances resource management by providing detailed data on molds, 

machine capabilities, and worker skills, thereby optimizing production schedules and minimizing lead 

times. Furthermore, real-time tracking and monitoring become more feasible, allowing managers to 

respond promptly to delays or defects. Additionally, the incorporation of expanded IFC attributes 

facilitates better quality control by enabling traceability of each component’s material properties and 

inspection results. Finally, logistics and inventory management are optimized by providing detailed 

information about storage requirements, transportation needs, and delivery schedules, ensuring timely 

delivery and reducing material waste. By leveraging these expanded IFC attributes, prefabricated 

component factories can streamline their production processes, improve efficiency, and ultimately 

achieve better project outcomes. 

In order to ensure information collaboration and traceability in the supply chain of prefabricated 

buildings, based on the extension mechanism of IFC, this study expands the information of production 

scheduling of PC components in attribute set, so that the time parameter information of each process in 

component production can be saved in BIM, and the production time attribute belongs to the self-defined 

IFC extension. 

The exterior wall panel 1 in order 1 is taken as an example, as shown in Figure 6, first the IFC file 

exported from Revit is extended, and then BIM Vision is used to view the attributes of the component. 

As shown in Figure 7, the production time attribute value of each process of the component is displayed, 

which shows that the method based on attribute set extension described is effective, and the IFC 

semantics generated after extension are correct. 

 

Figure 6. IFC document expansion. 
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Figure 7. Extended attributes displayed in the attribute bar of PC component (in BIM Vision). 

4. Case study and results 

To enhance cooperation among agents and improve scheduling efficiency, this study uses an 

improved-CNP mechanism and the TCH decomposition algorithm. The advantages of this method, 

compared to traditional approaches, are verified through a case study in a PC factory in China, as 

shown in Figure 8. The factory covers an area of 45,000 square meters, with a storage area of 25,000 

square meters. Its annual production capacity can supply 3 million square meters of building materials. 

The main products supplied by the factory include building components (such as precast columns, 

exterior wall panels, shear walls, composite slabs, composite beams, balconies, stairs, etc.), municipal 

components (such as subway tunnel segments, precast caissons, etc.), and decorative components 

(such as corridor panels and cultured stone). 

It was assumed that the factory received 4 orders as shown in Table 3. And four integrated 

assembly lines were selected for simulation, and the number of mold resource was: three Type A, two 

Type B, two Type C, one Type D and one Type E, where A to E represented the mold type of exterior 

wall panel, interior wall panel, balcony slab, air conditioning slab, and precast stairs respectively. In 

this case, storage space is unlimited, and different components can be stored together. The buffers 

between workstations are limited, and the components that arrive first are processed first. Except for 

concrete curing and storage, subsequent processes must wait for the completion of the previous 

process. Each assembly line has one workstation for each process, arranged sequentially. Each 

workstation can produce different types of components. The storage cost is $2/hour, and the delay 

costs for different component types are shown in Table 3. 
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Figure 8. The PC factory in China. 

Table 3. Simulation order information. 

Component 
Order 

number 
Component type 

Mold 

type 

Delivery 

time (h) 

Delay 

rate 

($/h) 

Storage 

rate ($/h) 
Component code 

1 1 Exterior wall 1 A1 96 20 2 01-W-01-02-01-01-96 

2 1 Exterior wall 2 A2 144 10 2 01-W-01-02-02-02-144 

3 1 Balcony slab C1 168 10 2 01-BA-02-02-01-01-168 

4 2 Interior wall 1 B1 96 20 2 02-W-03-01-01-01-96 

5 2 Interior wall 2 B2 120 15 2 02-W-03-01-02-02-120 

6 2 Interior wall 3 B3 144 10 2 02-W-03-01-03-03-144 

7 2 Balcony slab C2 144 10 2 02-BA-02-01-02-01-144 

8 3 Exterior wall 1 A3 72 20 2 03-W-01-01-03-03-72 

9 3 Exterior wall 2 A4 120 15 2 03-W-01-02-04-04-120 

10 3 Precast stairs E1 144 10 2 03-ST-01-01-03-01-144 

11 4 Exterior wall A5 96 20 2 04-W-01-01-05-05-96 

12 4 
Air conditioning 

slab 
D1 120 15 2 04-A-01-01-05-01-120 

13 4 Interior wall B4 144 10 2 04-W-03-01-04-02-144 

Note: The delivery time, delay rate, and storage rate are specific production parameters. The parameters in this 

study are based on assumptions from a real-world case

4.1. Regular scheduling 

Two-layer decimal integer coding was selected to encode the component information into chromosomes, 

and the first layer was the component number, and the second layer was the assembly line number, as 

shown in Table 4. 
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Table 4. Two-layer chromosome code. 

Component sequence 12 1 3 6 11 8 2 5 4 7 10 9 13 

Assembly number 1 3 2 4 3 2 4 1 1 3 2 4 3 

The initial population of 200 was randomly generated, and the ideal point *Z  and extreme point 

minf  and maxf  of the initial population were calculated. The production objective is normalized 

according to Equation (25). 

= − + − + − + −
TQWI MS CS

new WI WI MS MS CS CS TQ TQ

1WI 1MS 1CS 1TQ

ff f f
f w Z w Z w Z w Z

f f f f

* * * *

* * * *
( ) ( ) ( ) ( ) (25) 

where 
*
1WIf , 

*
1MSf , 

*
1CSf , and *

1TQf  are the highest values of each sub objective function in the 

first generation. and WIW , MSW , CSW  and TQW  are the weights of different optimization goals, and 

newf   is a new fitness evaluation function according to the TCH decomposition strategy, where the 

evolutionary population fitness value is constantly approaching the ideal value *Z  until convergence. 

In most factories, minimum total production time is the most critical because it directly impacts 

factory throughput, enabling timely delivery of components to construction sites and improving the 

factory’s capacity to handle multiple projects. Reducing production time influences increasing overall 

efficiency and revenue. Minimum change of component reduces disruptions caused by mismatches in 

molds or design adjustments. Minimum cost of delay and storage aims to minimize financial losses from 

delays and excessive inventory costs. However, their direct impacts on the production process are 

smaller compared to total production time. Therefore, the fact that optimizing production time has the 

largest impact on factory performance, while the other objectives serve as secondary considerations that 

help improve operational efficiency. 

These weights vary depending on the specific production conditions. In the assumptions of this 

simulation, the above steps were implemented in Matlab 2021b with the weights of the optimization 

goals were 10%, 70%, 10%, and 10%, according to the production experience. Four feasible schemes 

were obtained, and the average maximum completion time is 63.58 h. as shown in Figure 9. In addition, 

to verify the advantages of this study, four scheduling schemes under the traditional algorithm without 

TCH are shown in Figure 10, and the average maximum completion time is 84.88 hours, which shows 

that the schemes adopting DISA and TCH strategy can save more than 20% completion time in this case. 

Scheme 1 was selected as the optimal scheduling scheme according to the total production time as the 

evaluation index. In this scheme, the total production time was 62.8 h, and the idle time of workstations 

was 10.4 h. The fitness curve is shown in Figure 11. The completion time of each process in scheme 1 

is shown in Table 5. 
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(a) Scheme 1. (b) Scheme 2. 

  

(c) Scheme 3. (d) Scheme 4. 

Figure 9. Feasible schemes without interference (in Matlab 2021b). 

  

(a) Scheme 1. (b) Scheme 2. 

  

(c) Scheme 3. (d) Scheme 4. 

Figure 10. Scheduling schemes under traditional algorithm without TCH (in Matlab 2021b). 
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Figure 11. Fitness curve of scheme 1. 

Table 5. The completion time of each process in scheme 1. 

Component 

sequence 

Completion time of each process (h) 

N1 N2 N3 N4 N5 N6 N7 

4 1.2 2.3 3.1 15.1 25.0 25.4 37.4 

10 2.2 3.3 3.7 15.7 25.5 26.0 38.0 

5 3.4 4.5 5.3 17.3 26.5 26.9 38.9 

8 4.9 6.4 6.8 18.8 27.5 27.9 39.9 

13 6.1 7.5 8.3 20.3 28.5 28.9 40.9 

1 2.5 4.0 4.4 16.4 25.0 25.4 37.4 

11 4.0 5.5 5.9 17.9 26.0 26.4 38.4 

6 26.2 27.3 28.1 40.1 49.0 49.4 61.4 

2 27.7 29.2 29.6 41.6 50.0 50.4 62.4 

12 28.2 30.0 30.3 42.3 50.3 50.6 62.6 

3 29.0 30.9 31.2 43.2 50.6 50.8 62.8 

9 26.5 28.0 28.4 40.4 49.0 49.4 61.4 

7 27.3 28.9 29.2 41.2 49.3 49.6 61.6 

4.2. Dynamic anomaly rescheduling 

4.2.1. Order change 

It was assumed that the initial scheme 1 had been begun, and the material allocation had been completed, 

and the first process of component 1 had just been completed. The order 1 changed at t = 2.5 h requiring 

the delivery time of component 12 to be 60 h ahead. 

In this case, OA changed the code of component 12 to 04-A-01-01-05-57.5. At this point, the event 

is identified by the RMA as an anomaly type related to the early delivery date and is reported to the 

TMA for rescheduling decisions, including selection of the assembly line, rescheduling calculations for 

the SA, and evaluation of the rescheduling plan. Once SA and TMA collaborate to make decisions and 

generate the optimal rescheduling plan, they negotiate with ALA for allocation and proceed with 

component production. The total idle time was ranked as 
4 3 1 2
WI WI WI WIf f f f   . Because the 
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delivery time of component 12 was 60 h ahead, and jT  was calculated to be 2.6 h which was less than 
4
WIf , so assembly line 4 was selected for rescheduling according to Section 3.5. 

The result of running algorithm code in Matlab2021b with these constraint parameters modified and 

the weights of optimization objectives unchanged is shown in Table 6 and Figure 12. The scheduling 

scheme on assembly line 4 was 12-2-6-3, and the maximum completion time was 62.9 h, with 0.1 h 

more than the maximum completion time of the initial scheme, which met the delivery time of 

component 12. 

 

Figure 12. Rescheduling scheme of assembly line 4 (in Matlab 2021b). 

Table 6. The rescheduling scheme on assembly line 4. 

Component 

sequence 

Completion time of each process (h) 

N1 N2 N3 N4 N5 N6 N7 

2 26.5 28.0 28.4 40.4 49.3 49.7 61.7 

3 28.5 30.0 30.3 42.3 50.6 50.9 62.9 

6 27.7 29.1 29.9 41.9 50.3 50.7 62.7 

12 25.0 25.8 26.1 38.1 48.3 48.5 60.5 

4.2.2. Equipment fault 

It was assumed that at the time 1t  = 2 h in initial scheme 1, the concrete mixer on assembly line 1 failed 

unpredictably, and the concrete pouring had not started at that time. After 0.5 h maintenance, the device 

was expected to be completely repaired after 5.5 h. The rescheduling time 0t  was 2.5 h, and the 

equipment recovery time 2t  was 8 h, , 1,3( , )l jS J N  ≥ 24 h. When a machine failure occurs, the concrete 

pouring process cannot be executed. The corresponding parameters of the EAs change, and their 

operational status switches to a “fault” state. This event is identified by the RMA as a machine failure 

anomaly type. The RMA notifies the relevant ALA1 of the failure of EA13 and reports it to the TMA for 

rescheduling decisions. The feasible rescheduling schemes of running algorithm code in Matlab 2021b is 

shown in Table 7 and Figure 13. Rescheduling evaluation was calculated according to Equation (24), and 

TMA finally determined Scheme 4 considering the maximum completion time and rescheduling cost. 



Smart Constr. Article 

24 

 

  

(a) Rescheduling scheme 1. (b) Rescheduling scheme 2. 

  

(c) Rescheduling scheme 3. (d) Rescheduling scheme 4. 

Figure 13. Feasible rescheduling schemes under equipment fault (in Matlab 2021b). 

Table 7. The feasible rescheduling schemes under equipment fault. 

Scheme 
Assembly 

number 
Component sequence Completion time (h) 

Maximum completion 

time (h) 

1 1 4-5-6 63.4 88.3 

 2 2-7-11 38.7  

 3 13-1-3-9-10 88.3  

 4 8-12 61.6  

2 1 1 61.4 85.8 

 2 10-7-4-5-6 40.2  

 3 13-8-9-11 64.4  

 4 2-12-3 85.8  

3 1 4-2-8-6-13-11 84.4 88.0 

 2 12 36.5  

 3 3-7 36.8  

 4 5-1-9-10 88.0  

4 1 9-4-6-11 64.4 64.4 

 2 2-5-8 39.4  

 3 13-7-10 62.3  

 4 1-12-3 61.8  
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5. Conclusion 

The production of prefabricated components (PC) presents unique challenges compared to traditional 

manufacturing processes, primarily due to their increased complexity, highly customized designs, 

variable production scales, and strict quality requirements. Conventional factory management methods, 

which rely on standardized processes and predictable workflows, are insufficient to address these 

demands. In PC production, scheduling must adapt to dynamic conditions such as order changes and 

equipment faults, while decision-making requires real-time data and adaptive strategies to manage 

frequent disruptions like mold shortages and equipment failures. To tackle these issues, this study integrates 

a hybrid-driven dynamic scheduling and rescheduling model based on swarm-intelligence collaboration, 

enhancing flexibility and reducing downtime through real-time monitoring and decentralized negotiation 

mechanisms. The introduction of the Dynamic-Interval Cooperative Strategy (DISA) further addresses 

limitations of conventional Contract Net Protocol (CNP), such as excessive traffic and local 

optimization, by shifting from centralized to decentralized negotiation. Comparative simulations using 

MATLAB demonstrate that the improved model significantly reduces total production time and 

improves cost efficiency in rescheduling compared to traditional mathematical models and manual 

decision-making. By applying this framework to a real-world factory in China, the study highlights its 

practical value in improving production efficiency and addressing challenges unique to modern PC 

manufacturing, providing both theoretical insights and actionable solutions for the industry. 

(1) Based on the SI collaboration, a dynamic scheduling and rescheduling model for the PC 

production is established. The entities and logic of PC production are mapped into eight agents Order 

Agent (OA), Equipment Agent (EA), Assembly Line Agent (ALA), Task Agent (TA), Task 

Management Agent (TMA), Scheduling Agent (SA), Process Agent (PA), and Real-time Monitoring 

Agent (RMA). The module functions and interaction relations of each agent are defined, and the 

uncertain interference events in the production process are analyzed and classified, and the rescheduling 

mechanism based on hybrid drive is designed. 

(2) This model defines the coding principles of different PC components, and then introduces the 

concept of DISA, which changes the centralized negotiation to decentralized negotiation mode. The 

dynamic time window mechanism is introduced to the calculation queue to avoid the local optimization 

of the feasible schemes, aiming at the disadvantages of the traditional CNP mechanism such as excessive 

traffic, vicious competition and local optimization. 

(3) Based on the TCH decomposition strategy, a multi objective and multi constraint optimization 

model without interference is constructed. Besides, under the hybrid drive mechanism, different 

rescheduling evaluation functions and corresponding strategies are constructed for different types of 

interference events. 

(4) The scheduling schemes and the rescheduling schemes were obtained by taking the actual 

production of a factory as an example under three conditions: no interference, order change, and 

equipment fault, in Matlab 2021b. Compared to manual decision-making, the solutions obtained from 

the SI collaboration model based on improved CNP and TCH decomposition strategies are automatic 

and can save over 20% of total production time. 
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6. Limitation 

This study only provides feasibility and confirmatory experiments for the application of swarm intelligence 

management concept in prefabricated component factories. The calculation results are generated under the 

assumptions, however, there are some assumptions which can make the model more applicable are not 

considered. For example, more constraints and objectives. Additionally, this study conducted experiments 

within the scope of its limitations and cannot represent results in larger or more diverse factory settings. 

Some calculation parameters are determined according to the actual production experience in the survey 

results, which may vary in different regions or production conditions. Therefore, the model maybe needs 

to be adjusted for other products or different production environment conditions. 

For future research, it is a good idea to expand the research on the processing of PC components 

under completely different production modes, and more excellent algorithms should be tried to solve 

similar problems, which is also another direction. In addition, quantifying more production factors, such 

as the time and losses associated with mold replacement, worker efficiency, and differences in costs for 

various components in the storage area, can facilitate more precise calculations and optimization. 

Integrating the model and algorithm with existing factory management systems, such as ERP and MES, 

is another direction to provide a more comprehensive and advanced management system. 
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