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Highlights:  

⚫ Analysis shows MSHC is not definitively low-carbon, with emissions tied to mix proportions. 

⚫ The amounts of L-MgO and siliceous raw materials are key factors influencing carbon emissions. 

⚫ L-MgO is the primary factor contributing to the uncertainty in MSHC carbon emissions. 

⚫ Using machine learning, a low-carbon MSHC mix is identified when the Mg/Si is below 0.8. 

Abstract: Magnesium silicate hydrate cement (MSHC), as an innovative low-carbon cementitious 

material, is considered a potential substitute for ordinary Portland cement (OPC). However, uncertainties 

in the carbon emission factors of raw materials and mix proportions pose challenges for assessing its life 

cycle carbon emissions. This study employs a probabilistic life cycle assessment (PLCA) to evaluate the 

carbon emission intensity of MSHC and analyze its uncertainties. Leveraging machine learning 

techniques, a predictive model for the carbon emission intensity of MSHC was developed, and sensitivity 

analysis was conducted on various characteristic parameters. The results indicate that although MSHC 

is regarded as a low-carbon material, it does not exhibit low-carbon characteristics in all scenarios 

compared to OPC. The carbon emission intensity of MSHC is closely related to its mix proportions. 

Depending on different mix proportions, the average carbon emissions of MSHC range from 0.174 to 

1.419 kg CO2e/kg. L-MgO is a key factor influencing the uncertainty of MSHC carbon emissions. 

Notably, the Mg/Si ratio is a critical factor influencing the carbon emission characteristics of MSHC, 

with a low-carbon threshold range observed between approximately 0.8 and 1.0. 

Keywords: magnesium silicate hydrate cement; carbon emissions; probabilistic life cycle assessment; 

uncertainty analysis; machine learning 
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1. Introduction 

As the issue of global warming becomes increasingly acute, sustainable development has become a 

pivotal focus within the construction industry. Cement, as a foundational material in this sector, has an 

environmental impact during production that cannot be ignored. It is estimated that the CO2 emissions 

of the cement industry account for 7%–8% of the global total carbon emissions [1]. Ordinary Portland 

Cement (OPC), the most commonly used cementitious material, has relatively high carbon emissions [2]. 

Data indicates that the production of one ton of OPC results in 0.73–0.99 tons of carbon emissions [3]. 

Consequently, the development of new low-carbon cementitious materials has become a focus of 

research among scholars. 

Magnesium silicate hydrate cement (MSHC) is a novel green cementitious material considered a 

potential alternative to OPC. It is typically prepared by mixing lightly calcined magnesium oxide (L-MgO), 

siliceous raw materials (SRM), water-reducing agents (WRA), and water [4]. MSHC possesses many 

outstanding properties, such as low pH, light weight, high strength, excellent heat resistance, and 

corrosion resistance [5,6]. These characteristics confer MSHC with significant potential in applications 

such as management of low to intermediate-level radioactive waste and the production of insulation panels [4,7]. 

In addition, compared to OPC, MSHC is considered to have advantages in terms of low carbon emissions. 

This is because the calcination temperature of lightly calcined MgO ranges between 700–1000 °C [8], which 

is significantly lower than that required for OPC. This lower calcination temperature translates to 

reduced energy consumption and carbon emissions during production. Additionally, MSHC typically 

utilizes industrial by-products such as silica fume and fly ash, further contributing to carbon emission 

reduction. However, despite numerous studies highlighting the low-carbon characteristics of MSHC [9–11], 

quantitative research on the entire life cycle carbon emissions of MSHC remains limited. Therefore, 

further quantitative validation is necessary to establish scientific evidence on whether MSHC can be 

considered a low-carbon cementitious material. 

Life cycle assessment (LCA) method is used to identify and quantify the environmental impacts of 

products throughout their entire life cycle. This approach has been widely applied in cement production [12]. 

However, traditional cement LCA tools have certain limitations in their use. It relies too heavily on 

specific sample data and fails to comprehensively consider issues such as data uncertainty due to regional 

differences, production conditions, and product mix characteristics. This results in lower applicability 

and reference value in practical applications [13]. In the carbon emission assessment of MSHC, the 

limitations of conventional LCA methods become particularly pronounced. Specifically, the diversity in 

raw material types, production processes, and treatment methods leads to significant variations in the 

carbon emissions associated with different materials. For instance, the carbon emissions of L-MgO are 

influenced by multiple factors, including calcination temperature and the type of energy source used. 

Similarly, the carbon footprint of water-reducing agents, such as polycarboxylate ether and sodium 

hexametaphosphate, varies depending on their respective production processes. Furthermore, SRM-including 

silica fume, fly ash, blast furnace slag, and metakaolin-exhibit distinct carbon emission profiles due to 

differences in their processing and recycling methods. Additionally, adjustments in material ratios (such 

as the L-MgO-to-SRM ratio) can significantly alter the carbon intensity of MSHC. Taken together, the 

variability in production techniques, treatment procedures, and mix designs results in considerable 

uncertainty in the carbon emissions of MSHC. Therefore, it is necessary to develop a more flexible LCA 



Smart Constr.  Article 

 3 

method. This method can utilize the extensive existing research results to more accurately simulate and 

predict the carbon emission intensity of MSHC, thereby enhancing its applicability. Studies have shown 

that a probabilistic life cycle assessment (PLCA) approach can adequately account for data uncertainty. 

This method changes a solitary carbon emission figure into a range or probabilistic distribution, offering 

a more precise and unbiased representation of the true carbon emissions[14]. In this way, the PLCA 

method can not only better address the complex production conditions of MSHC raw materials but also 

provide more reliable information for decision-makers. 

Furthermore, with the continuous advancement of data-driven technologies, an increasing number 

of studies have begun to utilize machine learning (ML) techniques to predict and optimize the 

performance and carbon emission characteristics of construction materials. For instance, Xing et al. 

developed a multilayer perceptron model using ML to predict the carbon emissions and energy 

consumption of cement based on 570 concrete mix design datasets containing recycled aggregates and 

supplementary cementitious materials [15]. Amin Al-Fakih et al. employed AI technologies, including 

ML models and stacked ensemble methods, to predict the carbon footprint of ground granulated blast 

furnace slag geopolymer concrete [16]. Similarly, Wang et al. proposed a method combining ML with 

a multi-objective optimization model to optimize the proportions of geopolymer mixtures. This method 

enhances compressive strength while minimizing carbon emissions and costs, providing a new approach 

for the multi-objective optimization design of low-carbon cement [17]. P.S.M. Thilakarathna et al. used 

ML algorithms to analyze the embodied carbon emissions of high-strength concrete, calculating the 

carbon footprint of different mix components and offering guidelines for producing low-carbon high-strength 

concrete [18]. These studies demonstrate the significant potential of ML techniques in the research of 

low-carbon cement-based materials. By utilizing ML models, it is possible to more accurately predict 

the impact of different materials and processes on carbon emissions, thereby optimizing mix designs and 

production processes to promote the development of low-carbon materials. 

In conclusion, this study employs a PLCA method to conduct a quantitative evaluation and 

uncertainty analysis of the carbon emissions of MSHC, with the aim of filling a research gap in this 

field. First, the research objectives and system boundaries of the LCA were defined. Extensive data on 

carbon emission factors from raw materials and transportation processes were collected, and their 

optimal distribution models were established. Subsequently, the Monte Carlo method was employed to 

conduct a quantitative assessment of the carbon emission intensity for 13 different MSHC mix ratios. an 

uncertainty analysis of the carbon emissions of each component was performed. Building on this 

foundation, ML techniques were employed to develop a predictive model for carbon emission of MSHC, 

accompanied by feature importance analysis. Furthermore, leveraging the PLCA method and a ML 

model, two graphical user interfaces (GUI) were created to facilitate swift analysis and evaluation of 

MSHC carbon emissions. The technical roadmap of this study was depicted in Figure 1. 

The innovations of this study are as follows: (1) The adoption of the PLCA method to systematically 

and quantitatively evaluate the carbon emissions of MSHC, providing a detailed data foundation and 

scientific methodology. (2) Through uncertainty analysis, the study reveals the contributions and 

variation ranges of different parts in MSHC’s carbon emissions, identifying the main sources of 

uncertainty. (3) The introduction of ML technology has led to the development of a carbon emission 

prediction model for MSHC, making carbon emission predictions more intelligent and accurate. Further 

feature importance analysis identified the key factors, providing strong support for formulating effective 
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carbon reduction strategies. This study provides a solid foundation for the in-depth understanding and 

optimization of MSHC’s carbon emissions. Additionally, it contributes to the development of more 

targeted and scientific carbon reduction measures, thereby promoting the sustainable development of the 

building materials industry and the achievement of environmental protection goals. 

 

Figure 1. General roadmap. 

2. Methodology 

Sufficient details of the experiment, methods, simulation, calculation, statistical test or analysis should be 

given so that the method could be repeated by another researcher and the results reproduced. Note and 

emphasize any hazards such as explosive or toxicity, better with a separate section by the heading “Caution”. 

In theoretical papers, this section can be called “Theoretical Basis” or “Theoretical Calculations”. 

2.1. Goal and scope definition of LCA 

This research utilized a PLCA approach to examine both the direct and indirect carbon emissions of 

MSHC across its life cycle, spanning from raw material acquisition and transportation to production 

(cradle-to-gate). By calculating the CO2 equivalents released per kilogram of MSHC produced, the 

overall carbon emissions were assessed. A comparison with the carbon emissions of OPC was conducted 

to evaluate whether MSHC possesses low-carbon characteristics. MSHC is prepared by mixing a specific 

ratio of lightly burned magnesium oxide, siliceous raw materials, water reducer, and water. In this 

system, MgO dissolves in water and ionizes into Mg2+ (Equation 1). In an alkaline environment, SiO2 

dissolves to form H2SiO4
2− and H3SiO4

− (Equation 2). Ultimately, Mg²⁺ reacts with H2SiO4
2− and 

H3SiO4
− to form M-S-H gel (Equation 3), which is key to its strength support. This reaction can typically 

occur at room temperature [19]. Therefore, the carbon emissions during the production and processing 

stages of MSHC were ignored. The specific system boundary was illustrated in Figure 2. 



Smart Constr.  Article 

 5 

MgO + H2O → Mg2+ + 2OH− ↔ Mg(OH)2 (1) 

SiO2 + 2OH− → H2SiO4
2− 

(2) 

SiO2 + 2OH−+ H2O →H3SiO4
- 

3Mg2+ + 4OH− + 2H3SiO4
- ↔3MgO·2SiO2·2H2O + 3H2O 

(3) 

3Mg2+ + 2OH− + 4H3SiO4
- ↔3MgO·4SiO2·H2O + 6H2O 

3Mg2+ + 2OH− + 2H2SiO4
2− ↔3MgO·2SiO2·2H2O + H2O 

3Mg2+ + 4H2SiO4
2− ↔3MgO·4SiO2·H2O + 2OH−+ 2H2O 

 

Figure 2. System boundary. 

Through the analysis of the production and transportation processes of various components of 

MSHC, the main sources of its carbon emissions were identified as follows: 

(1) Production of L-MgO: L-MgO was primarily derived from magnesium-rich ores such as 

magnesite and dolomite. The extraction process of these ores consumed energy, resulting in the release 

of carbon dioxide. Throughout the manufacturing process of L-MgO, the magnesium ores underwent 

calcination at temperatures between 700 °C and 1000 °C, generating both direct and indirect carbon 

emissions. Direct carbon emissions originated from the decomposition of magnesium ores (as shown in 

Equation 4) and the combustion of fuels. Indirect carbon emissions mainly stemmed from the production 

of fuels and electricity. Additionally, subsequent processing steps such as grinding and molding of L-MgO 

also required energy consumption, leading to further carbon emissions. 

MgCO3 → MgO + CO2 ↑ (4) 
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(2) Processing of SRM: The carbon emissions of SRM primarily involved the consumption of fossil 

fuels during industrial mining and processing, as well as the energy consumption of mechanical 

equipment in the waste collection process. Additionally, the post-processing stages (such as heat 

treatment and grinding) also required energy, further increasing carbon emissions. 

(3) Production of WRA: The production process of WRA involved heating, mixing, and dispersing, 

which typically required the consumption of electricity or other fossil fuels such as natural gas and oil. 

The combustion of these fuels directly released CO2. Additionally, the key components of WRA 

included various chemical raw materials. The production of these chemicals required the processing of 

raw materials and complex chemical synthesis. These steps all involved energy consumption, thereby 

leading to increased carbon emissions. 

(4) Water supply process: The stages of water extraction, purification, and distribution all required 

energy consumption. This was typically directly associated with carbon emissions. For instance, the 

electric power for pumping equipment, the electricity and chemical agents used in water treatment 

processes, as well as the operation of water pumps and the distribution network, all demanded substantial 

amounts of electricity, thereby resulting in carbon emissions. 

(5) Transport process: This study assumed that the transportation of raw materials was carried out 

using diesel-powered freight trucks. Due to geographical differences in various regions, the 

transportation distances of raw materials could vary. According to relevant literature, most raw materials 

were typically transported over distances ranging from 10 to 250 kilometers [14]. The combustion of 

diesel fuel during transportation led to carbon emissions. 

In summary, the carbon emissions of MSHC throughout its life cycle-from raw material acquisition 

to final product manufacturing-primarily included ore decomposition, energy consumption (such as 

electricity and fuel), chemical processes, and transportation. 

2.2． Life cycle inventory analysis 

Central to the LCA analysis was the life cycle inventory (LCI). Based on the established boundaries of the 

LCA system, data required for the PLCA carbon emissions analysis of MSHC were collected and processed. 

2.2.1. Data collection 

The data used for calculating MSHC carbon emissions primarily includes two categories: first, the 

carbon emission factors of various raw materials and their transportation processes, and second, the 

mixing ratios of MSHC. Due to differences in production conditions (such as energy types, consumption 

levels, production efficiency, and equipment usage), the carbon emission factors of raw materials vary 

significantly across different time periods and countries. Furthermore, varying transportation distances 

and vehicle efficiencies are also important influencing factors. These elements contribute to the 

uncertainty of carbon emission factors. It is crucial to carefully consider these uncertainties during the 

life cycle assessment as they directly impact the final environmental impact evaluation results.Therefore, 

we have extensively collected data from multiple countries and regions worldwide, spanning from 2005 

to 2024, with most data concentrated around the year 2020.  This highlights the timeliness and relevance 

of our research. The specific statistical results of the data were shown in Table 1. Literature sources for 

carbon emission factors: L-MgO [20–23], SRM [24-27], WRA [28-31], Water [32-34], Diesel [14,23,35]. 
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Table 1. Carbon emission factor statistics (Units: kg CO2e/kg, Diesel: kg CO2e/t·km). 

 n Min Max Ave σ Skew Kurt 

L-MgO 28 1.060 2.700 1.7075 0.2922 0.9061 4.652 

SRM 70 0.0003 0.600 0.05611 0.1075 3.1997 11.116 

WRA 47 0.2500 2.388 1.4187 0.5150 −0.3638 −0.251 

Water 25 0.000008 0.010 0.000808 0.00197 4.6087 22.151 

Diesel 15 0.018 0.918 0.2324 0.2321 2.2918 5.425 

Note: n represents the sample size. Min denotes the minimum value. Max denotes the maximum value. Ave represents 

the average value. σ denotes the standard deviation. Skew represents skewness, and Kurt denotes kurtosis. 

Table 1 revealed the range and characteristics of carbon emission factors for various raw materials and 

diesel. For instance, the carbon emission factor of L-MgO mainly ranged from 1.06 to 2.7 kg CO2e/kg, with 

an average value of 1.7075 kg CO2e/kg, indicating a relatively high level of carbon emissions. This was 

primarily attributed to the extensive use of fossil fuels in the production process of L-MgO and the 

release of CO2 during the decomposition of magnesium ore. The carbon emission factors for SRM range 

from 0.0003 to 0.6 kg CO2e/kg, which were relatively lower compared to L-MgO. This indicated that 

SRM primarily originates from the collection of high-silica industrial wastes, such as silica fume and fly 

ash. The carbon emission factor for WRA ranged from 0.25 to 2.388 kg CO2e/kg. This significant 

variation was due to the diversity in WRA production processes and raw material selection. The carbon 

emission factor for water was generally low, with an average value of 0.000808 kg CO2e/kg. The carbon 

emission factor for diesel ranged from 0.018 to 0.918 kg CO2e/t·km, with the variation mainly influenced 

by transportation efficiency. Additionally, by analyzing the kurtosis and skewness of the carbon 

emission factors for various materials and diesel, it was evident that these data exhibited right-skewed 

or left-skewed distributions and varying degrees of sharpness. In summary, these observations revealed 

the uncertainty and complexity of carbon emissions associated with the raw materials of MSHC and 

their transportation processes. 

Regarding the mix proportion, the performance of MSHC was influenced by three key parameters: 

the magnesium-to-silicon ratio (Mg/Si), the water-to-cement ratio (w/c), and the amount of water-reducing 

agent (WAR%). The determination of these parameters depended on the type of raw materials and the 

specific performance requirements that the final product needed to meet. 

When the L-MgO content was low (with an Mg/Si ratio ranging from approximately 0.0526 to 0.429), 

L-MgO primarily acted as an alkaline activator in the reaction system, similar to alkali-activated systems. 

When the Mg/Si ratio was between 0.533 and 4.0, the system underwent MgO-SiO2 reactions. Within this 

range, Mg/Si influenced workability, mechanical properties, and volume stability differently. For 

workability, increasing the Mg/Si ratio enhanced the flowability of MSHC [36]. Regarding mechanical 

properties, the optimal Mg/Si ratio typically lay between 0.667 and 1.50. Insufficient L-MgO resulted in 

lower M-S-H gel formation, while excess L-MgO led to the formation of surplus Mg(OH)2, whose 

expansive nature could reduce the mechanical performance of MSHC [37]. Additionally, a higher Mg/Si 

ratio could decrease shrinkage due to the expansive properties of Mg(OH)2. Consequently, researchers 

adjusted the Mg/Si ratio according to specific application requirements.  

Due to the lattice structure of L-MgO and the fine particle size of SRM, the water demand of MSHC 

was usually high [38]. Therefore, an appropriate amount of WRA was added to improve its workability. 
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Sodium hexametaphosphate (SHMP) was an effective WRA suitable for MSHC. Adding 1% SHMP could 

reduce the w/c ratio of the system to 0.4 [39]. Additionally, studies showed that adding 1.0%–1.5% 

polycarboxylate superplasticizer could also significantly reduce the water demand of the system [6].  

To comprehensively explain the impact of mix proportions on the carbon emissions of MSHC, this 

study collected 13 sets of MSHC mix proportions from relevant literature sources [39–43], as shown in 

Table 2. Given that L-MgO and siliceous raw materials are the primary reactants in MSHC, their 

proportions significantly influence the final performance and carbon emissions. Therefore, we selected 

a broad range of Mg/Si ratios to ensure that the study results are widely applicable and representative. 

Furthermore, these 13 mix proportions are highly cited and recognized in existing research and possess 

a certain level of engineering practicality. In summary, the selection of these mix proportions aims to 

ensure the comprehensiveness, representativeness, and operability of the research. The specific data 

ranges are as follows: the Mg/Si ratio ranges from 0.053 to 4.0, the WAR (%) ranges from 0% to 3.4%, 

and the w/c ratio ranges from 0.32 to 0.60. 

Table 2. Mix proportion of MSHC. 

Number Mg/Si WAR (%) w/c 

1 0.053 0 0.32 

2 0.111 0 0.40 

3 0.250 0 0.32 

4 0.429 0 0.50 

5 0.533 3.4 0.45 

6 0.667 1.0 0.40 

7 0.800 3.4 0.41 

8 1.000 1.0 0.55 

9 1.333 0 0.53 

10 1.500 3.0 0.40 

11 2.000 0 0.53 

12 2.333 4.0 0.60 

13 4.000 2.0 0.50 

2.2.2. Parameter uncertainty modeling 

To address the aforementioned uncertainty in carbon emission factors and to more accurately describe the 

distribution characteristics of these factors, the collected data was analyzed using goodness-of-fit and 

parameter estimation methods [44]. In this process, firstly, the Kolmogorov-Smirnov statistics and 

corresponding p-values of 19 distribution types (t Location-Scale distribution, Beta distribution, Chi-square 

distribution, Exponential distribution, F distribution, Gamma distribution, Weibull distribution, Laplace 

distribution, Generalized Extreme Value distribution, Maximum extreme value distribution, Minimum 

extreme value distribution, Stable distribution, Burr distribution, Nakagami distribution, Logistic distribution, 

Log-normal distribution, Normal distribution, Triangular distribution, Uniform distribution) were compared. 

This step aimed to preliminarily determine whether the data conformed to a specific distribution pattern and 

to screen out candidate distribution models that closely matched the data distribution. Secondly, to further 
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determine the optimal distribution model, the Akaike Information Criterion (AIC, Equation 5) and the 

Bayesian Information Criterion (BIC, Equation 6) were introduced. In these equations, k represents the 

number of parameters in the model, L is the maximum likelihood estimate of the model, and n denotes 

the number of data points. AIC and BIC aided in selecting the best statistical model, mainly used to 

evaluate the model fitting quality. When comparing multiple models, the model with the minimum AIC 

and BIC values was usually considered the optimal one. 

( )2 2lnAIC k L= −  (5) 

( ) ( )ln 2lnBIC k n L= −  (6) 

2.3. Carbon emission intensity simulation 

To thoroughly evaluate the carbon emissions of MSHC and address the uncertainty in the carbon 

emission factors, several steps were implemented. Initially, utilizing the Monte Carlo method, one 

million random samples were drawn for the previously mentioned carbon emission factors and 

transportation distances. Then, using the emission factor method (Equation 7) [45], the estimated carbon 

emissions for one million instances of MSHC for each mix proportion were calculated. Finally, an in-depth 

analysis of the MSHC carbon emissions was conducted, including statistical characteristic analysis and 

visualization of the data. These analytical results comprehensively reflected the quantitative characteristics 

of MSHC carbon emissions and provided reliable data support for carbon emission of MSHC. 

i i iE AD EF=   (7) 

In the Equation 4, i denotes the component i in MSHC. Ei represents the greenhouse gas (CO2) 

emissions resulting from the consumption or energy use of component i. ADi indicates the activity data 

(or usage) of the consumption or energy use of component i. EFi denotes the carbon emission factor 

of component i. 

2.4. Carbon emission prediction analysis 

In this study, the mix proportion data for 13 types of MSHC were collected. However, this did not cover 

all possible scenarios. To address this issue, we employed a machine learning model to predict the carbon 

emission across a wider range of MSHC mixing ratios. To gain deeper insights into the relationship 

between various feature parameters and the carbon emission intensity of MSHC, Shapley Additive 

Explanations (SHAP) were also applied. 

2.4.1. ML model establishment and performance evaluation 

In this study, we employed four ML algorithms from the sklearn Python library: Linear Regression (LR), 

Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGB). Each algorithm has 

distinct principles and attributes, making them appropriate for various types of problems and datasets. 

Detailed principles and characteristics of each algorithm can be found in relevant literature [46]. 

The prediction performance of the machine learning models was evaluated using metrics such as 

the coefficient of determination (i.e., R2, as shown in Equation 8) and Mean Absolute Error (i.e., MAE, 
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as shown in Equation 9). Among these metrics, R2 was primarily employed to assess how well the model 

fit the actual data. MAE was utilized to assess the prediction errors of the models. 
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(9) 

In these formulas, y and ȳ represented the actual values and their mean, respectively, while y' and 

ȳ' represented the predicted values and their mean, respectively. N denoted the sample size. 

2.4.2. SHAP analysis 

SHAP analysis is a method for interpreting the output of ML models, based on the concept of Shapley 

values. Shapley values originate from cooperative game theory and are used to fairly distribute 

collaborative gains. In ML, SHAP analysis explains model outputs by calculating the contribution of 

each feature to the prediction results. By aggregating the SHAP values of all samples, it is possible to 

understand which features are most important to the model’s predictions overall. This quantifies the 

impact of input variables on the model’s predictions and helps researchers understand the mechanisms 

of MSHC carbon emissions. 

3 Results and discussion 

3.1. Parameter uncertainty modeling results 

By using the goodness-of-fit testing methods described in Section 2.2.1, the optimal probability 

distribution models for the carbon emission factors of various components were determined. The 

probability distribution plots were shown in Figure 3, and the distribution types and parameters were 

listed in Table 3. 

Table 3. Statistical parameters for the optimal probability distribution of the carbon emission factors. 

 Distribution type Distribution parameters p value AIC BIC 

L-MgO Laplace distribution μ = 1.716; b = 0.190 0.997 5.89 8.54 

SRM Burr distribution c = 1.175; k = 0.819; α = 0.022 0.369 −298.18 −289.18 

WRA Normal distribution μ = 1.419; σ = 0.510 0.497 75.13 78.83 

Water 
Generalized extremum 

distribution 
k = −0.936; μ = 0.0002; σ = 0.000228 0.352 −318.08 −314.43 

Diesel Chi square distribution df = 1.944; μ = 1.419; σ = 0.510 0.688 −12.06 −9.94 
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Figure 3. Fitted distribution of carbon emission factors. 

3.2. Analysis of simulation results for carbon emission intensity 

3.2.1. Carbon emission assessment and comparison of MSHC 

In this study, the Monte Carlo method was utilized to simulate the carbon emission for MSHC, producing 

one million simulated values for each mix ratio. The objective was to uncover the carbon emission patterns 

of MSHC using extensive data results. Figure 4 showed the corresponding histograms and probability 

density curves (Figure 4(a)–(m) corresponded to the calculation results of mixing ratios 1–13, 

respectively). In the analysis results, extreme outliers were excluded, and only data with carbon emission 

intensity between 0 and 4 were included. This filtering ensured the reliability and accuracy of the research 

data. The statistical outcomes of the carbon emissions data were summarized in Table 4 and Figure 5.  

Furthermore, to further investigate the low-carbon characteristics of MSHC in building materials, this 

study compared the carbon emissions of MSHC with those of OPC, which is widely used in construction. 

Research indicates that the carbon emission intensity of OPC ranges from 0.811 to 0.977 kg CO2e/kg [8,22]. 

For a clearer comparison, a reference value of 0.877 kg CO2e/kg was adopted [47], as indicated by the red 

dashed line in Figure 4 and Figure 5. In the subsequent analysis, we defined mixing ratios with carbon 

emission intensities lower than that of OPC (0.877 kg CO2e/kg) as “low-carbon”, whereas those with 

higher carbon emission intensities were defined as “high-carbon”. 
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Figure 4. For MSHC under different mix ratios, a probability density plot of carbon emission intensity. 
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Table 4. Statistical results of Monte Carlo simulation on carbon emission intensity of MSHC 

(Unit: kg CO2e/kg). 

Number Mean SD Q1 Q2 Q3 <OPC (%) Compared to OPC (%) 

1 0.174 0.186 0.110 0.134 0.178 98.98 80.16  

2 0.257 0.181 0.193 0.222 0.266 98.88 70.70  

3 0.423 0.174 0.357 0.395 0.448 98.55 51.77  

4 0.590 0.171 0.519 0.567 0.630 97.38 32.73  

5 0.694 0.167 0.620 0.675 0.742 93.94 20.87  

6 0.762 0.172 0.685 0.744 0.817 86.40 13.11  

7 0.849 0.172 0.769 0.834 0.910 66.00 3.19  

8 0.926 0.180 0.842 0.912 0.995 36.60 -5.59  

9 1.039 0.189 0.948 1.028 1.119 13.10 -18.47  

10 1.097 0.189 1.005 1.087 1.179 7.95 -25.09  

11 1.197 0.203 1.097 1.189 1.289 4.42 -36.49  

12 1.261 0.203 1.159 1.252 1.355 2.77 -43.79  

13 1.419 0.224 1.307 1.413 1.527 1.40 -61.80  

Note: Mean represents the average value over one million calculations. SD stands for standard deviation. Q1 

refers to the first quartile, Q2 to the median, and Q3 to the third quartile. < OPC (%) indicates the proportion 

of carbon emissions lower than OPC in one million calculations. Compared to OPC (%) denotes the percentage 

reduction in average carbon emissions compared to OPC, where a positive value indicates a reduction and a 

negative value indicates an increase. 
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Figure 5. Carbon emissions of MSHC and comparison with OPC. 

The calculation results indicated that, for mixing ratios 1–6, the average carbon emission intensity 

of MSHC ranged from a minimum of 0.174 kg CO2e/kg to a maximum of 0.762 kg CO2e/kg. Compared 

to OPC, the average carbon emission intensity of MSHC was reduced by 13.11% to 80.16%. 

Additionally, in the one million simulation results for these six mixing ratios, the proportion of carbon 

emission intensity of MSHC being lower than that of OPC exceeded 85%. This indicated that, under 
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these conditions, MSHC exhibited lower carbon emission intensity compared to OPC and could be 

considered a low-carbon material. 

For mixing ratios 7 and 8, the average carbon emission intensities of MSHC were 0.849 kg CO2e/kg 

and 0.926 kg CO2e/kg, respectively, which are approximately equivalent to those of OPC. Additionally, 

Compared to OPC, the average change in carbon emission intensity was approximately within 5%. This 

indicated that, under these two mixing ratio conditions, MSHC did not demonstrate a clear advantage in 

terms of carbon emission intensity compared to OPC. 

For mixing ratios 9–13, the average carbon emission intensities of MSHC ranged from a minimum 

of 1.039 kg CO2e/kg to a maximum of 1.419 kg CO2e/kg. These values were significantly higher than 

the carbon emissions of OPC. In the one million simulation results for these five mixing ratios, the 

highest proportion of data points with carbon emission intensity lower than that of OPC was only 

13.10%. Compared to OPC, the average carbon emission intensity of MSHC was increased by 13.11% 

to 80.16%. This indicated that, within this range of mixing ratios, the carbon emission intensity of MSHC 

increased significantly, classifying it as a high carbon emission building material. 

In summary, the carbon emission intensity of MSHC was closely related to its mixing ratio. Analysis of 

carbon emission intensity of MSHC under 13 different mixing ratios revealed that when the Mg/Si was below 

0.667 (mixing ratios 1–6), MSHC exhibited significant low-carbon characteristics. However, when the Mg/Si 

was between 0.8 and 1.0 (mixing ratios 7–8), the carbon emission intensity of MSHC closely resembled that 

of OPC. Once the Mg/Si surpassed 1.0 (mixing ratios 9–13), the carbon emission intensity of MSHC increased 

significantly compared to OPC. It was noteworthy that these analyses did not cover all possible Mg/Si, the 

comparative results were considered as preliminary references. In Section 3.3, we employed a ML model to 

predict the relationship between changes in the Mg/Si and the carbon emissions of MSHC. Additionally, we 

compared the carbon emissions of MSHC and OPC under different Mg/Si. 

Based on this analysis, we further summarized the carbon emission intensity results for all MSHC 

mix ratios in this study (a total of 13 different mix ratios, involving 13 million data points). The 

histogram was shown in Figure 6, and the statistical results were presented in Table 5. Our study found 

that the average carbon emission intensity for MSHC was 0.822 kg CO2e/kg, which was 6.27% lower 

than that of OPC. Additionally, the proportion of MSHC’s carbon emission intensity that was lower than 

OPC’s was 54.32%. This indicated that, in a large-scale dataset, the overall carbon emission intensity of 

MSHC was not significantly different from that of OPC, and its environmental advantage was minimal. 

However, it is worth noting that while this study emphasizes the carbon emission advantages of 

MSHC, it is important to acknowledge several limitations to provide a more contextualized comparison. 

Firstly, the current PLCA framework prioritizes carbon footprint but overlooks other critical 

environmental factors. For example, although MSHC utilizes industrial by-products such as silica fume 

and fly ash [4], whereas OPC relies on virgin limestone, the broader ecological impacts of these 

substitutes have not been quantified. Additionally, MSHC exhibits superior radionuclide immobilization 

capabilities. Through the physical encapsulation and chemical adsorption by its hydration products, MSHC 

can effectively immobilize radioactive strontium and cesium [7,48], but these benefits are not included in 

the LCA. Secondly, the differences in structural performance between the materials complicate direct 

comparisons. The early strength of MSHC is insufficient, limiting its application in rapid construction. 

However, the 28d strength of MSHC (70 MPa) [39] and its outstanding high-temperature resistance [49] 

make it advantageous for specialized applications, such as high-temperature industrial environments. 
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These limitations indicate that MSHC is not a universal substitute for OPC but rather a complementary 

material optimized for carbon-sensitive and extreme environments. Future life cycle assessments should 

incorporate multi-criteria analysis to fully capture these trade-offs. 

 

Figure 6. Histogram of the summary data on carbon emission intensity of MSHC. 

Table 5. Statistical results of the summary data on carbon emission intensity of MSHC  

(Unit: kg CO2e/kg). 

Mean SD Q1 Q2 Q3 <OPC (%) Compared to OPC (%) 

0.822 0.416 0.525 0.829 1.123 54.32% 6.27 

3.2.2. Differences and uncertainty analysis of carbon emissions among components 

To further explore the uncertainty of MSHC carbon emissions, box plots were created to visually represent 

the carbon emissions and transportation processes for each component. It is important to note that this 

uncertainty analysis was conducted with fixed mixing ratios, so the primary sources of uncertainty are 

concentrated on the carbon emission factors of the materials. In the PLCA method, the uncertainty of input 

parameters is mainly propagated through Monte Carlo simulations. Specifically, each input parameter is 

randomly sampled to generate multiple possible values, reflecting the variability in carbon emission 

intensities under different production processes and raw material conditions. These values are then fed into 

the model to perform numerous simulation calculations, each using a different set of input parameters to 

mimic various real-world production scenarios. Through these multiple simulation calculations, a range of 

carbon emission results is obtained. These results are then statistically analyzed to generate box plots, 

thereby revealing the uncertainty range and key influencing factors of carbon emissions, as shown in 

Figure 7 (with Figure 7(a)–(m) corresponding to the results of mixing ratios 1–13, respectively).  
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Figure 7. Carbon emissions from different components of MSHC at various mix proportions. 

It was observed that under all mixing ratio conditions, the carbon emissions of L-MgO were the 

most significant, far exceeding those of other components. This indicated that L-MgO dominantly 

contributed to the carbon emissions of MSHC. At the same time, the carbon emissions of L-MgO also 

carry a significant degree of uncertainty. This uncertainty primarily stems from: Firstly, there are 

significant differences in production processes. Calcination temperature and duration, the type of fuel 

used (coal, natural gas, or renewable energy), and the handling of byproducts directly impact energy 

consumption and carbon emission intensity. Secondly, variations in the MgO content of the final product 

can lead to different amounts of CO2 released during the calcination of magnesite (MgCO3). Lower 

purity L-MgO may reduce direct carbon emissions, but it requires more raw materials and energy to 



Smart Constr.  Article 

 17 

compensate for performance losses, indirectly increasing carbon intensity. In contrast, higher purity 

products, although they may have higher direct emissions, can enhance raw material utilization 

efficiency, potentially reducing the overall impact. Furthermore, the geographical heterogeneity of raw 

material sources (such as transportation distance, ore grade fluctuations, and differences in the energy 

structure of mining areas) further exacerbates the variability in carbon emissions. For instance, low-grade 

ores may require additional preprocessing, increasing the complexity of energy consumption and 

emissions. Furthermore, it was noteworthy that when the Mg/Si was low (Figure 7(a) and (b)), the carbon 

emissions from SRM and the transportation process also exhibited high uncertainty. This suggested that 

when the Mg/Si was low, attention should not only be paid to the carbon emissions of L-MgO but also 

to the carbon footprint of SRM and the transportation stages. 

Based on the aforementioned analysis, we aggregated all data and plotted the overall box plot of 

carbon emissions for each component and the transportation process, as shown in Figure 8. Unlike the 

previous analysis with fixed mix proportions, the uncertainty in the aggregated results stems from both 

the material carbon emission factors and the mix design variations. Within the overall range, the carbon 

emissions of L-MgO remained the most prominent, with the highest uncertainty. In contrast, the carbon 

emissions and uncertainties of WRA, the transportation, and SRM were at moderate levels. The carbon 

emissions and uncertainties of water were the lowest. This result further confirms that L-MgO was the 

primary factor in MSHC carbon emissions. This was attributed to the higher usage and the carbon-intensive 

production process of L-MgO. Therefore, optimizing the production processes and sources of L-MgO 

specifically would be a key approach to reducing MSHC carbon emissions. 

 

Figure 8. Carbon emissions from different components of MSHC after data aggregation. 

3.2.3. Design of GUI for carbon emission of MSHC based on PLCA 

To enhance the convenience of analytical tools, this study developed a GUI based on the PLCA method 

for calculating the carbon emission intensity of MSHC, as shown in Figure 9. Figure 9 illustrates the 

operational process of this GUI and its output results. First, users input relevant parameters in the 

designated input fields, including the mix proportions of MSHC, transportation distance, and the number 
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of simulations. These input parameters directly affect the carbon emission outcomes during the simulation 

process. Upon clicking the simulate button, the system performs multiple simulation calculations based on 

the entered parameters, reflecting various possible carbon emission scenarios through random sampling 

and model propagation. Ultimately, the system generates a series of carbon emission intensity results and 

visualizes them using probability density plots and statistical characteristics. The design of this GUI is 

simple and intuitive, allowing users without specialized programming or data analysis skills to easily 

conduct carbon emission simulations and analyses. It provides an efficient and convenient tool for 

analyzing the carbon emissions of MSHC. This GUI is suitable for researchers who require extensive data 

analysis and model validation. By using the PLCA-based GUI, researchers can quickly perform multiple 

simulations to obtain carbon emission distributions and statistical characteristics under different 

conditions. This is crucial for gaining a deeper understanding of the carbon emission mechanisms of 

MSHC and optimizing its mix design. Furthermore, given that the PLCA method involves complex 

probabilistic calculations, this tool helps researchers save considerable time and effort, thereby 

improving research efficiency. 

 

Figure 9. GUI design for the carbon emissions of MSHC based on PLCA. 

3.3. Construction and analysis of the carbon emission prediction model 

3.3.1. Establishment of ML models 

To enhance the prediction of carbon emission intensity for various MSHC ratios, a ML method was 

utilized to develop a predictive model for MSHC carbon emissions. A total of 650,000 data points were 

randomly sampled from the simulation data, forming a dataset with 10 input variables. The input 

variables consisted of the carbon emission factors for raw materials and diesel (c(L-MgO), c(SRM), 

c(WRA), c(Water), c(Diesel)), the usage quantities of raw materials (m(L-MgO), m(SRM), m(WRA), 

m(Water)), and the transportation distance (Dis). The output target was the carbon emission intensity of 

MSHC, measured in kgCO2e. 

During the machine learning modeling process, 70% of the data was set aside as the training set, while 

30% was used as the test set. The predictive performance of each model is shown in Table 6. As seen from 
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the table, the R² values for all models exceeded 0.95, indicating a high level of predictability within the 

dataset used in this study. Among the different models, the RF model achieved an R2 value of 0.999 for 

the training data and 0.993 for the test data. Furthermore, it demonstrated the lowest error values. These 

findings indicate that the RF model excelled in predicting the carbon emission intensity of MSHC. 

Table 6. Predictive performance metrics for ML models. 

Indicators Data set 
Models 

LR DT XGB RF 

R2 
train 0.965 0.998 0.998 0.999 

test 0.965 0.985 0.991 0.993 

MAE 
train 4.19 × 10−2 1.21 × 10−2 5.52 × 10−3 5.01 × 10−3 

test 4.13 × 10−2 2.51 × 10−2 1.21 × 10−2 1.03 × 10−2 

To improve the practicality of the ML model and meet the requirements of practical applications, a 

GUI was developed for predicting the carbon emission intensity of MSHC using the RF model, as shown 

in Figure 10. Unlike the previous GUI designed based on PLCA, this GUI required users to input 

deterministic data, including the MSHC mix ratio, carbon emission factors of each component and 

diesel, and transportation distance. It did not use randomly generated data. This allowed users to quickly 

obtain MSHC carbon emission results for different MSHC ratios and carbon emission factors that align 

with their actual production scenarios. This GUI is primarily aimed at industry professionals and 

practical application scenarios. In actual production processes, professionals need to quickly and 

accurately predict carbon emissions for decision-making and optimization of production processes. 

Compared to traditional methods, the ML-based GUI offers a simple and efficient solution, allowing 

users to input specific production data and immediately obtain carbon emission predictions. This not 

only improves work efficiency but also ensures the practicality and reliability of the prediction results. 

It is of great significance for promoting low-carbon production and optimizing management. 

 

Figure 10. GUI design for the carbon emissions of MSHC based on machine learning. 

3.3.2. Feature importance analysis 

The previous section indicated that the RF model performed best in predicting carbon emissions of 

MSHC. Consequently, SHAP analysis was performed using the RF calculation results to examine the 
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influence of each input parameter on the output parameter. Figure 11 presented the average SHAP values 

for each input parameter, reflecting their respective influence on the output results. The larger the 

average SHAP value, the more significant its impact on the output results. 

c(Water)

c(WRA)

m(WRA)

Dis

m(Water)

c(Diesel)

c(SRM)

c(L-MgO)

m(SRM)

m(L-MgO)

0.00 0.05 0.10 0.15 0.20 0.25

Mean (| SHAP value |)  

Figure 11. Feature importance analysis. 

The results indicated that among all features, m(L-MgO) and m(SRM) had a significant impact on 

the carbon emissions of MSHC, reflecting the critical role of the Mg/Si ratio. This was consistent with 

the aforementioned analysis. Following these, c(L-MgO), c(SRM), and c(Diesel) also exhibited 

considerable influence. Additionally, m(Water) and Dis showed a certain degree of impact on the carbon 

emissions of MSHC. In contrast, m(WRA), c(WRA), and c(Water) had relatively minor effects. 

In summary, the Mg/Si ratio has been identified as a core factor in the MSHC carbon footprint, 

and optimizing and lowering the Mg/Si ratio is a key measure for reducing carbon emissions. 

Furthermore, to further promote material decarbonization, industrial waste was considered as a partial 

replacement for L-MgO, such as using industrial by-products or waste containing magnesium as 

alternative raw materials [50]. This approach not only helps reduce dependence on virgin resources but 

also effectively lowers carbon emissions during production. Additionally, further optimizing the carbon 

emissions in the production processes of L-MgO and SRM, reducing water consumption, and improving 

transportation efficiency are all critical measures for making MSHC production more environmentally 

friendly. Therefore, by implementing comprehensive measures for efficient resource utilization and 

emission reduction, significant progress can be made toward green MSHC production. This provides 

important support for building a low-carbon circular economy within the construction materials industry. 

3.3.3. Analysis of the impact of key factors 

Mg/Si was identified as a core factor influencing MSHC carbon emissions. To further quantify the impact 

of Mg/Si on MSHC carbon emissions, an RF model was used to predict the carbon emission intensity of 

MSHC across 390 different mixing ratios with Mg/Si ranging from 0.1 to 4.0, at 0.01 intervals. The study 

results were illustrated in Figure 12, where the red line indicated the reference value for OPC carbon 

emissions. The carbon emission factor was chosen as the average, median, and the first and third quartiles 

of the carbon emission factors for each component. 
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As illustrated in Figure 12, the carbon emissions of MSHC progressively increased with the rise in 

the Mg/Si ratio. Specifically, when using the first quartile as the carbon emission factor, the carbon 

emission intensity of MSHC matched that of OPC at an Mg/Si ratio of approximately 1.25. When the 

mean and median values were used as the carbon emission factors, the equivalence point occurred around 

an Mg/Si ratio of 1.0. With the third quartile value set as the carbon emission factor, the equivalence 

point shifted to approximately 0.85. 
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Figure 12. The relationship between Mg/Si and the carbon emission of MSHC. 

In summary, under different carbon emission factor settings, when the Mg/Si ratio is between 0.85 

and 1.25, the carbon emission intensity of MSHC is essentially consistent with that of OPC. However, 

when the Mg/Si ratio exceeds this range, MSHC ceases to be a low-carbon material and may even 

transition into a high-carbon building material. Therefore, controlling the Mg/Si ratio within an 

appropriate range is crucial for achieving low carbon emissions. 

4. Conclusion 

In this study, a PLCA method was used to conduct a quantitative evaluation and uncertainty analysis of 

carbon emissions of MSHC. On this basis, ML was utilized to create a predictive model for the carbon 

emission intensity of MSHC, followed by a sensitivity analysis on the key parameters. Additionally, two 

GUI based on PLCA and ML were developed for rapid analysis and prediction of carbon emissions of 

MSHC. The study demonstrated that: 

⚫ Based on different mix proportions, the simulated carbon emission intensity of MSHC ranged from 

1.40% to 98.98% lower than that of OPC. This indicated that MSHC was not definitively a low-carbon 

cementitious material, as its carbon emissions were highly dependent on its mix proportion adjustments. 

⚫ Due to the high carbon emission factor and substantial usage of L-MgO, it dominated the overall carbon 

emissions of MSHC and was the key factor influencing the uncertainty in carbon emissions of MSHC. 

⚫ Feature importance analysis indicated that m(L-MgO) and m(SRM) (Mg/Si ratio) had the most 

significant impact on the carbon emissions of MSHC, followed by factors such as c(L-MgO), 

c(SRM), and c(Diesel). 
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⚫ A threshold effect was observed for the Mg/Si: when the Mg/Si is below approximately 0.8, MSHC 

exhibits notable low-carbon characteristics. However, when the Mg/Si exceeds approximately 1.0, 

the carbon emission intensity of MSHC does not demonstrate a clear advantage and may even 

become a high-carbon building material. 
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