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Highlights: 

⚫ Integration of BIM and numerical simulation improves the efficiency of building calculation models.  

⚫ A back-analysis method integrates BIM-numerical simulation and machine learning with monitoring data.  

⚫ Validated in deep excavation, the framework identifies parameters and aids deformation prediction. 

Abstract: It is witnessed that building information modeling (BIM) technology has shown its 

capabilities in data integration in the construction industry. Incorporating innovative geotechnical 

theories into BIM helps to further develop its application potential. In the practice of deep excavation 

engineering, obtaining accurate soil parameters is the key to preventing deep excavation accidents and 

reducing construction costs. Aiming at the complexity of soil properties in soft soil deep excavations, an 

intelligent inversion framework for soil parameters in deep excavations is established by using BIM 

technology, finite difference method (FDM), and nondominated sorting genetic algorithm II (NSGA-II). 

Firstly, a building information modeling-numerical simulation (BIM-NS) integrated component is 

implemented based on a transformation interface, including geometric meshing processing and 

controlled script automated execution. Then, a back-analysis component based on NSGA-II optimization 

is attached to the BIM-NS processing to improve the accuracy of soil parameters. Subsequently, a 

framework of the building information modeling- numerical simulation-machine learning (BIM-NS-ML) 

integrated technology is established, enabling the usage of optimal soil parameters for automatic deep 

excavation simulation. Finally, the integrated framework is applied to a subway deep excavation project, 

which verifies that the proposed intelligent integrated framework can accurately identify soil parameters 

in an efficient manner. The BIM-NS-ML integrated technology significantly improves the efficiency of 
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modeling and calculating. The multi-objective optimization algorithm effectively addresses the problem 

of parameter complexity in soft soil. In addition, the intuitiveness of parameter inversion results is further 

enhanced to provide support for construction management and decision-making. 

Keywords: deep excavation; back-analysis; building information modeling; numerical simulation; 

machine learning 

Nomenclature 

Abbreviations 

ANN Artificial neural network 

ACO Ant colony optimization 

BIM Building information modeling 

BPNN Backpropagation neural network 

ESA Evolution strategy algorithm 

FDM Finite difference method 

FEM Finite element method 

FVM Finite volume method 

ML Machine learning 

NSGA Nondominated sorting genetic algorithm 

OD Orthogonal design 

PSO Particle swarm optimization 

RF Random field 

UUID Universally Unique Identifier 

Symbols  

E Young’s modulus, MPa 

c Cohesion, kPa 

φ Friction angle 

μ Poisson’s ratio 

γ Unit weight 

φi Friction angle for interface elements 

ci Cohesion for interface elements 

Kn Normal stiffness for interface elements 

Ks Shear stiffness for interface elements 

1. Introduction 

With the rapid development of the urban economy, the large-scale construction of subway transportation 

networks has become the key to alleviating traffic pressure [1]. However, subway construction typically 

involves deep excavation, and most stations are located in busy residential and commercial areas. The 

surrounding buildings are densely populated, the pedestrian flow is large, and the underground pipe 

network is complex. Consequently, the construction is significantly restricted by the environment [3]. This 

requires stricter deformation control of subway deep excavation projects, especially in soft soil areas. Soft 

soil has low strength, high compressibility, and strong sensitivity, which can easily lead to uneven 

foundation settlement and cause engineering accidents [4]. Therefore, it is particularly important to 

accurately predict the ground deformation caused by deep excavation construction in soft soil and 

implement safety control based on the prediction results for accident prevention. 

It is of great significance to use monitored data to back-analyze the soil parameters of deep 

excavation and guide construction [5]. To improve the computing speed and accuracy, optimization 
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algorithms are widely used, such as the particle swarm optimization (PSO) algorithm [7], evolution 

strategy algorithm (ESA) [10], ant colony optimization (ACO) [12], etc., which are combined with 

numerical calculations to perform parameter inverse analysis and optimization. The nondominated 

sorting genetic algorithm II (NSGA-II) [14] is proposed based on the NSGA to solve multi-objective 

optimization problems. It has the advantages of fast running speed and good convergence, making it 

highly suitable for application in the fast and highly automated feedback analysis of deep excavation 

construction in soft soil. Traditional back analysis methods require manual modeling and repetitive 

complex calculations [17,18], which consume a lot of time and affect the construction progress of deep 

excavation projects. 

Building information modeling (BIM) is not only capable of generating three-dimensional (3D) 

models of the design but also serves as a comprehensive information management platform tool [19]. Its 

advantages in information integration and management provide a potential solution for the realization 

of automatic modeling technology. However, in subway construction, engineering design and numerical 

calculation are often two independent parts, which are difficult to integrate. Some scholars have made 

efforts to develop the integrated BIM-FEM/FDM approach for tunnel excavation [20]. In deep 

excavation projects, Xie et al. proposed a BIM-RF integrated technology to implement the probability 

analysis based on random field theory [24]. Nevertheless, research on parameter back analysis based on 

the building information modeling-numerical simulation (BIM-NS) integrated technology is relatively 

limited. The complexity and variability of soil parameters, especially in soft soil environments, pose 

significant challenges for accurate geotechnical modeling. Current BIM-FEM/FDM integration 

approaches often lack precision in soil parameter evaluation, limiting their ability to adapt to complex 

subsurface conditions. To address this gap, a BIM-based back analysis method could seamlessly 

integrate numerical simulations (e.g., FEM/FDM) with real-time project data, enabling iterative 

calibration of soil properties during deep excavation. 

Above all, the following existing gaps in deep excavation engineering need to be addressed: (1) In 

soft soil deep excavation projects, it is difficult to obtain accurate soil parameters, resulting in large 

deviations between numerical simulation results and measured values. (2) In conventional parameter 

back analysis workflows, iterative modeling processes often require semi-manual interventions (e.g., 

manual data conversion between BIM and numerical tools), which can lead to inefficiency in sample 

construction. Despite the use of computational algorithms, the absence of fully automated integration 

frameworks remains a challenge, particularly in scenarios requiring multi-software collaboration or 

multi-objective optimization. 

In response to the above problems, this paper proposes a back analysis framework for soil 

parameters of deep excavation in soft soil based on the combination of BIM technology and ML 

algorithm. This framework effectively integrates the information integration function of BIM technology 

with the parameter inversion function of backpropagation neural network-nondominated sorting genetic 

algorithm II (BPNN-NSGA-II). The specific research content includes the following two aspects: (1) A 

BIM-NS calculation integrated technology is adopted, which can automatically construct numerical 

calculation samples of deep excavation in soft soil; (2) A multi-objective optimization inversion method 

of soil parameters is designed for deep excavation in soft soil. 
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2. Framework of BIM-NS-ML integrated technology 

This study integrates the BIM-NS technology with the ML method to establish the framework for soil 

parameter identification and excavation response prediction (e.g. deformation) in deep excavation in soft 

soil. Figure 1 illustrates the schematic diagram of the proposed analysis framework, which comprises 

two main phases: 

(1) The database of soil parameters and corresponding excavation responses is efficiently 

established based on BIM-NS technology; 

(2) The mapping relation between soil parameters and excavation responses is constructed by the 

BPNN model, and then parameter inverse analysis is carried out by the multi-objective 

optimization algorithm. 

It can be seen from Figure 1 that the parameter inversion and excavation response prediction method 

based on building information modeling-numerical simulation-machine learning (BIM-NS-ML) 

integrated technology involves two critical points: (1) How to combine BIM and numerical simulation 

to efficiently establish the database; (2) How to implement the multi-objective inversion procedure based 

on BPNN-NSGA-II.  

 

Figure 1. The framework of inversion procedure. 

2.1. BIM-based solution for deep excavation in soft soils 

Based on the work of XIE [24], the automatic execution of BIM-NS mainly requires two steps. Firstly, 

it is necessary to mesh the geometry of the BIM model to meet the computational requirements for 

numerical simulation; Secondly, it is necessary to automatically generate and execute control scripts for 

numerical simulation software that match the BIM model. 
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2.1.1. Object identification in deep excavation BIM model 

In numerical simulations, struts within the excavation support system are generally simulated using 

structural elements, while soil and retaining structures are generally simulated using solid elements. 

Before conducting numerical simulation and analysis, solid elements require meshing, whereas 

structural elements need to be created based on the coordinates of specific key nodes. Given these 

differences, it is necessary to classify engineering objects into solid and non-solid objects when 

extracting them. 

This paper involves three types of engineering objects: soil mass, diaphragm walls, and struts. 

Among the properties of these three types of engineering objects, the parameter that best reflects their 

specificity is the constitutive model. During the excavation, if appropriately designed, diaphragm walls 

are generally in an elastic state, hence diaphragm wall objects are labeled with the elastic constitutive 

model (elastic). Struts in the excavation area are commonly simulated with beam elements within 

structural elements, therefore strut objects are labeled with the beam element (beam) model. Among 

these, the constitutive model of soil mass is relatively complex; different soil constitutive models 

describe the stress-strain relationships of different soils. This study employs the Mohr-Coulomb model 

to describe the deformation characteristics of soil during the excavation. Therefore, it is necessary to 

pre-agree on the definitions of the various parameters of the Mohr-Coulomb model in the parsing 

program to facilitate the acquisition of data tag content. By traversing the constitutive model tags of each 

engineering object, soil objects and diaphragm wall objects can be identified, facilitating subsequent meshing. 

In BIM, the vertical excavation sequence can be described using the storey that is inherited from 

IfcBuildingStorey class with a keyword exc tagged in the storey name. To accurately obtain the 

construction information of the excavation section, the key-value pair format is used to store and retrieve 

excavation information. All storeys with the keyword exc are parsed and extracted as construction 

information during the numerical simulation process. 

In this paper, all attributes of engineering objects in the BIM model are labeled within their property 

sets in BIM. The properties are parsed and serialized in JSON format. 

2.1.2. Geometric meshing processing 

In this paper, tetrahedral mesh elements are used for mesh generation. Initially, the established BIM 

model is exported as an IFC standard file. Subsequently, the IFCOpenShell tool is employed to parse 

the existing IFC file and produce an OBJ geometric file corresponding to the BIM model. To ensure that 

each engineering object matches its attribute parameters, a UUID must be appended to the ‘g’ attribute 

in the OBJ file during the parsing process to generate the OBJ file. Then, the OBJ file is serialized into 

the Constructive Solid Geometry format within the NETGEN software. The geometric data is meshed 

using Delaunay and advancing front mesh generation algorithms, producing tetrahedral elements 

compatible with the finite volume method (FVM) spatial discretization scheme. Additionally, the 

meshed entities are named with their UUIDs. 

Although UUID is a common technical detail in computer-aided design software, it is important to 

note that in this paper, the following additional explanations are necessary: 

(1) During the process of traversing and parsing BIM primitives, the geometric data in the BIM 

model becomes separated from the parameter set it is attached to, in order to facilitate further 
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data processing. The geometric data needs to undergo meshing operations, while the parameter 

set requires further parsing to obtain specific parameter values. To accurately assign values to 

various entity objects in the subsequent computational software scripts (the parameter sets in 

the original BIM model), it is essential to bind the corresponding geometric entities with the 

parameter sets in the database using UUIDs. 

(2) Taking the excavation project in this paper as an example, the numerical calculation process 

involves different types of engineering objects, including the diaphragm walls, soil, and struts. 

In the automated execution program, various engineering objects need to be categorized and 

labeled for processing. A prefix is added to the UUID, such as “1 –”, to identify the category 

of the engineering object. 

2.1.3. Automatic calculation script execution 

To achieve a complete numerical simulation processing, primarily the initialization script and the 

construction scripts are required. The FLAC3D is chosen as the target simulation software for illustration 

in this paper, which employs an explicit finite difference scheme for time discretization combined with 

a finite volume approach for spatial discretization [25]. The workflow of the BIM-NS processing is 

shown in Figure 2. 

(1) Initialization script 

The initialization script for a deep excavation simulation includes the following contents: 

(a) Import the mesh geometry generated in Subsection 2.1.2. 

(b) Assign the computational parameters. The UUID is adapted to match each solid zone with its 

computational parameters listed in the BIM model. The calculation parameters are assigned to 

the solid zone based on the parameter template of the corresponding constitutive model (e.g. 

Poisson’s ratio, Young’s modulus for the elastic model and cohesion, friction angle for the 

Mohr-Coulomb model, etc.). 

(c) Determine the boundary conditions. Search for the boundary coordinate values of all entities 

and sort them to determine the overall model’s boundaries. The zone face apply velocity 

command is used to constrain all displacements at the bottom of the model, as well as the normal 

displacements of the four vertical face boundaries. 

(d) Solve the initial stress field. Use the solve command in FLAC3D to reach the initial state of the 

numerical model. 

(e) Clear the self-weight consolidation settlement. Use the zone gridpoint initialize command in 

FLAC3D software to reset the settlement of the model consolidated under self-weight stress to zero. 

(2) Construction script 

After getting the initial stress field in the numerical model, the process of the excavation is simulated 

by executing the construction script. Notably, the number of excavation steps consists with the 

storeys named with the keyword exc in Subsection 2.1.1. The main contents are as follows: 

(a) Delete the soil elements to be excavated. In each excavation process, soil objects above the 

current excavation elevation are deleted. 
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(b) Create the strut beam elements. The struts are created above the current excavation elevation 

with two key nodes extracted in Subsection 2.1.1. The properties of the struts follow the same 

data flow with solid zones in the initialization script. 

(c) The solve command is used to calculate the state of the model after excavation. 

(d) Execute steps 1–3 in a loop until all excavation steps are completed. 

 

Figure 2. Workflow of BIM-NS processing. 

2.2. Back-analysis method using multi-objective optimization 

This section will comprehensively introduce the back-analysis method based on BPNN-NSGA-II. The 

BPNN model is used to replace the time-consuming numerical calculation process, and then the NSGA-II 

is used to obtain the Pareto solution set of soil parameters. 

2.2.1. BPNN model 

In the BIM-NS integrated technology introduced in Subsection 2.1, the excavation responses of deep 

excavation under different soil parameters are obtained. However, it is extremely time-consuming for a 

large number of numerical calculations to be called in the inverse analysis procedure. Because of its strong 

ability of nonlinear regression, the artificial neural network (ANN) is well-suited for modeling the complex 

relation between multi-dimensional soil parameters and soil responses [26]. Therefore, the ANN is 

introduced in this paper to replace the numerical calculations in the subsequent inverse analysis. This paper 

adopts the widely used BPNN model. As shown in Figure 3, the BPNN model is a neuron-like structure 
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composed of one input layer, one or more hidden layers, and one output layer, which completes the 

nonlinear mapping between input and output through the information interaction among neurons. The 

architecture of the Backpropagation Neural Network (BPNN) in this study employs a three-layer structure 

with specifically designed activation functions. Between the input and hidden layers, a hyperbolic tangent 

sigmoid (tansig) function is implemented to introduce nonlinear transformation capabilities, while a linear 

transfer function (purelin) is adopted at the output layer. The number of neurons in the input and hidden 

layers is determined by the number of inversion parameters and monitoring points, respectively. The 

number of neurons in the hidden layer is determined by a trial-and-error procedure. 

The process of constructing the sample database for the BPNN model based on BIM-NS calculation 

integrated technology is shown in Figure 3. Parametric BIM modeling is carried out based on Section 2.1 

after determining the geometric parameters, some soil parameters (excluding soil parameters to be 

inversed), etc. Then, the computational command containing the information of inversion parameters is 

generated automatically. The inversion soil parameters are obtained using the OD (orthogonal design) 

method. The OD method selects some representative points that are uniformly dispersed and neatly 

comparable. Its superiority in multi-factor and multi-level experiments has been fully proved [29]. The 

corresponding mechanical responses of deep excavation can be obtained by numerical calculation of 

various parameters in batches. Inversion parameters are utilized as inputs for BPNN. Concurrently, the 

mechanical responses serve as outputs for constructing the prediction model. The trained model can 

replace the complex and time-consuming numerical calculation of deep excavation. 

 

Figure 3. Workflow of BPNN-NSGA-II. 
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2.2.2. NSGA-II optimization algorithm 

The NSGA-II optimization algorithm achieves parameter optimization through iterative updating of the 

population. It generates the Pareto optimal solution set by combining non-dominated sorting and 

crowding distance calculation [31]. The purpose of the multi-objective optimization method is to find 

the optimal solution set (i.e. Pareto front) within the possible range of soil parameters in each soil layer, 

so as to avoid the defect of local optimization of a single solution method (including the traditional 

NSGA method and the neural network method without considering the optimization steps). 

The optimal solution of a multi-objective genetic algorithm optimization problem is in the form of 

a solution set, in which the objective function values of all solutions are not inferior to other individuals. 

As shown in Figure 4, when the number of objective functions is 2, the solution set is represented as a 

curve close to the two coordinate axes on the plane. When the number of objective functions is 3, the 

solution set is represented as a surface close to the coordinate axes in space. The multi-objective genetic 

algorithm has no specific requirements for the objective function, which can be determined according to 

the actual needs. In the back-analysis method, the purpose is to find a set of parameters to make the 

calculation values closest to the monitored values. The normalized mean squared error between 

calculated and monitored values is used as the objective function in this paper. Since the BPNN model is 

used instead of numerical calculation in Section 2.2.1, the objective function can be expressed as follows: 
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where, k is the number of the objective function; 1 2( , ,..., )mx x xX =
 is a vector consisting of m inversion 

parameters; 
( )k

iBPNN X
 and 

k

i  represent the calculated value of the BPNN model and the field 

monitored value at the ith monitoring point in the kth objective function, respectively; nk represents the 

number of monitoring points in the kth objective function. 

The NSGA-II algorithm optimizes the objective function through the following steps [33]: 

(1) The combination of soil parameters is randomly generated within the given range. Each set of 

parameters is called an individual. All individuals form a parent population P0 with a population 

size of N. 

(2) Generate the offspring population Qt (t = 0, 1, 2, …) based on selection, crossover, and mutation 

operations with a size of N. The parent and offspring populations of t generation are combined 

to form Rt with a population size of 2N. 

(3) Perform the non-dominated sorting to generate the non-dominated set Fi (i denotes the ranking 

level). If the size of F1 is less than N, F2 is added to the next parent population Pt+1, and so on, 

until the population size is not less than N after the addition of generation Fm. If the population 

size is equal to N, stop. If the size is greater than N, the inferior individuals in Fm need to be 

eliminated based on crowding distance attributes, and the remaining individuals will serve as 
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the parent population of the next generation. Then, the next generation population Qt+1 is 

generated again using selection, crossover, and mutation operations, with a population size N. 

(4) If the maximum number (Max) of generations is reached, all individuals in Pi+1 are output as 

the Pareto solution set. Otherwise, repeat steps (2) and (3). 

 

Figure 4. Schematic diagram of the Pareto solution: (a) 2 objective functions; (b) 3 objective functions. 

2.3. Integration of BIM technology and ML-based inversion method 

The inversion method based on BPNN-NSGA-II can effectively identify soil parameters but lacks the 

ability of numerical calculation to generate the required samples. However, BIM-NS technology provides 

an effective solution to this problem. This technology can integrate key engineering information into 

parametric models for batch numerical calculations. Therefore, this paper proposes an inversion method 

for deep excavation in soft soil based on BIM-NS-ML. In summary, this method includes the following 

stages. Firstly, sample data is generated based on BIM-NS integrated technology (Subsection 2.1) to 

construct the mapping relationship between soil parameters and excavation responses (Subsection 2.2.1). 

After ensuring the accuracy of the prediction model, the trained model is combined with NSGA-II for 

parameter inverse analysis. Finally, the inversion parameters are incorporated into the original BIM 

model, thereby enhancing the efficiency of project management. 

3. Case study: a typical deep excavation in soft soil 

3.1. Project background 

In this paper, a subway station excavation project is considered for performing an inverse analysis based 

on BIM-NS-ML technology. The project is located in a soft soil area where the soil properties are complex. 

The input parameters are one of the key factors affecting the accuracy of numerical simulation, so it is 

necessary to clarify the soil parameters for the project. As shown in Figure 5 and Figure 6, the main 

dimensions of the parametric BIM model of this project are 76.5 m (x direction) × 184.8 m (y direction) × 55.4 m 

(z direction), the width of deep excavation is 21.1 m, and the depth of deep excavation is 15.7 m. This 

project is excavated in four stages, with excavation depths of −2 m, −8.7 m, −13 m, and −15.7 m. As shown 

in Figure 6, the parametric BIM model of this project involves 8 soil layers, and the basic properties of 

the soil layers based on the geological investigation report are shown in Table 1. In this paper, the Mohr-

Coulomb constitutive model is used to describe the stress-strain behavior of soil. 
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Figure 5. Cross-sectional view of the deep excavation (x = 35 m). 

 

Figure 6. A typical case of subway station excavation: (a) BIM model; (b) FDM model. 
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walls, interface elements are adopted, and the corresponding parameters are set as φi = 10◦ (friction 

angle), ci = 10 kPa (cohesion), Kn = 40 MPa/m (normal stiffness), and Ks = 5 MPa/m (shear stiffness). 

1st strut (concrete strut) 

2nd strut (steel strut) 

3rd strut (steel strut) 

4th strut (steel strut) 

2 m

6.7 m

4.3 m

2.7 m

0.8 m

39.7 m

-1.2 m

-7.7 m

-12.0 m

-14.7 m

10.55 m 10.55 m

1st excavation

2nd excavation

3rd excavation

4th excavation

 Diaphragm wall

2 m

  

5 m

Legend

Selected monitoring point

(diaphragm wall deflection)

Selected monitoring point

(ground surface settlement)

 
 

12 monitoring points

12 monitoring points

Ground

Layer 1

Layer 5

Layer 4

Layer 8

Layer 3

Layer 7

Layer 2

Layer 6

-2.0 m 1s t Exc
-8.7 m 2

nd
 Exc

-13.0 m 3rd Exc
-15.7 m 4th Exc

-1.2 m 1s t Strut
-7.7 m 2nd Strut
-12.0 m 3rd Strut
-14.7 m 4th Strut

(a) (b)

x
y

z
x y

z

5
5

.4
 m



Smart Constr.   Article 

 12 

Table 1. Values of determinate material parameters. 

Material Thickness (m) 

Young's 

modulus 

E (MPa) 

Cohesion 

c (kPa) 

Friction 

angle 

φ (°) 

Poisson' 

ratio 

µ 

Unit weight 

γ (kN/m3) 

Soil layer 1 3.0 - - - 0.44 19.1 

Soil layer 2 1.8 - - - 0.40 18.4 

Soil layer 3 8.2 - - - 0.43 18.1 

Soil layer 4 4.5 - - - 0.41 19.6 
Soil layer 5 5.5 - - - 0.40 19.0 

Soil layer 6 27.7 - - - 0.25 18.9 

Soil layer 7 3.5 45 5 38 0.25 22.0 

Soil layer 8 1.2 1200 50 20 0.35 27.0 

Diaphragm wall - 31000 - - 0.2 25.0 

Concrete strut - 31000 - - 0.2 25.0 

Steel strut - 210000 - - 0.28 78.5 

3.2. Implementation process of the BIM-NS-ML integrated framework 

3.2.1. Preparation of BIM-NS calculation 

Based on the engineering design documents, the BIM model is established accordingly. In this paper, a 

simple but effective entity inheritance is adopted, as shown in Figure 7. All the engineering objects, 

including soil mass, diaphragm wall, and struts are created from IfcBuildingElementProxy class with 

computational parameters tagged in the parameter set. The construction sequence represented as storeys 

are created from IfcBuildingStorey class with the keyword exc tagged in their names. 

To generate samples for back analysis, the BIM-NS technology described in Subsection 2.1 is 

adopted to execute the excavation simulation automatically. The BIM model and FDM model are shown 

in Figure 6. 

 

Figure 7. IFC standard description. 

3.2.2. Selection of monitoring points and determination of parameter space 

As shown in Figure 5, 24 typical monitoring points in the subway station deep excavation are selected 

as inversion monitoring points. These monitoring points are located in the middle of the length direction 

of the deep excavation (x = 35 m). Among them, 12 monitoring points are located inside the diaphragm 

wall to monitor horizontal displacement, with a spacing of approximately 2 m. The other 12 monitoring 

points are located on the surface outside the deep excavation to monitor surface settlement, with a 

spacing of approximately 5 m. 
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The diaphragm walls extend deep into the sixth soil layer, and the parameters of the upper six soil 

layers have a significant impact on the subway station excavation. To reduce the inversion dimension, 

the modulus, cohesion, and friction angle of the upper six soil layers are taken as unknown inversion 

parameters. Two objective functions of horizontal displacement and settlement displacement are 

established to form multiple objective functions. Based on Equation (1), the multi-objective function 

applicable to this project can be constructed as follows: 
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where, F1 and F2 represent the objective functions of horizontal displacement and surface settlement, 

respectively; 1 2 6= ( , ,..., )E E EE
 is the six deformation modulus parameters to be inverted; 

1 2 6= ( , ,..., )c c cc
 is the six cohesion parameters to be inverted; 1 2 6= ( , ,..., )  

 is the six friction angle 

parameters to be inverted. 

As shown in Table 2, the ranges of 18 inversion parameters are determined based on the geological 

investigation report. Firstly, three levels are determined within the range of inversion parameters, and 

an OD method is used to generate 64 sets of parameters in Table 3, which are used as input data for 

training the BPNN model. Subsequently, 3D forward simulations using the BIM-NS technology are 

performed for each set of parameters. The displacement calculation results of monitoring points are used 

as the output data for training the prediction model. Afterward, following several trial calculations, the 

BPNN model is finally determined to contain three layers, with the neural architecture of 18-10-24, as 

shown in Figure 3. To verify the accuracy of the trained BPNN model, 20 combinations of the inversion 

parameters are randomly generated within the inversion parameter space, and the calculation results of 

the BPNN model and the BIM-NS are compared. As shown in Figure 8, the two calculation results are 

highly consistent. It indicates that the BPNN model can build a mapping relation between soil parameters 

and displacement of the deep excavation, and can replace the time-consuming numerical calculation 

process for subsequent inversion analysis.  

Finally, the NSGA-II algorithm is applied to search for the Pareto solution set. After the NSGA-II 

algorithm completes the optimization process, the final optimal solution is selected from the Pareto solution 

set according to the designer’s higher-level consideration to facilitate subsequent prediction analysis. 

Table 2. The range of soil parameters. 

Modulus (MPa) E1 E2 E3 E4 E5 E6 

min 2 6 6 13 12 22 
max 6 15 10 21 19 44 

Cohesion (kPa) c1 c2 c3 c4 c5 c6 
min 7 11 8 6 22 23 
max 13 20 16 10 40 43 

Friction angle (°) φ1 φ2 φ3 φ4 φ5 φ6 

min 6 6 5 12 17 18 
max 10 12 9 22 33 35 
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Table 3. Training samples. 

No. 
Modulus (MPa) Cohesion (kPa) Friction angle (°) 

E1 E2 E3 E4 E5 E6 c1 c2 c3 c4 c5 c6 φ1 φ2 φ3 φ4 φ5 φ6 
1 2.0  6.0  6.0  17.0  19.0  33.0  13.0  11.0  8.0  10.0  31.0  33.0  6.0  9.0  5.0  22.0  17.0  35.0  

2 2.0  6.0  6.0  21.0  12.0  44.0  10.0  15.5  12.0  6.0  40.0  43.0  6.0  6.0  9.0  12.0  25.0  18.0  

3 4.0  6.0  6.0  13.0  12.0  33.0  10.0  21.0  8.0  10.0  22.0  43.0  8.0  6.0  7.0  12.0  17.0  26.5  

4 2.0  10.5  6.0  21.0  12.0  22.0  10.0  11.0  8.0  6.0  22.0  33.0  10.0  12.0  5.0  22.0  25.0  26.5  

5 4.0  6.0  6.0  17.0  12.0  22.0  7.0  11.0  16.0  8.0  40.0  23.0  8.0  6.0  5.0  12.0  25.0  35.0  

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

30 6.0  6.0  8.0  17.0  12.0  22.0  7.0  15.5  16.0  6.0  22.0  43.0  10.0  6.0  5.0  22.0  17.0  26.5  

31 4.0  10.5  8.0  21.0  12.0  44.0  7.0  11.0  8.0  6.0  40.0  43.0  6.0  12.0  7.0  12.0  17.0  18.0  

32 6.0  10.5  6.0  13.0  12.0  22.0  10.0  11.0  16.0  8.0  31.0  43.0  6.0  9.0  5.0  22.0  17.0  18.0  

33 2.0  6.0  8.0  17.0  19.0  44.0  10.0  15.5  8.0  6.0  22.0  23.0  6.0  9.0  5.0  12.0  33.0  26.5  

34 4.0  15.0  6.0  13.0  12.0  22.0  10.0  11.0  12.0  10.0  40.0  33.0  6.0  9.0  5.0  17.0  17.0  18.0  

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

60 2.0  6.0  6.0  21.0  15.5  44.0  13.0  11.0  8.0  8.0  40.0  43.0  6.0  9.0  5.0  17.0  17.0  26.5  

61 2.0  15.0  6.0  13.0  15.5  33.0  7.0  11.0  8.0  10.0  40.0  23.0  10.0  6.0  5.0  12.0  25.0  18.0  

62 2.0  6.0  6.0  13.0  19.0  22.0  7.0  15.5  12.0  10.0  22.0  23.0  6.0  12.0  7.0  22.0  25.0  35.0  

63 6.0  10.5  6.0  13.0  19.0  22.0  13.0  21.0  8.0  6.0  40.0  33.0  6.0  6.0  7.0  12.0  25.0  26.5  

64 6.0  10.5  6.0  17.0  15.5  44.0  7.0  11.0  12.0  6.0  22.0  23.0  6.0  6.0  5.0  12.0  17.0  35.0  

 

 

Figure 8. Comparison of displacement at the monitoring point calculated by the BPNN model and the 

BIM-NS technology. 

3.3. Results of inverse analysis 

3.3.1. Identification of inversion parameters 

The population size, maximum number of iterations, probability of crossover, and probability of 

mutation for the NSGA-II algorithm are set as 100, 100, 0.7, and 0.4, respectively. When the iteration is 

complete, consider the following relative error function to select the final optimal solution from the 

Pareto solution set. 
2
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where, fi represents the calculated displacement of the ith monitoring point based on the BIM-NS 

technology; δi represents the measured displacement of the ith monitoring point. In this project, n = 12 

(12 diaphragm wall deflection monitoring points and 12 ground surface settlement monitoring points). 

Table 4 shows the relative errors for the solutions in the Pareto-optimal set based on Equation (2). 

The average represents the average of relative errors for all solutions in the Pareto-optimal set. The best 

and the worst represent the lowest and highest relative errors in the Pareto-optimal set, respectively. As 
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shown in Table 4, the lowest relative error is 3.2 %, corresponding to the best solution. Therefore, this 

solution is selected as the final solution, as shown in Table 5. 

Table 4. The relative errors for the solution in the Pareto-optimal set. 

 The best The worst The average 

Relative errors (%) 3.2 12.8 8.9 

Table 5. The parameter of inverse analysis. 

Modulus (MPa) E1 E2 E3 E4 E5 E6 

value 4.47 12.07 8.02 16.38 13.88 32.84 

Cohesion (kPa) c1 c2 c3 c4 c5 c6 

value 11.06 15.14 12.93 8.33 32.02 38.06 

Friction angle (°) φ1 φ2 φ3 φ4 φ5 φ6 

value 5.12 7.66 11.08 20.63 26.46 31.00 

3.3.2. Comparison of calculated displacements and monitored values 

The comparison between the calculated displacement values and the monitored values of the two 

selected types of monitored data (diaphragm wall deflection and ground surface settlement) is shown in 

Figure 9(a) and Figure 9(b), respectively. The forward calculated displacement value through the final 

optimal solution obtained based on the multi-objective inversion method is very close to the 

corresponding monitored value. In particular, some displacements are almost the same as the monitored 

values, such as the maximum diaphragm wall deflection occurs near the surface and the fourth 

excavation step, and the maximum surface settlement occurs approximately 10.5 m from the edge of the 

deep excavation. In addition, the trend of calculated displacements with position generally matches the 

actual measurements. This indicates that the inverse analysis method for deep excavation in soft soil is 

reliable, laying the foundation for subsequent construction prediction. 

 

Figure 9. Comparison of monitored values and forward computation based on inversion 

parameters: (a) Diaphragm wall deflection; (b) Ground surface settlement. 
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3.3.3. Efficiency of inversion analysis 

The efficiency of the proposed back-analysis framework is one of its key advantages. In the framework, 

a total of approximately 150 numerical simulations are required to construct the sample data for training 

the neural network model. Once the neural network is trained, subsequent back-analysis can be 

performed by simply calling the pre-trained neural network model, which significantly reduces the 

computation time. Compared to the time required for numerical simulations, the time needed to use the 

neural network model for parameter inversion is negligible. The numerical simulations for deep 

excavation in this paper require 5 minutes, using a desktop with an Intel CORE i7-13700. Therefore, a 

single inversion analysis takes about 12.5 hours. 

In contrast, if the surrogate model is not used, the process would involve direct numerical 

calculations for each inversion iteration. This would require approximately 2500 numerical simulations, 

making inversion analysis considerably more time-consuming. A single inversion analysis takes about 7 days. 

Therefore, by utilizing the neural network-based approach, the proposed framework offers a substantial 

reduction in computational cost and time, making it a more efficient solution for deep excavation analysis. 

4. Conclusion 

In response to the issue of sample construction inefficiency in inversion methods based on multi-objective 

genetic algorithm optimization, this paper proposes a BIM-NS-based framework of BIM-NS-ML. In this 

framework, all calculation parameters are integrated into the BIM model of deep excavation. Through 

geometric transformation and automated script execution, the BIM model automatically executes 

numerical simulations, conveniently populating the database with the data samples needed for surrogate 

model construction. The inversion parameters are optimized and updated in the corresponding BIM 

model, achieving more efficient project management. 

(1) A BIM-NS-ML framework is established to execute the back analysis, enhanced by automatic 

numerical simulation of the deep excavation. Repetitive numerical simulation modeling and 

modification processes are improved in BIM integration. 

(2) A multi-objective back-analysis framework for deep excavation in soft soil is proposed. In this 

paper, the BIM-NS technology is integrated with the BPNN-NSGA-II inverse analysis method 

to achieve rapid identification of soil parameters based on multi-source monitored data. The 

framework has a high degree of versatility, theoretically allowing its application to various soil 

types and engineering projects of different scales. 

(3) A multi-objective inverse analysis is applied to a real case of deep excavation, and the results 

show that the method can effectively identify parameters and provide an effective tool for 

deformation prediction and safety assessment. 
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