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1. Neural dataset simulation methodology

1.1. Izhikevich model

Syn_Dir_4 corresponds to the synthetic neural spike data generated for four-options cursor control
reported in experiment 2. We took experiment 2–day 1’s target matrix and obtained a neural matrix, X,
(X ∈ RT×D ; T -number of time-steps and D–number of input neurons) following the Izhikevich method
given by,

v′ = 0.04v2 +5v+140−u+ I (1a)

u′ = a · (av−u) (1b)
with resetting of auxiliary spike,
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if v≥+30mV then

{
v← c

u← u+d
(2)

where, v is the membrane potential and u is the membrane recovery variable, which accounts for the
activation of K+ ionic currents and inactivation of Na+ ionic currents, and it provides negative feedback
to v. After the spike reaches its apex (+30 mV ), the membrane voltage and the recovery variable are
reset according to the (37). Synaptic currents or injected dc-currents are delivered via the variable I. The
parameter a describes the time-scale of the recovery variable u, and the typical value is a = 0.02. The
The parameter b describes the sensitivity of the recovery variable u to the subthreshold fluctuations of
the membrane potential v. The typical value is b = 0.2. Here, c refers to after-spike reset value of the
membrane potential v, and d refers to after-spike reset of the recovery variable u. The typical value of
(c,d) ranges between (−65,8)+(15,6) ·e2 where e is a random variable uniformly distributed, e∈ [0,1].
I is the synaptic current which is calculated from target variable as 1 for spike and 0 for all other times.

1.2. Neural spike datasets

Syn_Dir_4 was generated for four target states corresponding to the four actions—left, right, forward
and stop. We considered the number of input neurons to be D = 60, and split them into five ensembles
comprising of 12 neurons each. Following the methodology reported in [1], we tuned four ensembles to
each of the four output actions, and the fifth ensemble was left uncorrelated with the output action space.
The fifth ensemble served to simulate noise and the synaptic current I randomly chose values from a
standard Gaussian distribution for these neurons.

I takes on the value of 1 for a neuron tuned to a specific output action (target) or 0 otherwise at every
time-step, t = i, for the tuned ensemble of neurons. The target value corresponding to every time-step
is taken from day 1 of experiment 2. One must note that real world neural data suffers from issues such
as electrode deterioration, electrode micro-motion, changes in electrode impedance among others. To
account for these effects, authors in [1] propose changing value of a tuned neuron’s 1 from 1/0 to a
value chosen at random from standard Gaussian distribution at every time-step, t = i. The proportion
of such noisy neurons were added in steps of 10% from 0 to 40% to the tuned neuron ensembles in
order to create five copies of neural spike data with varying degrees of noise [1]. Added noise introduces
variability/non-stationarity in neural data.

Similarly, we created Syn_Dir_8 for eight output actions corresponding to movement towards the
eight center-out targets. In this case, we used target matrix corresponding to day 1 of experiment 4
to arrive at the neural data matrix. We used D = 63 input neurons in this case and split them into
nine equal sized ensembles – eight ensembles tuned to each of the eight directions and the remaining
one for noise. Furthermore, we introduced additional noise in 0 to 40% of tuned neurons in steps of
10%, by changing the value of synaptic current from 1/0 to a random value chosen from standard
Gaussian distribution. This yields us five versions of neural spike data with varying degrees of noise
(variability/non-stationarity).
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Test Results—50% Sparse Feedback

Test Results—75% Sparse Feedback

Figure S1. Decoding accuracy across four experiments has been reported for RL algorithms—AGREL,
HRL, Banditron, Banditron-RP and Q-learning withholding feedback signal across time-steps thereby
introducing sparsity in feedback. (a), (b), (c), (d) depict results for 50% sparsity in feedback—First
half (top); and (a), (b), (c), (d) depict results for 75% sparsity in feedback respectively—Second
half (bottom). Shaded regions represent standard deviation of results across 20 iterations of random
instantiations of probabilistic algorithms. In this scenario, Banditron and Banditron-RP significantly
outperform the state of the art RL algorithms.

Figure S2. This plot shows AGRELBTOU_epochs_xx’s training accuracy and validation accuracy on
experiment 2 on day 1 for varying number of training data replications (epochs). The improvement
in performance saturates roughly after 10 epochs.

3



Neuroelectronics Article

Figure S3. Low dimensional representation of input firing rates and extracted features for—(a) day 1
and (b) day 4 of training data (session 1), and (c) day 1 and (d) day 4 of test data (sessions 2 and 3)
corresponding to experiment 2 dataset respectively. AGRELBTOU_trans f er_epochs_10 is used to learn
complex feature representations following the paradigm of transfer learning. These representations are
referred to as extracted features. The separability of extracted features appears relatively better than
input firing rates in the training set, whereas no improvements can be observed in the testing set. Please
note that we have only shown clusters corresponding to three options instead of the original four in the
experiment for ease of visualization.
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