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Highlights:  

⚫ A deep learning network is proposed to predict the bond slip performance of GBR systems. 

⚫ Deep learning models have better prediction accuracy than empirical formulas.  

⚫ An improved hyperbolic constitutive model based on deep learning is proposed . 

⚫ The constitutive model is applied to the numerical simulation of ABAQUS with good results. 

Abstract: Grouted Bellows Connect Rebar (GBR) technology is critical for ensuring reliable 

connections in precast concrete components. The bond-slip behaviour, a core metric for assessing GBR 

connection performance, presents significant complexity, and existing empirical models often fall short 

in prediction accuracy to meet engineering demands. Addressing this challenge, this study introduces an 

innovative hybrid model (CNN-LSTM) that integrates convolutional neural networks with long short-

term memory networks. Utilizing eight critical parameters, such as grouting strength, reinforcement 

ultimate strength, and the anchorage length-to-diameter ratio of the reinforcement, the model achieves 

precise predictions of GBR bond stress. This study systematically collected data from 114 sets of GBR 

pull-out tests, constructing a dataset comprising 2,272 bond-slip samples for model training and 

validation. Additionally, 15 GBR independent samples were independently fabricated and multiple 

samples were extracted to assess the model generalization capability. Experimental results 

demonstrate that the CNN-LSTM model significantly outperforms traditional empirical models in 

predicting bond stress and exhibits superior generalization across key metrics, including total energy 

consumption, maximum bond stress, failure modulus, and residual energy. Parameter importance 

analysis reveals that grouting strength, reinforcement ultimate strength, and the anchorage length-to-diameter 

ratio are the most influential factors in bond stress prediction. Building on the CNN-LSTM model 

predictions, this study establishes an improved empirical model with clear physical significance, 

offering a reliable computational foundation for engineering applications. 

Keywords: grouting bellows; precast concrete components; CNN-LSTM; bond stress; energy 

consumption; maximum bond stress  
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1. Introduction 

With the increasing demand for joint anchorage in the construction of prefabricated structures, the issue 

of bond-slip between reinforcement and grouting material has garnered significant attention from 

researchers [1]. Sleeve grouting connection [2] and GBR are two prevalent connection methods in 

prefabricated concrete buildings. However, the former requires high construction accuracy, leading to 

reduced construction efficiency, whereas the bellows grouting anchor connection has lower accuracy 

requirements [3]. Research by Li [4] further demonstrates that in GBR systems, metal bellows exhibit 

superior anchoring performance compared to plastic bellows. Additionally, multiple pull-out tests have 

verified the reliability of UHPC grouting material in fabricated joint connection technology. GBR system 

represents a critical technology for ensuring the reliable connection of precast concrete components. 

The GBR system, designed for connecting prefabricated piers and cap beams, was first introduced 

by Steuck et al. [5]. Steuck pull-out tests indicate that reductions in grouting strength and anchoring 

length lead to the deterioration of the anchoring performance of steel bars, thereby affecting the stability 

and integrity of the overall structure. In the joint design of prefabricated concrete buildings, the 

anchoring performance in the GBR system is primarily determined by the bond-slip relationship between 

steel bars and grout, which has garnered extensive attention in relevant studies [6]. To investigate the 

main factors influencing the bond-slip behavior between reinforcement and grout, Hayashi et al. [7] and 

Yu et al. [8] explored the complex variations in bond strength by altering parameters such as the diameter 

of reinforcement, anchorage length, grout strength, and protective layer thickness, in addition to 

conducting tensile tests. Beyond tensile tests, Hosseini et al. [9,10] and Gu et al. [11] examined the 

bond-slip mechanism of steel bars in axial pull-out processes through beam tests to achieve a more 

accurate understanding of the anchorage mechanical properties between steel bars and grout. Hosseini et al. 

[9,10] utilized spiral constraints to study the bond-slip relationship of threaded steel bars connected by 

grout, finding that factors such as spiral diameter and spiral spacing impact the restraint effect of the 

system. Gu’s beam tests revealed that the anchorage performance of precast grout members significantly 

exceeds that of cast-in-place concrete structures. Zhao et al. [12] investigated the performance of bellow 

slurry anchor connections under spiral stirrup constraints and proposed formulas for ultimate bond 

strength and ultimate anchoring length, demonstrating that ultimate bond strength changes nonlinearly 

with increasing bellows diameter. Although prior studies have identified critical factors influencing GBR 

anchoring performance, the precise bond stress-slip relationship between reinforcement and grout 

remains underexplored. 

To simulate the finite element analysis of large assembled components under various loads, the 

bond-slip model between reinforcement and grout serves as a crucial foundation [13,14]. In the GBR 

system, the force mechanism at the contact interface between the steel bar and the grout is highly 

complex. In addition to the mechanical interlock provided by the transverse ribs of the steel bar, the 

gripping force exerted by the metal bellows helps mitigate the spread of cracks in the grout [15]. Through 

extensive central pull-out tests, displacement and load data from the loading end of the GBR system can 

be directly obtained, allowing for the calculation of the bond-slip relationship.  Subsequently, statistical 

and fitting methods can be employed to propose a bond-slip model for the GBR system. Liu [16], based 

on data fitting from pull-out tests of grouted metal bellows, provided a simplified bond-slip model that 

considers critical factors such as reinforcement anchorage length and aperture ratio. Zhu [17] established 
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a bond-slip model between grout and reinforcement under spiral stirrup constraints, based on the 

characteristics of the bond-slip curve. In addition to the slip between steel bars and grout, the GBR 

system also exhibits slip between the bellows and external concrete, rendering the bond-slip properties 

of the structure highly complex. The aforementioned models only consider a limited set of variables and 

fail to account for more critical factors, such as the maximum distance between the steel bar and the 

edge of the member. By collecting extensive research data and extracting several key factors as input 

features, machine learning methods can be employed to solve the bond-slip model between 

reinforcement and grout in the GBR system. 

In the study of applying machine learning to bond-slip models, Abdulwarith et al. [18] employed particle 

swarm optimization artificial neural networks and support vector machine models to investigate the 

bond-slip behavior between UHPC and steel bars, exploring the complex relationships among steel bar yield 

strength, concrete cover thickness, and other factors affecting ultimate bond strength. Fan et al. [19] 

effectively predicted the bond-slip relationship between steel and concrete using radio frequency feature 

selection and GWO-SVR. Su et al. [20] utilized MLR, SVM, and ANN models to predict the bond strength 

between FRP bars and concrete, and developed a stacking strategy to enhance prediction accuracy. To 

accurately predict the local bond-slip relationship at the interface between steel bars and UHPC under 

monotonic load, particularly in the absence of sufficient data, Pishro et al. [21] created a database using finite 

element analysis and employed a physical information neural network (PINN) to predict hyperparameters in 

the bond-slip problem between steel bars and UHPC. This approach provides an effective optimization 

scheme for structural engineering. It is noteworthy that the bond-slip model of the GBR system can be viewed 

as a nonlinear curve closely related to time, making it suitable for training using multivariate temporal 

networks as time series data [22,23]. 

Due to the complexity of bond-slip behavior in GBR systems and the limited research on integrating 

bond-slip models with machine learning for GBR systems, this paper proposes a deep learning network for 

time series data processing to address this issue and thoroughly analyze the bond-slip constitutive behavior 

in GBR systems. In this study, a substantial amount of pull-out test data from GBR systems was collected, 

and a deep learning model based on time series analysis was developed to predict the bond-slip relationship 

between reinforcement and grout in GBR systems. Additionally, 15 groups of pull-out tests were conducted 

to validate the predictive accuracy of the model. Furthermore, the deep learning model with the best 

predictive performance was compared with traditional constitutive model, and an in-depth analysis was 

conducted on total energy consumption, maximum bond strength, component failure modulus, and residual 

energy. The study also provides an importance analysis of the influencing factors of GBR on total energy 

consumption and other indicators. Although the CNN-LSTM model demonstrates high precision in 

predictive capabilities, its internal mechanisms are complex and cannot be easily expressed through simple 

mathematical formulas. To facilitate the quick evaluation of GBR systems, a simplified bond-slip model is 

proposed. This model is based on the ultimate bond stress predicted by the CNN-LSTM model and 

incorporates a modified hyperbolic bond-slip model for engineer reference. The aim of this study is to offer 

an effective method for researchers and structural engineers to understand and design the bond-slip 

relationship between steel bars and grout in GBR systems, thereby enhancing the reliability of joint design 

in prefabricated buildings. 
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2. Database and experiment 

2.1. Database 

This section provides an overview of the collected database, key component factors for GBR systems, and 

the inputs and outputs of the deep learning model. The database is derived from 11 studies on GBR, 

encompassing 114 components tested under normal temperature and pressure conditions. Data points from 

the bond stress-slip curves corresponding to each component were extracted, resulting in a database with 2272 

training data points. The components in the database consist of a single steel bar anchored in a corrugated 

tube within the grouting material, subjected to unidirectional axial pull-out tests. These components were 

fabricated in accordance with the design specifications of ACI318-19 [24] or GB50010-2010 [25]. The 

failure mode observed in these components is adhesive slip failure, characterized by the steel bars slipping 

out of the high-strength grout material due to anchorage failure. For the input parameters of the deep learning 

model, the following variables were selected: 'cf , 'gf , /r rl d , /b rd d , rD , uf , yf  and s . Their 

significance and the scope of the database are presented in Table 1, while the detailed range of each input 

parameter in each study is shown in Table 2. These parameters were chosen for the following reasons: 

The ratio of reinforcement anchorage length to reinforcement diameter ( /r rl d ) and the ratio of inner 

diameter of bellows to reinforcement diameter ( /b rd d ) are critical factors. During the reinforcement pull-out 

process, the stress distribution is uneven from the loading end to the anchoring end. The stress distribution 

function equation has been studied using normalization methods [26, 27]. The ultimate bond-slip strength is 

proportional to the anchorage length of the steel bar, and the likelihood of steel bar pull-out failure 

increases with the anchorage length [25, 28]. When the aperture of the metal bellows embedded in 

concrete is too small relative to the steel bar, insufficient grouting material may lead to the bellows being 

pulled out along with the steel bar due to local effects. The aperture ratio thus has a significant impact on 

bond-slip performance [29]. Therefore, these factors are crucial to the anchoring performance of GBR systems. 

The tensile strength ( uf ) and yield strength ( yf ) of the steel bar are critical material properties that play 

a decisive role in the anchoring capability of the GBR system. 

Concrete compressive strength ( 'cf ) and grouting splitting tensile strength ( 'gf ) are critical parameters 

as the grouting material is in direct contact with the reinforcement. The anchoring effect in the GBR system 

is primarily provided by the mechanical interlock between the ribbed reinforcement and the grouting 

material. When the load is sufficiently large, the transverse ribs of the reinforcement bar can crush the 

grouting material, leading to micro-cracks and ultimately causing cracking and failure of the grouting 

material [30–32]. During the pull-out process, the corrugated pipe exerts a gripping force on the steel bar, 

which increases the friction between the steel bar and the grout material, thereby enhancing the bond 

properties. However, when the expansion and deformation of the bellows induce cracks in the surrounding 

concrete, the gripping force of the bellows is also diminished [33]. 

Minimum distance between the reinforcement bar and the edge of the member ( rD ): A concrete cover 

that is too thin can lead to premature cracking during the loading process. This premature cracking weakens 

the binding effect of the concrete on the bellows, thereby adversely affecting the bond-slip relationship in the 

GBR system [34,35].  

Slip increments ( s ) are input and trained in the bond-slip curve as the horizontal axis. Each slip 

increment corresponds to a bond stress, so the bond stress output after model training will also correspond to 
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these slip increments, thereby directly obtaining the bond-slip model relationship. A detailed example of each 

parameter for a component is shown in Figure 1. 

  

(a) (b) 

Figure 1. Schematic diagram of input parameters and specimen geometry (a) Vertical section 

view; (b) Horizontal section view. 

Table 1. Input parameter meaning and range. 

Input parameter Meaning Range 

'cf  (MPa) Concrete compressive strength 34.5-45.89 MPa 

'gf  (MPa) Tensile strength of grout 3.74-6.82 MPa 

/r rl d   Ratio of anchorage length to diameter of reinforcement bar 1.96-23.5 

/b rd d  Ratio of the diameter of the bellows to the diameter of the steel bar 1.44-4.94 

rD  (mm) Minimum distance between steel bar and member edge 30-457.2 mm 

uf  (MPa) Ultimate strength of steel bar 566.5-925 MPa 

yf  (MPa) Yield strength of steel bar 422-580 MPa 

s  (mm) Slip of the loading end of the bar 0-96.1 mm 

Table 2. Detailed scope of component parameters. 

Source 'cf (MPa) 'gf (MPa) /r rl d  /b rd d  rD (mm) uf (MPa) yf (MPa) s (mm) 

Guo[36] 45.89 [3.83, 4.25] [5, 13] [1.6, 3.6] [130, 190] 645.3 452.6 [0, 22] 

He[37] 45.17 4.13 [4, 7] [8, 11] [55, 85] [581, 604.4] [444.8, 458] [0, 18.8] 

Pan[38] 45.17 4.13 [5, 10] [1.44, 4.38] [30, 315] [579, 665] [435, 529.5] [0, 15.8] 

Liu[39] 34.7 3.74 [7, 13] 4.29 30 [566.5, 603] [431, 495.5] [0, 18.6] 

Chen[40] 43.1 3.93 [5.04, 7.2] [1.44, 2] [175, 375] 591.7 451.2 [0, 96.1] 

Guo[41] 45.89 [3.83, 4.25] [5, 16] 2.6 [125, 375] 647.3 452.6 [0, 23.03] 

lb

Stirrup Steel barGrout

Metal bellowConcrete

lr

Specimen width Specimen width

Drdr

db

Stirrup

Stirrup



Smart Constr.  Article 

 6 

Table 2. Cont. 

Source 'cf (MPa) 'gf (MPa) /r rl d  /b rd d  rD  (mm) uf  (MPa) yf (MPa) s (mm) 

Zhu[42] 39.5 [5.09, 6.82] [3, 5] [2.5, 4.29] 75 [568.2, 599] [433, 445.4] [0, 28.05] 

Zhou[43] 44.8 4.74 [1.96, 23.46] [2.23, 4.33] 120 [726.7, 925] [511, 580] [0, 79.74] 

Hu[44] 42.3 5.79 7 2.52 250 601 422 [0, 57.28] 

Liu[45] 42.3 5.31 [3, 5] [2.52, 4.94] 125 [603, 610] [422, 437] [0, 13.77] 

Steuck[5] 34.47 4.94 [4, 14] [3.4, 3.44] 457.2 648 [455, 510] [0, 27.71] 

2.2. Experiment 

Following the central pull test of the database, we independently prepared 15 sets of tests to verify the 

robustness of the model. The detailed drawing of the bar bond-slip specimen is shown in Figure 1. The test 

employs a mono-continuous loading mode, with the schematic diagram of the loading device illustrated in 

Figure 2. The steel bar is anchored using an anchor rod, and the drawing force is evenly transferred to the 

anchor rod via a steel plate. The load is applied at a rate of 10 kN/min during the initial stage, and 

subsequently reduced to 5 kN/min when the steel bar load reaches 85% of the estimated ultimate load, 

continuing until the steel bar fails. 

  

(a) (b) 

Figure 2. Loading set up (a) Loading device; (b) Loading device design drawing. 

 

3. Model development 

3.1. CNN-LSTM model 

The model is determined based on the characteristics of the input and output parameters. Among the input 

values, the tensile strength of the steel bar, the yield strength of the steel bar, the compressive strength of the 

Displacement meter

Steel plate pad

Hydraulic jack

Three-leaf anchorage

Anchor bar

Metal bellow

PVC tube

Pressure sensor
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concrete, and the grouting splitting tensile strength are the material parameters of the specimen. The ratio of 

anchorage length to the diameter of the steel bar, the ratio of the inner diameter of the bellows to the diameter 

of the steel bar, and the minimum distance between the steel bar and the edge of the member are the geometric 

parameters of the specimen. The slip quantity represents the time series data that changes over the course of 

the test, while the output value is the bond stress, which is also time series data. When designing the model, 

it is essential to extract local features from the time series data while maintaining the original sequence 

relationship. Therefore, a CNN-LSTM architecture is proposed. CNNs can efficiently extract local features 

of the data and have translation invariance, while LSTM can capture long-term dependencies in the data [46]. 

The model architecture of CNN-LSTM is shown in Figure 3. During the training process, data is first input 

into the convolutional layer where features are extracted using convolutional kernels. The flat layer is used 

to reduce the feature dimensions before inputting them into the LSTM layer. Finally, a Sigmoid activation 

function is employed to obtain the predicted values, and the Adam algorithm is used to calculate the gradient 

of each layer for backpropagation. 

Training with larger batch sizes significantly improved the CNN-LSTM model accuracy. Therefore, 256 

was adopted as the batch size for the data of 2272. Specifically, a dataset comprising 2272 entries was 

sequentially arranged and divided into batches of 1000 for input into the convolutional layer. The convolutional 

layers comprised 64 filters with a stride length of 1. The data undergoes folding operations, generating weight 

and bias tensors. Following the application of the ReLu activation function for non-linear processing, the 

data proceeds to the subsequent convolutional layer, also composed of 64 layers, where it is again folded 

with a stride length of 1 to generate additional weights and biases. The processed data is then transformed 

into a one-dimensional time series through flattening layers and subsequently input into the LSTM network 

for training. The final output is a bond stress vector, derived from the fully connected layer. The network 

undergoes backpropagation using the objective function, as illustrated in Equation (1). This process 

encapsulates the learning mechanism of the CNN-LSTM model. 

2
^

1

1 N

t t

t

L
N =

 
= − 

 
 y y  (1) 

 

Figure 3. CNN-LSTM. 
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3.2. Data preprocessing and hyper-parameter setting 

Before model training, all data in the database must be normalized to ensure that no single feature 

disproportionately influences the results. The values are normalized to fall within the range of 0 to 1. The 

normalization formula is as follows: 

, max max min/i new i= − −x x x x x  (2) 

After normalizing the dataset, the data were randomly divided into five parts for hyperparameter 

selection using the five-fold cross-validation method. The mini-batch size was determined to be 256, the 

number of epochs was set to 100, the initial learning rate was 0.001. The hyperparameters were configured 

using the options function. All models in this study were trained on a system equipped with an Intel 

i7–12650H CPU, operating at up to 4.7 GHz, and an RTX 4060 GPU, featuring 3072 CUDA cores and 

8 GB of GDDR6 memory. Drawing from extensive deep learning experience and the breadth of available 

databases, it is established that the optimal configuration for all temporal networks consists of 1 or 2 hidden 

layers, with each layer comprising 32 or 64 units. Consequently, it is necessary to individually assess the 

performance of each model under varying numbers of hidden layer units. For CNN-LSTM, two 

configurations are considered: one with two hidden layers, each containing 32 units, and another with a single 

hidden layer comprising 64 units. 

To evaluate CNN-LSTM and identify the hidden layer and unit configuration with the highest prediction 

accuracy, four commonly used machine learning regression metrics are employed: coefficient of 

determination (R²), root mean square error (RMSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE). These metrics assess the model prediction accuracy and generalization capability. 

R² value approaching 1 indicates superior model fitting, while RMSE and MAE values closer to 0 signify 

minimal fitting error. MAPE value of 0% denotes perfect model prediction, whereas values exceeding 100% 

indicate poor model performance. The formulas for these four metrics are provided in equations (3) to (6). 

2 2
^

2

1 1

/
N N

i i i i

i i

R y y y y
− −

= =

   
= − −   

   
   (3) 

2
^

1

/
N

i i

i

RMSE y y N
=

 
= − 

 


 

(4) 

^

1

/
N

i i

i

MAE N 
=

= −
 

(5) 

^

1

100%
( ) /

N

i i i

i

MAPE y y y
n =

= −
 

(6) 

The performance indicators for CNN-LSTM_n32h2 and CNN-LSTM_n64, as evaluated on both the 

training and test sets, are presented in Table 3. Both horizontal and vertical comparative analyses reveal that 

CNN-LSTM_n64 demonstrates superior prediction accuracy. 
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Table 3. Hyperparameter evaluation. 

Model 
R² of 

Training set 

RMSE of 

Training set 

MAE of 

Training set 

MAPE of 

Training set 

R² of 

Test set 

RMSE of 

Test set 

MAE of 

Test set 

MAPE of 

Test set 

CNN-

LSTM_n32h2 
0.954 6.112 3.48 19.57% 0.911 11.021 5.11 29.01% 

CNN-

LSTM_n64 
0.962 5.589 2.64 16.7% 0.926 10.238 4.87 28% 

4. Results 

4.1. Comparison with empirical model 

In the study of GBR systems, several researchers have conducted numerous unidirectional pull-out tests 

and fitted the test data to derive the bond-slip model [8, 47–49]. Because there are few researches on the 

bond slip constitutive of GBR system, and few of them conform to the feasibility of prediction. This 

paper selects the study by LIU [45] to compare the prediction results of the bond-slip model obtained 

through GBR system data statistics with those of the time series analysis model. The objective is to 

verify that the deep learning model offers higher prediction accuracy than the empirical formulas derived 

from experiments, thereby saving significant material and labour resources. Based on the theoretical formula 

derived from the physical equation containing the position function calculated by scholars, Liu fitted the 

model between bond stress and slip amount using data from central pull-out experiments on 15 groups of 

reference specimens, as shown in equations (7–11) where u  is the ultimate bond stress, r  is the residual 

bond stress, rs  and us  represent the residual slippage and ultimate slippage, respectively. 

1.51 1.51(2.02 ) / (1 2.02 ),

( ) ( ) / ( ),

0.6 ,

u u

u u r r u u r

u r

s s s s

s s s s s s

s s



   



 + 


= − − −  
 

 (7) 

2 '0.9 0.43 )[1.29 1.92 0.29( ) ]b br
u g

r r r

d dd
f

l d d
 = + + −（  (8) 

0.6r u =  (9) 

'1.03 0.19 )[1.43 1.48exp( 0.84 ]br
r g

r r

dd
s f

l d
= − + −（ ）  (10) 

The CNN-LSTM model and the bond-slip model proposed by Liu were used to predict and analyze the 

results of Liu experiment. The outcomes are presented in Figure 4, with the numerical values in the figure 

corresponding to those in Liu paper. The CNN-LSTM model accurately predicted the bond-slip behaviour 

observed in Liu's experiments, achieving an R² of 0.926 on the test set. As shown in Figure 4(g)–(o), the 

empirical model fitting is less accurate compared to CNN-LSTM. The ultimate bond stress predicted by 

the empirical model deviates more significantly from the test results, whereas CNN-LSTM aligns more 

closely with the experimental data across all results. These findings demonstrate that CNN-LSTM exhibits 

superior predictive accuracy and generalization performance compared to the empirical model. 
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(a) 18-89-03 

 
(b) 18-89-04 

 
(c) 18-89-05 

 
(d) 18-76-04 

 
(e) 18-76-05 

 
(f) 25-76-04 

 
(g) 25-76-05 

 
(h) 25-63-04 

 
(i) 25-63-05 

 
(j) 18-76-03 

 
(k) 18-63-03 

 
(l) 18-63-04 

 
(m) 18-63-05 

 
(n) 25-76-03 

 
(o) 25-63-03 

Figure 4. LIUs experimental prediction result. 

Four indices—total energy consumption, maximum bond stress, failure modulus, and residual 

energy—were used to compare the differences between the bond-slip curves predicted by the empirical 
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model and the deep learning model, as shown in Figure 5. The ultimate bond stress, which is the 

maximum bond stress, is a crucial attribute representing the bond-bearing capacity of GBR system 

specimens. Total energy consumption refers to the energy consumed per unit area of the bond-slip curve 

from initial loading to residual stress (sr), and is calculated using Equation 12. Residual energy refers to 

the energy consumed per unit area of the bond-slip curve from the ultimate stress (su) to the residual 

stress (sr), and is calculated using Equation 13. Failure modulus is defined as the ratio of the ultimate 

bond stress to the ultimate slip, and it is used to evaluate the plastic deformation capability of GBR 

specimens. A higher modulus value indicates weaker plastic deformation ability and poorer ductility of 

the specimens. The calculation is shown in Equation 14. 

( )
0

rs

totalW s ds=   (11) 

( )
r

u

s

residual

s

W s ds=   (12) 

u
failure

u

E
s


=  (13) 

 

Figure 5. Adhesive slip evaluation index. 

Figure 6 provides a clearer comparison of the prediction results between the CNN-LSTM model and 

the empirical model. In terms of total energy consumption, ultimate bond stress, and failure modulus, the 

CNN-LSTM results converge more closely around the red line compared to the empirical model. 

Regarding residual energy, the CNN-LSTM results are generally lower than the experimental results, whereas 

the empirical model shows relatively better accuracy. When combined with the observations from Figure 4, it 

can be concluded that this discrepancy arises because the ultimate slip prediction of the empirical model 

lags behind the test results. Residual energy is significantly influenced by the ultimate slip. When the 

descending portion of the empirical model curve is higher than that of the test curve, the energy loss 
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caused by the lag in ultimate slip can be compensated. Therefore, this does not imply that empirical 

models are superior in predictive accuracy. 

 
(a)  

(b) 

 
(c) 

 
(d) 

Figure 6. Adhesive slip evaluation index of LIU (a) Total energy consumption; (b) Maximum 

bond stress; (c) Component failure modulus; (d) Residual energy. 

4.2. Generalization verification 

To verify the generalization ability of the deep learning model, an additional 15 groups of specimens 

were designed for validation, as shown in Figure 1, with the loading scheme illustrated in Figure 2. The 

test scheme for each group is detailed in Table 4. The results for these specimens indicated adhesive slip 

failure, meaning the steel bar slipped away from the grout without being snap. The deep learning model, 

CNN-LSTM, was compared with the bond stress-slip empirical model, as shown in Figure 7. It is evident 

that the CNN-LSTM model prediction is closer to the experiment curve than those of the empirical 

model proposed by Liu. The predictions from Liu empirical model are conservative, with the ultimate 

bearing capacity predicted by the empirical model being significantly lower than the actual values. As 

indicated by Equations (3–7), Liu empirical model is closely related to the ratio of anchorage length to 

the diameter of the reinforcement, the ratio of the bellows aperture to the reinforcement, and the tensile 

strength of the grout. 
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Table 4. Test component parameter. 

ID 'cf (MPa) 'gf (MPa) /r rl d  /b rd d  rD  (mm) uf  (MPa) yf (MPa) 

Ⅰ4003 39 3.11 3 2.5 117 633 454.7 

Ⅰ6403 39 3.11 3 4 117 633 454.7 

Ⅰ10003 39 3.11 3 6.25 117 633 454.7 

Ⅰ4005 39 3.11 5 2.5 117 633 454.7 

Ⅰ6405 39 3.11 5 4 117 633 454.7 
Ⅰ10005 39 3.11 5 6.25 117 633 454.7 

Ⅰ4007 39 3.11 7 2.5 117 633 454.7 

Ⅰ6407 39 3.11 7 4 117 633 454.7 

Ⅰ10007 39 3.11 7 6.25 117 633 454.7 

Ⅱ4003 39 5.165 3 2.5 117 633 454.7 

Ⅱ6403 39 5.165 3 4 117 633 454.7 

Ⅱ10003 39 5.165 3 6.25 117 633 454.7 

Ⅱ4005 39 5.165 5 2.5 117 633 454.7 

Ⅱ6405 39 5.165 5 4 117 633 454.7 

Ⅱ10005 39 5.165 5 6.25 117 633 454.7 

The CNN-LSTM model was employed to predict the outcomes of Liu's experiment, and the results 

were compared with those obtained from the empirical model, as shown in Figure 7. The ultimate bond 

stress predicted by the empirical model is lower than the experimental values, whereas the predictions 

from the CNN-LSTM model are more consistent with the experimental trends. In Figure 7(a)–(l), the 

ultimate slip amount predicted by CNN-LSTM is closer to the experimental results than those predicted 

by the empirical model, with the predicted slip amount being lower than that calculated by the empirical 

model. However, in Figure 7(m)–(o), the ultimate slip amount predicted by CNN-LSTM is higher than 

that of the empirical model. This discrepancy occurs because, when the grouting strength is 5.165 MPa 

and the anchorage length is increased to 5 times the diameter of the steel bar, the steel bar in the GBR 

system can yield under tension, resulting in a bond-slip curve with a distinct yield extension curve. The 

empirical model results show a yield curve when the anchorage length is 3 times the diameter of the 

steel bar, which does not conform to the experimental findings. In Figure 7(a)–(l), compared to 

Figure 7(m)–(o), the ascending curve has a steeper slope, while the descending curve has a gentler slope. 

Conversely, the descending curve predicted by the empirical model contradicts this rule, whereas the 

CNN-LSTM predictions are more consistent with this behaviour. In summary, the CNN-LSTM model 

demonstrates superior predictive accuracy regarding the yield behaviour of the GBR system, as 

evidenced by its closer alignment with experimental results. 

Comparing Figure 7(a)–(i) with Figure 7(j)–(o), the results indicate that the ultimate bond stress 

increases with the grouting strength. Both the empirical model and the CNN-LSTM model can predict 

this trend, but the empirical model yields lower results and adopts a more conservative design approach. 

When the grade of grouting material changes from Grade I to Grade II, the empirical model suggests an 

obvious yield rising curve. However, experimental results indicate that the anchorage length needs to 

increase to 5 times the diameter of the steel bar before an obvious yield curve appears. This discrepancy 

demonstrates that the empirical model is highly sensitive to individual component factors and exhibits 

poorer generalization performance compared to the CNN-LSTM deep learning model. 
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Figure 7. Experimental prediction result (a) Ⅰ4003; (b) Ⅰ6403; (c) Ⅰ10003; (d) Ⅰ4005; (e) Ⅰ6405; (f) 

Ⅰ10005; (g) Ⅰ4007; (h) Ⅰ6407; (i) Ⅰ10007; (j) Ⅱ4003; (k) Ⅱ6403; (l) Ⅱ10003; (m) Ⅱ4005; (n) 

Ⅱ6405; (o) Ⅱ10005. 

The four evaluation indices of the empirical model and the CNN-LSTM model are represented using 

scatter plots, as shown in Figure 8(a)–(b) demonstrates that the total energy consumption and ultimate bond 

stress predicted by the CNN-LSTM model are closer to the red line compared to the empirical model. Most 

of Liu model predictions are significantly lower than the experimental results, consistent with the conclusions 

drawn from Figure 7.  
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It is worth noting that the CNN-LSTM model does not perform as well in predicting the failure modulus 

and residual energy compared to total energy consumption and ultimate bond stress. This discrepancy arises 

because the failure modulus is merely a ratio, determined solely by the ultimate bond stress and ultimate slip. 

As the time series analysis network, CNN-LSTM predicts the next data point based on the previous time 

point data. While it can accurately predict the trend of the bond-slip curve to align with the test curve, it 

cannot precisely determine the occurrence time of the ultimate point. Figure 8(c) shows that the failure 

modulus predicted by CNN-LSTM is lower than the experimental value, the results are conservative, which 

is acceptable for engineering reliability analysis. In combination with Figure 7, it can be seen that the 

declining curve of CNN-LSTM is closer to the test value, and the difference is smaller than LIU's model. 

Given the good prediction results in Figure 8(b), it can be inferred that most of the ultimate slips predicted 

by CNN-LSTM are larger and lag behind the experimental results. In terms of residual energy, this property 

also depends on the timing of the ultimate point occurrence. Once this timing cannot be accurately 

determined, the prediction performance of the deep learning model for residual energy is worse than for the 

other two properties. Nevertheless, the first point of engineering design is usually conservative estimation, 

and the residual energy error can be covered by the safety factor. The second point is that the total energy 

consumption and the maximum bond stress are the core indicators of the design, and its high precision can 

ensure the safe modification of the structure. The total energy consumption and maximum bond stress 

predictions exhibited deviations of approximately 5% from experimental values, which has a tolerable 

influence on the structural design and prefabricated components. Overall, the CNN-LSTM model 

outperforms the empirical model. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Adhesive slip evaluation index of experiment (a) Total energy consumption; (b) 

Maximum bond stress; (c) Component failure modulus; (d) Residual energy. 
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5. Discussion 

5.1. Sensitivity analysis 

A sensitivity analysis of the CNN-LSTM model was conducted to further investigate the seven important 

influencing parameters of GBR system specimens. This analysis aimed to determine the sensitivity of 

the factors listed in Table 3 to key evaluation indices of the bond stress-slip curve. The contribution and 

sensitivity of each factor to the bond anchoring performance of the GBR system were assessed. Feature 

sensitivity in deep learning is calculated using the mean influence value (MIV) method, as proposed by 

Dimopoulos [50]. The theoretical basis of this method is that feature sensitivity can be measured by the 

sum of squares of the product of the derivative and curvature of all samples for a given feature. This 

method can be implemented using MATLAB R2023b. The analysis results, after conversion, are shown 

in Figure 9. A result of less than 10% indicates that the factor has a very weak influence on the bond-slip 

index of the GBR system.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Sensitivity of the evaluation index (a) Total energy consumption; (b) Maximum bond 

stress; (c) Component failure modulus; (d) Residual energy. 

The results indicate that for total energy consumption, maximum bond stress, and residual energy, 

the sensitivity of geometric and material factors to the GBR system is evenly distributed. However, the 

influence of material factors on the failure modulus is generally higher, suggesting that the overall stress 

behaviour and bearing capacity limit of the specimen are largely dependent on its material properties 

before failure occurs. This is because, prior to reaching the ultimate bearing capacity and subsequent 

failure, the bond-slip curve of the specimen undergoes cracking and yielding processes of the steel bar. 
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These processes are directly influenced by the yield strength of the steel bar and the strength of the 

grout material [51, 52]. Figure 9(a) shows that the parameters /r rl d , uf  , and 'gf  contribute most 

significantly to total energy consumption. When these factors change, the total energy consumption is 

likely to change accordingly, as they have a substantial impact on the overall drawing process of the 

GBR system, with ridged reinforcement and grout being the primary forces. However, the influence of 

rD  is less than 10%, indicating a weak impact on the overall energy consumption of the GBR system. 

Figure 9(b) demonstrates that most factors can affect the maximum bond stress. Figure 9(c) illustrates 

the parameter sensitivity of the bond-slip curve before specimen failure, showing that the material 

properties of the rebar are crucial during early loading. Figure 9(d) indicates that after the failure of the 

GBR system, the descending curve of the bond-slip curve largely depends on the friction between the 

reinforcement bar and the grout. Both rD  and 'cf  can provide the circumferential binding force of the 

specimen, thereby increasing the friction between the reinforcement bar and the inner surface of the 

grout. Consequently, the sensitivity of these two factors is greater than that of other indicators. Overall, 

the sensitivity of /r rl d , uf  , and 'gf  to the GBR system is relatively high, while the sensitivity of rD  

is relatively low. 

5.2. Simplified model 

Due to the inherent lack of interpretability in CNN-LSTM models, it is not feasible to provide a bond-slip 

model with explicit mathematical expressions. Therefore, a simplified bond-slip model is proposed to 

facilitate calculations. The bond-slip models used for theoretical analysis are often complex in form and rely 

on multiple assumptions [53–58], leading to uncertainties in actual construction and test results. 

Consequently, this study favours fitting the bond-slip model based on extensive experimental data. The 

hyperbolic model proposed by Haskett [59], which addresses the bond-slip relationship in reinforced 

concrete, is not directly applicable to GBR systems. Therefore, this study introduces a first-order polynomial 

combined with seven key features ( 'cf ， 'gf ， /r rl d ， /b rd d ， rD ， uf ， yf ) to adjust the model 

parameters. The ultimate bond stress and ultimate bond slip predicted by CNN-LSTM are incorporated into 

this model. The formula for fitting the simplified model to the experimental data, based on the database in 

this study, is as follows: 

' '
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(14) 

Figure 10 presents a comparison of the simplified bond-slip model calculated using CNN-LSTM 

and the empirical model based on 15 groups of samples in this study. The proposed simplified hyperbolic 

model aims to encapsulate the bond-slip characteristics of the GBR system, aligning well with the bond-slip 

trends observed in most test results. However, the simplified model depicted in Figure 10(a)–(l) does not 

accurately simulate the trend of the descending curve. It is more suitable for modeling the ascending curve 

of the bond-slip curve. The descending curve of the GBR system includes a residual curve, which cannot 

be adequately represented by a simple linear model. Nevertheless, the curve comparison in Figure 10 shows 
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that the curve deviation between the simplified model and the test value is within an acceptable range. The 

proposed simplified model serves as an efficient and reliable computational tool for structural engineers to 

rapidly assess the bond-slip behaviour and load-bearing capacity of Grouted Bellows Connect Rebar 

(GBR) systems in prefabricated building structural joints, thereby facilitating optimized joint design and 

enhancing structural reliability. 
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Figure 10. Simplified model comparison (a) Ⅰ4003; (b) Ⅰ6403; (c) Ⅰ10003; (d) Ⅰ4005; (e) Ⅰ6405; 

(f) Ⅰ10005; (g) Ⅰ4007; (h) Ⅰ6407; (i) Ⅰ10007; (j) Ⅱ4003; (k) Ⅱ6403; (l) Ⅱ1000. 
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5.3. Numerical simulation 

To verify the feasibility of the simplified model (Equation 15) based on CNN-LSTM proposed in this 

study, and to ensure that the model can provide a reference for engineering design, finite element analysis 

of the GBR system was conducted using the numerical simulation software ABAQUS. The test model 

was replicated within the software, with concrete, bellows, rebar, and grout model being using the solid 

element C3D8R, and stirrups model was used the truss element T3D2. The interaction between the inner 

surface grid of the grout and the outer surface grid of the reinforcement was facilitated by an axial spring 

element [60], which possesses a single degree of freedom in the axial direction, this section is 

implemented by Python code, which is shown in the Appendix. This axial relationship reflects the local 

bond stress-slip interaction between the grout and reinforcement, defined according to the simplified 

model proposed in this study. The binding interaction between the inner surface of the concrete and the 

outer surface of the bellows, as well as between the inner surface of the bellows and the outer surface of 

the grout, was an also model. To ensure a proper fit for the spring unit between the steel bar and grout, 

a seed size of 5 is used for both components and the bellows during mesh division. However, as concrete 

is not the primary focus of this study, its seed size is set to 10 to enhance computational efficiency. 

Consequently, as detailed in the Appendix, ensure that the Set-100 for the rebar (Part1) and the Set-100 for 

the grout material (Part2) have an equal number of nodes, which are used to establish the Wire-Set node 

Set, thereby facilitating the effective creation of the spring unit. Given that the maximum displacement 

observed in the tests did not exceed 16 mm, the total displacement was distributed across the total time 

history using a displacement control model. The stress-strain relationship for concrete and grout was 

based on the concrete damage plasticity model [61]. 

The simulation was conducted on the 15 specimens listed in Table 4, yielding similar results. Due 

to space constraints, only the cloud map of the numerical simulation results for specimen I4003 is 

presented, as shown in Figure 11, which shows the cloud map of numerical simulation results. It can be 

seen that the stress distribution of grout is the largest near the free end (z direction in Figure 11), rather 

than at both ends of the grout, which is in line with the uneven distribution of bond stress studied by 

previous scholars [45,62]. As shown in Figure 12, the distribution function of adhesive anchorage 

position with adjacent surfaces indicates that the adhesive anchorage stiffness increases slowly before 

the anchorage depth of 0.8 times, which can be approximated by a quadratic curve, while the adhesive 

anchorage stiffness decreases sharply after the peak value, which can be approximated by an elliptic 

curve. This is also consistent with the simulated distribution of equivalent plastic stress of the grouting 

material of the test piece. As shown in Figure 11(a) of the reinforcement stress diagram, the loading end 

of the reinforcement is stressed most seriously during the drawing process, and the stress decreases with 

the increase of the anchoring depth, which will also result in the phenomenon of reinforcement pulling 

out, and the location of the pulling out is the location of the reinforcement outside the concrete, and the 

failure phenomenon is shown in Figure 11(c). The equivalent plastic strain diagram of the grout indicates 

the internal damage degree of the grout, and the most severely damaged area is concentrated at the 

loading end, while the grout at the outer edge of the loading end loses most of its bonding and anchoring 

force due to serious crushing, and the strain value is very small, so the blue part appears at the loading 

end. The failure phenomenon is shown in Figure 11(b). 
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Additionally, load-displacement curves under three typical working conditions were selected for 

comparative analysis, as illustrated in Figure 13. The numerical simulation results show good agreement 

with the test curves, with significant differences only appearing at the end of loading (when the slip is 

large). This indicates that the simplified bond-slip model proposed in this study is suitable for 

numerical simulation calculations, effectively capturing the bonding and sliding process between 

the steel bar and grout material within the bellows. 

   

(a) (b) (c) 

Figure 11. Numerical simulation result (a) Ⅰ4003 stress envelope of steel bar; (b) Ⅰ4003 stress 

envelope of grout; (c) Ⅰ4003 plastic strain envelope of grout. 

 

Figure 12. Numerical simulation result. 

 
(a) 

 
(a) 

 
(c) 

Figure 13. Load-slip curve comparison (a) Ⅰ4003; (b) Ⅰ6407; (c) Ⅱ6405. 
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6. Conclusions 

This study presents a CNN-LSTM model, a deep learning approach based on temporal neural networks, 

specifically designed to predict the bond-slip behaviour of GBR systems. A substantial database was 

compiled, comprising data from tests and designs adhering to actual engineering specifications for GBR 

systems. The CNN-LSTM model was trained using eight input features, encompassing the geometric and 

physical properties of the GBR system, such as grouting tensile strength, concrete strength, and steel yield 

strength. The anchoring performance of the CNN-LSTM model for GBR systems was evaluated by 

comparing it with traditional empirical models across various indices, including bond-slip curves, total 

energy dissipation, maximum bond stress, failure modulus, and residual energy dissipation. Furthermore, to 

assess the generalization ability of CNN-LSTM, the model was employed to predict pull-out tests of 

additional GBR system specimens and compared with empirical model predictions. A sensitivity analysis of 

the deep learning model was conducted to evaluate the influence of different input characteristics on the 

bond-slip model's indices. Finally, a simplified hyperbolic bond-slip model, which can be expressed 

mathematically, is proposed. This model emphasizes simplicity. The following conclusions are drawn:  

(2) To evaluate the generalization capability of the CNN-LSTM model, fifteen sets of GBR 

samples were fabricated. The predicted values from the CNN-LSTM model closely align with 

the test results. However, due to the temporal characteristics inherent in the CNN-LSTM 

approach, its predictive performance for failure modulus and residual energy is less accurate 

compared to its predictions for total energy consumption and maximum bond stress. 

(3) The predictive performance of both the empirical model and the CNN-LSTM model was 

evaluated based on four indices: total energy consumption, maximum bond stress, failure 

modulus, and residual energy. The results indicate that the CNN-LSTM model provides a more 

accurate assessment of bond-slip performance compared to the traditional empirical model. 

(4) The sensitivity of four bond-slip indices in the GBR system was analysed by evaluating key 

factors using the MIV method across 10 specimens. The analysis concluded that the ratio of 

reinforcement anchorage length to diameter, the ultimate strength of the reinforcement, and the 

strength of the grouting material are the most significant factors affecting the sensitivity of the 

GBR system.  In contrast, the sensitivity associated with the shortest distance between the 

reinforcement and the edge of the specimen was found to be relatively weak. 

(5) Building upon the hyperbolic bond-slip model proposed by Haskett, a simplified bond-slip 

model has been developed utilizing the ultimate bond stress and slip values predicted by the 

CNN-LSTM model. Because the simplified model has the advantage of quick evaluation, the 

descending curve is fitted by linear function, so the deviation from the test value is large. 

However, this simplified model is suitable for numerical simulations and offers an efficient and 

practical approach for structural engineers to assess the anchorage performance of GBR systems.  
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Appendix 

#-*-coding:UTF-8-*- 

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE) 

from math import * 

from abaqus import * 

from abaqusConstants import * 

from caeModules import * 

from driverUtils import executeOnCaeStartup 

executeOnCaeStartup() 

Part1=str(str(getInput('Please enter the name of the fist target part'))+'-1') 

Part2=str(str(getInput('Please enter the name of the second target part'))+'-1') 

LENGTH = float(getInput('input the length of spring:  ')) 

Springstiffness=float(getInput('input the Springstiffness of spring:  ')) 

a = mdb.models['Model-1'].rootAssembly 

n1 = a.instances[Part1].sets['Set-100'].nodes 

list1 = [] 

num_1 = len(n1) 

for i in range(num_1): 

    list1.append((i,n1[i].coordinates[0],n1[i].coordinates[1],n1[i].coordinates[2])) 

a = mdb.models['Model-1'].rootAssembly 

n2 = a.instances[Part2].sets['Set-100'].nodes 

list2 = [] 
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num_2 = len(n2) 

for j in range(num_2): 

list2.append((j,n2[j].coordinates[0],n2[j].coordinates[1],n2[j].coordinates[2])) 

list3 = [] 

for ii in range(num_1): 

    for jj in range(num_2): 

       if pow(((list1[ii][1]-list2[jj][1])**2+(list1[ii][2]-list2[jj][2])**2+(list1[ii][3]-

list2[jj][3])**2),0.5)<float(LENGTH): 

          list3.append((list1[ii][0]+1,list2[jj][0]+1)) 

       else: 

          continue 

num_3=len(list3) 

list4=[] 

for iii in range(num_3): 

    n1 = a.instances[Part1].sets['Set-100'].nodes 

    n2 = a.instances[Part2].sets['Set-100'].nodes 

    list4.append((n1[list3[iii][0]-1],n2[list3[iii][1]-1])) 

a = mdb.models['Model-1'].rootAssembly 

a.WirePolyLine(points=(list4), mergeType=IMPRINT,  

    meshable=OFF) 

a = mdb.models['Model-1'].rootAssembly 

e1 = a.edges 

edges1 = e1[0:num_3] 

a.Set(edges=edges1, name='Wire-Set') 
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