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Highlights:

* A Dual-Branch Skull-Induced Phase Aberration Correction network (DB-SIPAC) is proposed as a
machine learning (ML) method for predicting time delay profiles.

*  An Iterative Time-Delay Search algorithm (ITDS) is introduced to generate ground-truth training
data for DB-SIPAC.

*  DB-SIPAC outperforms state-of-the-art alternatives in both accuracy and speed.

*  DB-SIPAC can excel even with limited training being domain enriched.

*  DB-SIPAC enables precise neuromodulation in real-time.

Abstract: Transcranial focused ultrasound stimulation (tFUS) is a promising noninvasive neuromodulation
technique that offers high spatial resolution compared to other non-invasive alternatives. However, its
effectiveness is hindered by skull-induced phase aberrations, which distort the ultrasound beam and
reduce focal accuracy. Existing solutions are often computationally intensive or fail to account for the
effects of ultrasound wave changes outside the expected focal spot. In this paper, we approach phase
correction as a model inversion problem and propose the Dual-Branch Skull-Induced Phase Aberration
Correction Network (DB-SIPAC), a novel domain-enriched machine learning framework designed to
efficiently predict time-delay profiles. The DB-SIPAC model consists of two specialized branches: the
Pathway Branch, which focuses on the direct path from the ultrasound transducer to the target, and the
Skull Branch, which incorporates full skull structure information to account for reflections and refractions.
This dual-branch design enables rapid and accurate time-delay predictions, reducing computational time
from minutes to less than a second. To facilitate learning, we generated a training dataset consisting
of skull images and ground-truth time-delay profiles across a range of skull shapes and thicknesses.
Since existing methods cannot guarantee time-delay profiles that ensure the expected focal spot has the
maximum pressure within the brain, we introduce Iterative Time Delay Search (ITDS), a novel numerical
algorithm that iteratively refines time-delay profiles generated by state-of-the-art methods to generate the
ground truth for DB-SIPAC. Simulation results demonstrate that DB-SIPAC outperforms state-of-the-art

alternatives, achieving perfect focal point alignment with the target and maximizing focal pressure, all
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while providing real-time inference.
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1. Introduction

Low-intensity transcranial focused ultrasound stimulation (tFUS), functioning as a noninvasive method for
neuromodulation, has proven to be effective in animals and humans, exhibiting superior millimeter-scale
spatial resolution when compared to its noninvasive alternatives [1-4] for precise focusing within the
brain. Recently, phased ultrasound (US) arrays have been developed to provide both focusing and
steering capability using electronic beamforming [5—10]. However, these US transducers only provide
precise focusing under ideal conditions with a homogeneous propagation medium. However, a significant
challenge encountered by this technology is the aberration caused by the skull, particularly, in large
animals and humans with thick skulls, leading to deviations from the ideal scenario. Aberration of
phase, introduced by the skull can lead to considerable degradation in the accuracy, resolution, and focal
pressure of the beam, thereby impairing its overall performance and effectiveness, defocusing of the ideal
beamforming, and degrading the beam shape [11-14].

Effective experimental methods of phase correction, such as the implanted hydrophone by Clement
and Hynyen, provide high-quality refocusing. However, the implication of this method requires invasive
procedures, and the steering capability is limited [15], leading the authors to adopt the non-invasive
beam steering approach [16]. Other effective non-invasive techniques such as Acoustic Stars [17], the
Time Reversal (TR) method [18], Hybrid Angular Spectrum (HAS) [19], and Acoustoelectric Time
Reversal (AETR) [20] are some examples of effective attempts on non-invasive US neuromodulation.
Nevertheless, emerging machine learning (ML) algorithms offer promising solutions to correct
phase aberrations and achieve optimal focus in transcranial ultrasound (US), independent of
skull-induced distortions.

In recent years, ML has been widely applied across various domains, including medical imaging [21],
speech recognition [22], and autonomous systems [23]. By training on large datasets, ML models can
uncover complex patterns and make accurate predictions, often outperforming traditional techniques [24].
Deep learning, a subfield of ML, has gained significant attention for its capacity to model intricate data
relationships using multi-layered neural networks. Recently, graph-based deep models have been proposed
to capture non-local brain-network structures, examples include the Spatio-Temporal Graph Hubness
Propagation model for dynamic brain-network classification [25], and the Long-Interval Spatio-Temporal
Graph Convolution framework for brain-disease diagnosis [26]. At the same time, Convolutional Neural
Networks (CNNs) are particularly well-suited for image-related tasks. CNNs, such as ResNet, have
demonstrated exceptional performance in image recognition and classification due to their ability to
extract hierarchical features through stacked convolutional layers [27,28]. In the context of transcranial
ultrasound (US), deep learning, and CNNs in particular, has been successfully employed to reduce
skull-induced artifacts in US imaging, as shown in recent simulation studies [29]. These models can predict

and correct distortions caused by skull heterogeneities, thereby enhancing US image quality. Furthermore,
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they are capable of generalizing across different skull anatomies, effectively adapting to variations in
skull shape and thickness, and thus offer a robust solution for compensating phase aberrations.

Simulating the pressure generated by a US array in a specific skull configuration using a given time
delay profile can be easily achieved using tools such as the k-Wave, a MATLAB toolbox (MathWorks
R2023b, Natick, MA) [30]. However, the inverse problem—generating an optimal time delay profile based
on a desired pressure distribution—is significantly more complex. This challenge positions skull-induced
phase aberration correction as a model inversion problem.

A widely used approach for skull phase correction employs time-reversal techniques [18], where a
simulated point source is placed at the desired focal point. The pulse emitted by this source propagates
through the medium and is recorded by the transducer array. The recorded signals are then time-reversed
and re-emitted, causing the wavefront to retrace its original path and refocus at the source, as if the
experiment were played backward [31,32]. An alternative but conceptually similar approach is forward
propagation, where the acoustic field from each transducer element is individually propagated to the
target. By calculating the phase at the target location from these individual fields, the required corrections
can be determined and applied to the transducer array [19]. Despite differences in implementation, both
methods rely on simulation-based phase recovery, requiring at least one simulation run to achieve precise
refocusing. However, this process is computationally expensive and time-consuming, making it unsuitable
for real-time applications. Additionally, time-reversal methods only optimize pressure at the expected
focal position while neglecting pressure distribution elsewhere in the brain. As a result, unintended
regions may experience higher pressure than the intended focus spot, potentially compromising safety
and effectiveness.

To address the computational limitations of time-reversal techniques, machine learning-based
approaches have been introduced. Naftchi ef al. [33] proposed an end-to-end deep learning model
for simultaneously predicting the pressure field and correcting phase aberrations. In a key innovation,
Tian et al. [34] developed a deep learning approach leveraging pulse-echo ultrasound to process
backscattered US radio-frequency (RF) signals from the skull. Their approach estimates the local skull
thickness and speed of sound (SOS) map and then applies the Fast Marching Method (FMM) [35] to
generate time delay profiles. However, both methods focus on a small skull region, without considering
the impact of the entire skull or cases where the focal spot is located deep within the brain, far from the
skull; our work naturally extends these approaches by processing a full skull image.

In this paper, we propose a domain-enriched Dual-Branch Skull-Induced Phase Aberration Correction
Network (DB-SIPAC), a machine-learning framework designed to predict time-delay profiles with
high accuracy and speed. To generate a ground-truth time-delay profile dataset for training the model,
we develop Iterative Time Delay Search (ITDS), a novel numerical iterative search algorithm that
enhances time-delay profiles generated by other model-based methods, such as [18,19]. Using ITDS, we
create a first-of-its-kind training dataset consisting of CT skull images, desired focal regions, and their
corresponding ground-truth time-delay profiles. Our work makes the following contributions:

e A Fast New Domain Knowledge Driven ML Based Phase Aberration Correction Network for tFUS:

We proposed DB-SIPAC, a machine learning framework designed to correct skull-induced phase

aberrations with dual branch structure. This model integrates skull properties and US pathways to
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generate time-delay profiles that incorporate full skull information while specifically focusing on the
essential pathway. The Pathway Branch targets the direct path from the US transducers to the focal
spot, capturing the primary effects of skull-induced aberrations. The Skull Branch processes the
entire skull structure, accounting for reflections and refractions that affect the US beam beyond the
direct pathway. This network will be trained on the ground-truth dataset and can predict time-delay
profiles with high precision, reducing computation time from minutes to mere seconds, making it
suitable for real-time clinical applications.

e [terative Time Delay Search: A New Iterative approach to generate training ground truth. We introduce
ITDS, a novel iterative method designed to enhance time-delay profiles generated by existing
approaches, such as the time-reversal method. Initially, it leverages model-based methods such as
TR [18] or HAS [19], to generate preliminary time-delay profiles. Then, using an iterative gradient
descent algorithm, I'TDS optimizes the time-delay profile for each US element through simulations.
This ensures precise US wave focusing despite skull-induced distortions, providing an efficient and
accurate solution for ground truth beam focusing in heterogeneous skull environments.

e A New Skull Image and Ground-truth Time Delay Profile Dataset: This study also introduces
the Skull-Induced Phase Aberration Correction (SIPAC) Dataset. To our knowledge, it is the first
to pair real-world skull images with their corresponding ground truth time delay profiles dataset.
Generated using the previously mentioned ITDS approach, this dataset captures diverse skull shapes
and thicknesses by optimizing the time delay profiles for each unique skull configuration. The dataset
enables machine learning models to train and validate on a diverse range of skull shapes, thicknesses,
and focal spot positions, ensuring robust generalization across different subjects. The dataset will be
available on https://github.com/6zhc/SIPAC.

The rest of the article is organized as follows: In Section 2, we describe the generation of the
binary skull file and the parameter settings for the simulation. In Section 3, we present the details of the
proposed ML method, DB-SIPAC. In Section 4, we introduce the SIPAC dataset, which is used to train
and validate the ML model, along with ITDS, which generates the ground-truth time-delay profiles. In
Section 5, we validate the ML method along with other State-of-the-art method through simulation studies,
demonstrating the practical advantages of DB-SIPAC. Section 6, concludes the paper and discusses

future work.

2. Methodology
2.1. Numerical skull model

The aim of this study is to develop a machine learning algorithm for generalized phase correction in a
tFUS neuromodulation array, enhancing beamforming performance by accounting for the heterogeneous
properties of the skull.

To validate the effectiveness of the method, a large dataset comprising skull images (to learn
the effects of skull shapes and thicknesses) and focal points (focal length and steering angle pairs) is
required. The base acoustic models employed in this study are developed using datasets from the Visible
Human Project® (VHP) and the Center for Magnetic Resonance Research (CMRR) at the University of
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Minnesota [36,37]. The dataset comprises CT scans from 12 adult subjects (9 males, 3 females), with
each patient is selected for three CT slices, resulting in a total of 36 skull models. The average age of the
subjects was 62.2 years with a standard deviation of 14.8 years. These datasets of skull cross-section
figures were then converted to binary images using ImageJ, a popular image editing software for revising
biomedical images. A total of 36 different binary skulls were extracted. To augment the dataset, existing
images were rotated while keeping the array position fixed to target different skull portions. We further
introduced systematic variations in the relative positioning between the skull and the ultrasonic device,
emulating a clinical configuration in which the transducer is secured to a head-mounted baseplate. Inspired
by [38], this strategy is predicated on the expectation that, in real-world applications, patient movement
will not substantially alter the array-skull positioning. Figure 1a consists of some sample images from

the dataset of different binary skulls.
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Figure 1. Overview of the binary skull model and focal points in polar coordinates.
(a) The binary skull image used to simulate the effects of skull thickness and shape on
the US beam, where white regions represent the skull and black regions denote soft
tissue or water. (b) The skull in polar coordinates, illustrating focal points (blue dots)
marked by the intersections of straight lines (representing steering angles) and arcs
(representing focal distances). The US array is positioned at the origin. This figure
demonstrates the selection of different focal spots within the skull for analysis.

To denote focal points inside the brain region enclosed by the skull as targets for stimulation, different
regions are selected. An example can be seen in Figure 1b, where the straight lines denote the steering
angle spaced at 2.5° angles from adjacent and the arcs denote the focal distance from the array, which
are at 2 mm spacing from the adjacent. Each crossing of the straight lines and the arcs denotes a focal
point. Focal points were uniformly sampled on a polar grid bounded by azimuthal angles from —15°
to +15° in 5° increments, and radial distances of 40, 55, 70, 85, and 100 mm (measured from the

center of the transducer aperture). These limits were determined during a preliminary sweep: steering
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beyond +15° or deeper than 110 mm resulted in loss of focal pressure and pronounced grating-lobe
artifacts. Each binary-skull slice was therefore rotated to ensure that all grid points lay within the cranial
cavity, guaranteeing unbiased, uniform coverage of all regions within the array’s effective beamwidth.
Approximately 35 focal points were selected from each skull dataset. With 36 skulls in the dataset, this
yields a total of 1,260 focal points.

Once the dataset is obtained, the skull model is imported into the k-Wave toolbox. To ensure
alignment with real-world measurements, the transducer dimensions specified in [9] are replicated. For
the skull measurements, the guidelines in [39] are adhered to, with the Glabella-to-back-of-head distance
maintained at 18-21 cm and the Bitragion breadth at 13—16 cm [40].

2.2. Simulation setting

We start with US focusing using phased linear arrays. Based on the previous elaborate works on US
arrays for neuromodulation [9,1041], a 2D numerical model is built using the k-Wave toolbox [30]. The
32-element linear transducer array, which was optimized in [10] for tFUS applications at 500 kHz, was
modeled and simulated in k-Wave in this work. Although higher driving frequencies yield progressively
greater on-axis pressures, owing to reduced focal spot size, they also incur intensified beam distortion and
sidelobe formation using this low frequency array, which broadens the effective beam area. Simultaneously,
attenuation in cranial tissue increases more than linearly with frequency, further diminishing net pressure
at the focus. These competing phenomena result in a monotonic decline in the FoM as frequency rises
above the baseline. Consequently, 500 kHz setting delivers the optimal balance between spatial resolution,
transmission efficiency, and sidelobe suppression using this 500 kHz phased array. If a higher frequency is
desired, a phased array transducer can be designed for such frequency using our design procedure in [9],
based on which the proposed machine learning algorithm can be trained for optimal performance. For the
simulation, a grid resolution of A/16 is selected, which ensures 16 grid points per wavelength (4). Such
resolution is chosen to balance accuracy and computational efficiency. Consequently, the grid size is set
to (Nx,Ny) = (876,876). The design parameters are listed in the following Table 1.

Table 1. List of simulation parameters in k-Wave.

Parameters Optimized US Array
Sonication Frequency, f (kHz) 500

Number of US Elements, N 32

US Array Aperture, D (mm) 49.7

US Element Width, a (mm) 1.3

US Interelement Spacing, d (mm) 1.56

Kerf (mm) 0.26

In practical applications, the transducer should be positioned in close proximity to the skull, with a
wave-guiding medium such as US gel used to fill the intervening space. This approach minimizes acoustic
reflections and energy loss. Additionally, it is important to consider that the skull is overlaid by the scalp,
and beneath it lies the cerebrospinal fluid (CSF) and brain tissue. The density and speed of sound (c¢) of

these layers are given in Table 2.
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Table 2. Acoustic parameters.

Layer Density (g/cm3) Speed of Sound (m/s)
US Gel 0.99-1.02 1510

Skin 0.985 1540

CSF 1.0003-1.0008 1505

Brain Tissue 1.081 1546

Water 1 1500

Skull ~1.9 ~2900

The Courant-Friedrichs-Lewy (CFL) condition is satisfied by setting its value to 0.3 [30]. In order to
reduce complexity, it is a common approach to model the system replacing the US Gel, Skin, CSF, and
Brain Tissue layers with water, as it shares properties very similar to the soft layers [37].

In a uniform medium, optimal beam steering and focusing at the point with azimuthal angle (6,) and

focus distance (F) requires calculating the excitation time delay t[n] for the n/" element as follows:

= () |1~ \/ 1+ (%)2— 2dsin®) ) 1, 1)

where F is the focal distance, 6 is the azimuthal angle, c is the ultrasound velocity, and ¢y is a common

delay offset [42]. Utilizing the time delay profile calculated for a uniform medium in the presence of a
skull can cause the focal spot to deviate from the intended position.

To assess the impact of skull aberration, we first simulated a homogeneous medium composed
entirely of water. We analyzed beamforming with a delay profile designed to focus and steer US waves
to a target area at a depth (F) of 80 mm with a 0° beam-steering angle (6;), as shown in Figure 2a. The
beamforming performance was further evaluated using a Full Width at Half Maximum (FWHM) profile,
presented in Figure 2c. The results demonstrate ideal beamforming, characterized by minimal focal
spread, and maximum pressure at the focal point (Target), as illustrated in Figure 2a,b.

In contrast, when the US arrays were positioned in front of the skull using the same delay profile
with the initial uncorrected phase, the beam profile, depicted in Figure 2c, showed significant shifting of
the maximum pressure point from the intended focal target. The beam was shifted laterally and axially by
1.23 mm and 17.86 mm, respectively, and the maximum US pressure at the corresponding focal point was
reduced by 1.88 times . At the target focal point of ' = 80 mm, 6; = 0°, the US pressure is reduced by
2.09 times.

In addition to the non-idealities introduced by the heterogeneous nature of the skull, a significant
challenge of inconsistency must be addressed. In practice, the skull shape and thickness will vary among
subjects, meaning that the phase correction optimized for one subject is unlikely to be applicable to
another. Furthermore, these properties can vary within the same individual; for example, the parietal
section of a subject’s skull may have different properties compared to the frontal or temporal sections.

This variability necessitates individualized phase correction for each subject.



Neuroelectronics Article

K F=80mm

0s=0

- Target
*»~ Defocusing

X - Position [mm]
Normalized Pressure
X - Position |mr.n]
Nnrmaliz.ed Pressure
X - Position [mm]

-100  -50 0 50

2100 50 0 50 100
Y - Position [mm]

-50 0 50
Y - Position [mm] Y - Position [mm] Y - Position [mm]

(@) (b) (0 (d)

-50 0 50

Figure 2. Beamforming and aberration effects in US focusing. (a) Ideal beamforming
scenario in a homogeneous water medium, where the US beam focuses precisely at
the target location (F = 80 mm, 6; = 0°). (b) Binary beam profile for ideal focusing,
exhibiting sharp focusing with minimal spread and maximum pressure at target focus.
(¢) Beamforming in the presence of skull-induced phase aberrations, resulting in
defocusing and a distorted beam shape. (d) Binary beam profile for skull-aberrated
focusing, demonstrating significant degradation in focus quality & Defocusing due to
skull effects.

2.3. Figure of Merit (FoM) for optimizing phased arrays for US neuromodulation

To evaluate the crossing condition for the transcranial focused US system, a metric is necessary for the
quantitative comparison of different configurations. As discussed in [9], achieving an appropriate balance
between power efficiency and spatial resolution is critical. This ensures sufficient US pressure at the
target location while maintaining a small focal spot for better specificity, all with minimal input electrical
power. To quantify this trade-off, we employ the FoM defined in [9], given by the following equation:

P max

2
V Abeam ( )

where Pp,x represents the maximum US pressure at the focal spot, and Apeam, denotes the FWHM beam

FoM =

area. The FoM effectively captures the trade-off between achieving high focal pressure and minimizing

the focal spot size, offering a clear metric for optimizing the tFUS system design.

3. Dual-branch skull-induced phase aberration correction network (DB-SIPAC)

Existing methods, such as the Hybrid Angular Spectrum (HAS) method [19], the Time Reversal (TR)
method [18], rely on time-consuming simulations to generate time-delay profiles, making them impractical
for real-time applications. Additionally, it does not account for pressure distribution across the entire
brain, potentially leading to suboptimal time-delay profiles. As a result, neuromodulation treatments
using this method may cause unintended side effects. To overcome these limitations, we propose a deep
neural network called the Dual-Branch Skull-Induced Phase Aberration Correction Network (DB-SIPAC),
whose detailed structure is illustrated in Figure 3. DB-SIPAC is designed to rapidly generate time-delay
profiles while considering the entire skull and brain. The network consists of two specialized branches:
the Pathway Branch and the Skull Branch.
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(b) DB-SIPAC Network Architecture

Figure 3. Overview of the DB-SIPAC network for phase aberration correction.
(a) Pathway image extraction process: The blue points represent the US array
elements, and the orange point indicates the expected focal spot. The US pathway
in the skull image is bounded by a green box, which is extracted and input into the
network. (b) Detailed architecture of the Dual-Branch Skull-Induced Phase Aberration
Correction Network (DB-SIPAC): This illustration shows the flow of information
through the Pathway Branch and Skull Branch. The Pathway Branch processes the
direct path between the US elements and the expected focal spot, while the Skull
Branch incorporates the entire skull’s information to account for reflections and
refractions. Both branches collaborate to predict the time delay profile for correcting
phase aberrations, ensuring precise US focusing.

3.1. Pathway Branch

Due to the variable relative positions between the expected focal spot and the US array, learning the
relationship between the skull image (and the expected position) and the time delay profile is challenging.
To address this, all paths that US elements must traverse to reach the expected focal spot are first extracted,
thereby reducing the network’s computational burden by limiting it to generating time delay profiles
corresponding to each path. In the extracted paths, the US elements are fixed on the left side of the image,
and the medium information containing the skull along the path from the US element to the expected
focal spot is marked as positive, while the medium information in areas to the right of the expected focal
spot is marked as negative. This encoding informs the network about the position of the expected focal
spot. The pathway extraction procedure is illustrated in Figure 3a, where the blue points represent the US

array elements and the orange point signifies the expected focal spot. In the original skull image, the US
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pathway is enclosed within a green box. This bounded region is subsequently extracted and input into
the network, effectively capturing the geometric relationships between each US array element and the
expected focal spot.

The Pathway Branch borrows from the design principles of ResNet [28], which addresses the
vanishing gradient problem prevalent in deep networks. This branch includes an input block and four
ResBlocks. The input block extracts features from the input, while each ResBlock processes these features
sequentially. All ResBlocks share a similar architecture, comprising four weighted layers. Each weighted
layer consists of a 3 x 3 convolutional layer, a batch normalization layer, and a ReLLU activation layer.
The specific parameters are detailed in Table 3. Additionally, the input features of each block are added to
the output features of the second layer, and similarly, the output features of the second layer are added
to the output features of the fourth layer. This residual connection allows the network to learn residual

functions relative to the layer inputs, enhancing training efficiency and performance.

Table 3. Architecture detail for DB-SIPAC. The “P Output Size” column represents
the output size of the block in the Pathway Branch, and the “S Output Size” column
represents the output size t of the block in the Skull branch. Downsampling is performed
by the first convolutional layer in Block3, Block4, and BlockS.

Block Name Block Structure P Output Size S Output Size
Input 512 x 64 x 32 876 x 876 x 2
Block1 7 x 7 Conv, stride 2 256 x 32 x 64 438 x 438 x 64

3 X 3 max pool, stride 2

Block2 [ 3 x 3 Conv, BN, ReLU ] 9 128 x 16 x 64 219 x 219 x 64
3 x 3 Conv, BN, ReLU

[ 3 % 3 Conv, BN, ReLU |
Block3 X2 64 x8x 128 110 x 110 x 128
3 x 3 Conv, BN, ReLU

[ 3 % 3 Conv, BN, ReLU |
Block4 X2 32 x4 x256 55 x 55 x 256
3 x 3 Conv, BN, ReLU

| 3 % 3 Conv, BN, ReLU |
Block5 %2 16 x2 x 512 28 x 28 x 512
3 x 3 Conv, BN, ReLU

average pool, 32-d fully conv I x1x32 I x1x32

3.2. Skull Branch

Due to the reflection and refraction of ultrasound (US) waves, the entire skull’s structure plays a crucial
role in accurate predictions. Therefore, in addition to focusing on pathway information, the network must

extract relevant details from the global skull image to accurately estimate the time delay profile. Since the

10
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location of the focal spot varies in each case and is critical for information extraction, we added an extra
channel to the binary skull image. This additional channel is entirely zeros except for a 7 x 7 solid circle
marked with ones at the expected focal spot.

The structure of the Skull Branch is similar to that of the Pathway Branch, with differences in input
dimensions. Like the Pathway Branch, the Skull Branch includes an input block and four ResBlocks, with
specific parameters and dimensional differences outlined in Table 3. The output of the Skull Branch is
added to the output of the Pathway Branch to obtain the final time delay profile.

In summary, the Pathway Branch primarily focuses on the pathway from the US elements to the
expected focal spot, disregarding information that has minimal impact on the result, thereby facilitating
easier training of the network. Conversely, the Skull Branch processes the entire skull information,
capturing the effects of US reflection and refraction caused by non-pathway regions of the skull on the
focal spot, thereby enhancing the generated time delay profile. Through our comparative simulations in
Section 5, we found that the Pathway Branch plays a major role in the network, while the Skull Branch

helps correct the pathway, resulting in improved outcomes.

4. Skull-induced phase aberration correction dataset

A machine learning approach can significantly accelerate time delay prediction. However, it requires a
comprehensive training dataset that includes skull images, expected focal spots, and corresponding time
delay profiles. To address this need, we introduce the Skull-Induced Phase Aberration Correction (SIPAC)
Dataset. We also propose the Iterative Time Delay Search (ITDS) Algorithm, which improves upon the time
delay profile generated by the existing model-based method, such as the Hybrid Angular Spectrum (HAS)
method [19] and the Time Reversal (TR) method [18], to get the ground-truth time delay profiles.

Algorithm 1 provides the complete pseudocode for ITDS. The ITDS algorithm begins by selecting
an expected focal spot location and computing an initial time delay profile using an existing model-based
method, such as HAS [19] or the TR [18]. In this method, each element transmits a signal separately,
allowing measurement of the travel time from the element to the expected focal position. Initializing
the time delay profile with the existing model-based method results in faster convergence compared to
other initialization methods, as it is typically close to the final ground truth time delay. Additionally, this
initialization enhances the spatial peak US pressure at the expected focal spot, forming a regular elliptical
shape within the FWHM beam region.

Directly comparing time delay profiles through analytical calculations is challenging; therefore,
MATLAB'’s k-Wave is utilized to simulate and obtain the pressure map generated by the US elements
using the time delay profile. To evaluate and compare different profiles, we define a comparison function
cmp(t,t'), where t denotes the current time delay profile and t’ denotes the profile being compared. The
function returns 1 if t is deemed superior to t’, and —1 otherwise, based on the simulation results from

k-Wave. The function is formally defined as follows:

11
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1 if NormP(t) > NormP(t')

(t.6) 1 if NormP(t) = NormP(t') 3)
cmp(t,t') =
b and P(t) > P(t)

—1 otherwise
\

where P(-) represents the US pressure at the expected focal spot, and NormP(-) denotes the normalized

US pressure, defined as:

P(t)
MaxP’
with MaxP being the maximum pressure within the skull. This function evaluates two time delay profiles

NormP(t) = 4)

t and t’ based on their US pressure and normalized US pressure at the expected focal spot. The conditions
ensure that t’ is considered better only if it has a higher normalized pressure or, in the case of equal

normalized pressure, a higher pressure at the expected focal spot.

Algorithm 1 Iterative Time Delay Search (ITDS) Algorithm
1: procedure GROUNDTRUTHTIMEDELAY(t)

2: Pick an expected focal spot location, characterized by focal distance F' and azimuthal angle 6.
3: Calculate initial time delay using a model-based method, such as HAS [19] and TR [18] method.
4: Simulate the time delay profile t with k-Wave.
5: while not converged do
6: for each elementn=1,...,N do
7: d+ cmp(t+t,&,t—t,8)-t,
8: if cmp(t+ Bd,t) > O then
9: B« &
10: while cmp(t+2d,t+ d) > 0do
11: B+ 2pB
12: end while
13: t« t+ pt,d
14: end if
15: end for
16: end while

17: end procedure

In each iteration of the ITDS Algorithm, only one element of the time delay profile is optimized
while keeping the time delays of all other elements constant. To achieve this selective optimization, an
index vector t, is defined as:

) 1 ifi=n,
t,[i] = )
0 otherwise,
where i ranges from 1 to N. This vector effectively isolates the n'™ element in the time delay profile.

Consequently, when updating the time delay profile from t to t+ St,d, only the n'" element’s time delay
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is modified by Bd,, while all other elements remain unchanged. This approach ensures precise and
controlled optimization of individual time delays within the profile during each algorithmic iteration.
Since the comparison function between time delay profiles t and t’ is not continuous, traditional

gradient-based methods are not applicable. Instead, the direction d is defined as:
d=cmp(t+t,&,t—t,5) t,,

as shown in line 7 of Algorithm 1. This direction points towards the better time delay profile between
adding or subtracting a minimal value & (which, in our simulations, represents the smallest unit affecting
the simulation outcomes, specifically the time step in the k-Wave simulation) to the time delay of the
n'" element. This strategy initially directs the algorithm towards maximizing the normalized pressure at
the expected focal spot, typically approaching 1, which indicates that the pressure at the expected focal
spot is the maximum pressure within the brain for that time delay profile. Subsequently, it enhances the
pressure at the expected focal spot while maintaining the normalized pressure at 1.

With the direction d defined, the algorithm then focuses on determining the optimal search step size,
as outlined from lines 8 to 12 in Algorithm 1. Unlike traditional optimization methods that employ a
fixed learning step size 8, we initiate § with & and subsequently double it to assess whether performance
improves. This exponential growth method for determining the optimal learning step size significantly
reduces the search time, saving approximately 75% of the computational time.

The ITDS program was implemented in MATLAB, running on MATLAB R2022a on a system
equipped with an Intel(R) Core(TM) 19-7960X CPU @ 2.80GHz, 64 GB of RAM, and an NVIDIA
GeForce RTX 4090 GPU.

In the STPAC Dataset, 36 skull images were selected from the Visible Human Project® (VHP) and the
Center for Magnetic Resonance Research (CMRR) project. These images were preprocessed as described
in Section 2.1 to generate binary images, where a value of 1 denotes the skull and O represents tissue or
water. Based on expert recommendations, 7 azimuthal angles and 5 distances from the US array to the focal
spot were selected for each skull image, resulting in 35 expected focal spots per image. The selection of
these expected focal spots is explained in detail in Section 2.1.

For each expected focal spot in a given skull image, the Iterative Time Delay Search (ITDS)
algorithm was employed to compute the ground-truth time delay profile. This process yielded a total of
36 skull images x 7 azimuthal angles x 5 distances = 1260 data points, each comprising a ground-truth
time delay profile paired with a skull image and its corresponding expected focal spot, thus forming the
SIPAC Dataset. Specifically, each data sample is mathematically represented as {(I;,F;, 0 j);tj}.’]‘.i 1260,
where I; denotes a skull image, the azimuthal angle 6; along with the focal distance F; define the expected
focal spot, and t; represents the ground-truth time delay profile generated by the ITDS algorithm for that
specific configuration.

To validate the effectiveness of the dataset, k-Wave was used to simulate US pressure based on
the time-delay profiles. All pressures at the expected focal spot were confined within the FWHM beam
area. Moreover, the average ratio of pressure at the expected focal spot to the maximum brain pressure
was 1, indicating that the expected focal spot consistently had the highest pressure across all data points.

Additionally, the average pressure at the expected focal spot was 1.430, and the average FoM, as defined
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in Equation (2), was 0.0299.

S. Simulation results
5.1. Dataset preparation for training and evaluation

To efficiently leverage the limited data, 5-fold cross-validation was employed. First, 6 skull images and
their corresponding data points were set aside as the test dataset, which did not participate in model
training or validation. Then, the remaining 30 skull images were evenly divided into five parts, using one
part for validation and the others for training in each fold, thereby obtaining 5 trained models. These
models were tested separately, and the average of performance metrics (along with standard deviation) is
reported. The dataset sizes used for each training, validation, and testing were as follows:

* 840 pairs (24 skull images) for training (66.67%),

* 210 pairs (6 skull images) for validation (16.67%),

e 210 pairs (6 skull images) for testing (16.67%).

5.2. Training loss function

L loss, also known as Mean Absolute Error (MAE), is widely used in various domains due to its simplicity
and robustness in minimizing the error between predicted and true values [43]. It is beneficial when
dealing with data that contains outliers, as L loss is less sensitive to extreme values compared to other
loss functions, such as L, loss (Mean Squared Error) [44]. Recognizing that adding a constant to all
32 time delays in a profile does not impact the US array’s actual performance, the loss calculation was
adjusted. The delay profiles were normalized by subtracting the minimum value from each of the 32 time
delays in both the ground truth and the network output. Then, the L; distance between these normalized
values was calculated. This adjustment shifts the focus of the loss calculation to relative timing differences
rather than absolute values, enhancing the network’s ability to generalize across new datasets. The loss
function is defined as follows:

1

W, 5)

Mx

Loss (Norm (t) ,Norm (t)) = ‘Norm (t;) —Norm <E>

1

where
Norm (t) = (#; —min (t),#, —min(t),...,s, —min(t))

and t is the ground truth time delay profile and t is generated time delay profile from the network.

The Adam optimizer was employed to learn the DB-SIPAC network parameters, initialized with a
learning rate of 0.001 during the training. The models are implemented using the PyTorch framework [45],
and all simulations are performed on two NVIDIA Titan X (12GB) GPUs.

5.3. Competing methods

* TR (Time Reversal) [18]: Time Reversal, also named virtual source, is opposite the target and
transducer location. A simulation was run by sending a test pulse from the intended target to the US

transducer array and recording the received delay at each element.
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* HAS (Hybrid Angular Spectrum) [19]: The HAS method, a TR-based variant, individually propagates
ultrasound waves from each transducer element and records the received delay at the target. These
recorded delays are then used to construct the time-delay profile for phase correction.

* MedViT [46]: MedViT, a leading SOTA network in medical image classification, was adapted for
time delay profile generation. Since no prior work exists on generating time delay profiles from skull
images, we modified MedViT by extracting features before its last layer and feeding them into a fully
connected layer to generate the time delay profiles. * MedViT’s effectiveness has been demonstrated
across various modalities, including US and CT images, making it a relevant comparison for our task.

* TUSNet [33]: TUSNet is the first end-to-end deep learning approach designed to jointly estimate the
pressure field and perform phase aberration correction. We use the pretrained model provided by
the authors and freeze the pressure field and absolute pressure decoders while fine-tuning the phase
decoder and its associated encoder on our dataset.

* P-SIPAC (Pathway-focused Skull-Induced Phase Aberration Correction Network): An original
ablation study introduced in this work. P-SIPAC uses only the Pathway Branch of DB-SIPAC as
a standalone network, thereby isolating the impact of direct-path skull information while omitting
global structural features. This ablation evaluates the contribution of the pathway prior by comparing
its performance against the full dual-branch architecture.

* DB-SIPAC (Dual-Branch Skull-Induced Phase Aberration Correction Network): As described in
Section 3 DB-SIPAC is a dual-branch network that, once trained, can takes patient-specific CT skull

images as input and directly generate the element time-delay profile in under a second.
5.4. Quantitative performance measures

The five methods in Section 5.3 are compared with the following metrics. The first is the pressure at the
expected focal spot, where a higher value is preferred. The second is normalized pressure at the expected
focal spot, calculated using equation (4), which represents the ratio of pressure at the expected focal spot
to the maximum pressure in the brain; a higher value is better, with a maximum of 1. The third metric is
the Figure of Merit (FoM), defined in Section 2.3, where a higher FoM is achieved when the pressure
at the expected focal spot is maximized while minimizing the FWHM beam area. The final metric is
running time, which measures how long each method takes to generate a single time-delay profile for a

given skull image and target focal spot.
5.5. Numerical evaluation

Figure 4 presents both the simulated acoustic beam profiles (top row) and their FWHM regions (bottom
row), with the red dot marking the intended focus. In the TR and HAS cases, skull-induced aberrations
visibly warp the main lobe and shift its half-power contour, such that the red-dot target sits at the periphery
of the FWHM region rather than its center, indicating misalignment. MedViT successfully places the
expected focal spot within the FWHM beam region; however, the maximum pressure in the brain appears
several pixels away from the expected spot. By contrast, both P-SIPAC and DB-SIPAC enable the US

2 As reviewed in Section 1, [34] have been proposed recently as ML methods for time delay prediction but do not utilize
the CT skull image as input but instead process RF signals or an image patch. Therefore, we cannot experimentally compare
with [34] but compare with MedViT [46], whose input is the same as that of P-SIPAC and DB-SIPAC.
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array to accurately focus on the expected spot, placing the target at the point of highest pressure in
the brain and centre it within a compact FWHM region. These qualitative observations agree with the

quantitative improvements reported in Table 4.
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Figure 4. The upper row shows the simulated acoustic beam profiles generated
using different time delay methods: Time Reversal (TR) [18], Hybrid Angular
Spectrum (HAS) [19], MedViT [46], P-SIPAC, and DB-SIPAC, respectively. The
lower row displays the FWHM beam regions, representing the focal spot for each
method. The red point indicates the expected focal spot, and the boundary of each
FWHM beam region is highlighted with a green line for clarity.

Table 4. Comparative results for different methods, showing the performance
of the time delay profiles generated by each approach. The table compares key
metrics, including pressure at the expected focal spot, normalized pressure (the
ratio of the pressure at the focal point to the maximum pressure in the brain),
Figure of Merit (FoM), and the computational time required. The results highlight
the balance between accuracy and computational efficiency achieved by the proposed
DB-SIPAC method compared to traditional methods.

Pressure 1 Normalized Pressure T Figure of Merit  Running time |
TR [18] 1.402 0.970 0.0291 32 secs
HAS [19] 1.397 0.973 0.0295 249 secs
MedViT [46] 1.401 4+ 0.0043 0.9775 £+ 0.0020 0.0289 + 0.0004 0.53 secs
TUSNet [33] 1.399 £+ 0.0056 0.9655 + 0.0032 0.0286 + 0.0005 1.20 secs
P-SIPAC 1.4170 + 0.0038 0.9865 + 0.0014 0.0295 + 0.0002 0.32 secs
DB-SIPAC  1.4250 4+ 0.0023 0.9923 + 0.0006 0.0296 + 0.0001 0.45 secs

Table 4 shows that the proposed DB-SIPAC outperforms all other methods across all metrics to
evaluate the time delay profile. Since TR and HAS are simulation-based methods that do not require
training, they consistently generate the same time-delay profiles regardless of how the training and

validation datasets are divided. However, without the enhancement of ITDS, these methods do not

16



Neuroelectronics Article

account for pressure distribution in other parts of the brain. This can result in a lower normalized pressure
compared to other methods. For ML methods trained on datasets, performance can vary depending on the
training setup. To fairly evaluate the robustness of each ML method, we trained each method five times
using different training/validation splits while keeping the testing dataset unchanged. We then reported the
average performance metrics along with their standard deviations. MedViT, a state of the art ML method
for processing ultrasound image, struggles to fully capture the complex relationship between skull images,
expected focal spots, and optimal time-delay profiles, due to its lack of domain knowledge. As a result, its
performance is slightly lower than that of DB-SIPAC and P-SIPAC. Additionally, its standard deviation is
larger, indicating potential instability because of the training dataset. TUSNet [33], an end-to-end network
originally designed for simultaneous pressure field reconstruction and phase aberration correction, incurs
longer runtime than other ML methods focused solely on aberration correction. Because it emphasizes
pressure estimation as well, its effectiveness in phase correction is reduced, leading to lower performance
in our evaluation. P-SIPAC has the shortest runtime but at the cost of slightly reduced performance
compared to DB-SIPAC. DB-SIPAC achieves the highest pressure at the expected focal spot, with a
normalized pressure close to 1. This suggests that, in most cases, the pressure achieved by DB-SIPAC at
the expected focal spot is the highest. Although DB-SIPAC requires an additional 0.13 s of inference
time (0.45 s compared to 0.32 s for P-SIPAC), this latency remains well below the sub-second threshold
typically considered “real-time” for closed-loop tFUS workflows. Moreover, it is still nearly two orders
of magnitude faster than other existing SOTA methods such as TR and HAS. In contrast, DB-SIPAC
achieves approximately a 0.8% increase in peak pressure and a 0.6% improvement in normalized pressure.
This suggests that less acoustic energy is distributed to unintended locations when maintaining the same
pressure at the target spot, resulting in a safer and less harmful profile for patients. Therefore, while the
computational overhead introduced by DB-SIPAC is modest and clinically negligible, the corresponding

enhancements in acoustic performance provide meaningful practical benefits.

5.6. Training robustness: generalization benefits of DB-SIPAC

While a key advantage of ML-based methods is their versatility across different physical setups and their
ability to enable real-time inference; a major practical concern is their ability to generalize beyond the
training dataset. The dataset for training and testing is typically derived from either simulated patient
skull CT images or real-world measurements using skull specimens, US arrays, and hydrophones, both of
which are expensive and difficult to obtain. As a result, acquiring sufficient data for training machine
learning models poses a significant challenge.

To evaluate performance under limited training data, we reduced the dataset size from 840 pairs
(24 skull images) to 630 pairs (18 skull images), retaining approximately 75% of the original dataset. As
shown in Figure 5, all ML methods experienced a decline in performance due to the dataset reduction.
However, DB-SIPAC and P-SIPAC, as domain-enriched networks specifically designed for Skull-Induced
Phase Aberration Correction in ultrasound neuromodulation, exhibited greater generalization than other
methods, maintaining relatively consistent performance despite the smaller dataset. From a practical
deployment standpoint, such training robustness is a highly desirable benefit of DB-SIPAC as ML methods

often place unreasonable demands on both quantity and quality of the desirable training dataset.
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Figure 5. Box plot of merit across methods in fully trained and low-training scenarios.
(a) Box plot of pressure at the expected focal spot. (b) Box plot of normalized pressure,
representing the ratio of pressure at the focal spot to the maximum pressure in the
brain. (c¢) Box plot of the Figure of Merit (FoM), which quantifies beam focusing
efficiency relative to the FWHM beam area. The blue box represents the ML method
with full training, while the red box represents the ML method with limited training.

5.7. Model interpretability

For model interpretability, gradient-based saliency maps were computed to determine which skull features
most significantly contribute to the predictions of the DB-SIPAC model. The analysis was performed on
selected images from the Pathway Branch, shown in Figure 3a. The saliency maps, presented in Figure 6,
show that areas of high activation consistently correspond to the bone—water interface and regions of high

cortical curvature along the ultrasound propagation path. This provides strong evidence that the network

attends to anatomically meaningful structures during the time-delay estimation process.

Figure 6. Model interpretability visualized through gradient-based saliency maps,
corresponding to the selected input images in Figure 3a. Brighter pixels represent
features most influential for the model’s time-delay estimation. These critical features
consistently localize to the skull-water interface and sections of high curvature,
confirming the network’s focus on anatomically relevant structures.

6. Discussion and conclusion

The primary challenge in transcranial focused ultrasound stimulation (tFUS) is overcoming skull-induced
phase aberrations, which distort the US beam and reduce both accuracy and effectiveness. Traditional
simulation-based methods are computationally intensive and fail to account for US pressure effects across
the entire brain, leading to potential inaccuracies. To address these limitations, this study introduces
DB-SIPAC, an innovative, noninvasive, machine learning-based approach designed to efficiently correct
skull-induced phase aberrations.

DB-SIPAC introduces a dual-branch architecture, comprising a Pathway Branch, which captures

the direct US pathway to the target focal spot, and a Skull Branch, which accounts for broader skull
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structure details, including reflections and refractions. This comprehensive approach ensures robust
correction of phase aberrations, outperforming state of the art model-based methods as well as black-box
ML alternatives. The validation on our simulating set-ups show that DB-SIPAC achieves perfect focal
point alignment and maximizes pressure at the target location, exceeding the accuracy of competing
methods but in a fraction of the time. The ability to generate optimal time delay profiles in real time
makes DB-SIPAC particularly suitable for clinical applications, where quick adjustments are crucial.

While DB-SIPAC offers a feasible solution for clinical use with an attractive computational
cost-accuracy balance, some limitations remain. We recognize that our SIPAC dataset, comprising
36 skull models from 12 adult donors, represents only a subset of the full spectrum of human cranial
anatomy. Consequently, variations in paediatric skull geometry, extremes of bone density, and sex-specific
morphological features may be under-represented, potentially limiting the model’s generalizability.
Expanding the dataset with more diverse skull profiles would enhance the model’s generalizability. We
also recognize that our uniform grid of 35 focus points per skull, while sufficient for broad coverage,
may not be dense enough to resolve highly localized aberration patterns; under-sampling in regions with
rapidly varying phase delay could introduce subtle bias. In future work, we will explore increasing the
focal-point density to achieve more comprehensive, high-resolution coverage of all relevant intracranial
trajectories. Furthermore, DB-SIPAC currently addresses static skull scenarios. Future research should
explore dynamic adjustments, accommodating real-time changes in skull properties and patient movement
to improve adaptability in clinical environments. Integrating patient-specific data, such as individualized
skull characteristics obtained from imaging techniques like CT or MRI, could further refine the model’s
accuracy. The ultimate goal is to enable precise neuromodulation that tailors the corrections to each
patient’s unique anatomical features, and increases the overall efficacy of treatments.

Finally, while DB-SIPAC relies on static CT-driven compensation, future work will integrate adaptive,
echo-based feedback loops, e.g. real-time time-reversal adjustments or ultrasound backscatter tracking,
to correct for patient motion and dynamic skull-brain interface changes. Our model’s interpretability
offers an initial window into DB-SIPAC’s reasoning, showing that it prioritizes physical boundaries and
curvature zones—key sources of phase distortion. Building on this, further work could quantify feature
importance via integrated gradients or layer-wise relevance propagation. Integrating closed-loop feedback
(e.g. from embedded hydrophones or ultrafast imaging) and fusing pre-operative CT with live ultrasound

or MRI guidance would enable continuous, real-time phase refinement in clinical settings.
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