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Abstract: The World Health Organization proclaimed COVID-19 to be in a pandemic state 

on March 11, 2020, when there were over 118000 confirmed cases worldwide across more 

than 110 countries. Accurate modeling and forecasting of the spread of confirmed and 

recovered COVID-19 cases are crucial for assisting decision-makers in fighting the epidemic. 

Such situations commonly exhibit non-linear patterns, motivating us to develop a system that 

can keep track of such alterations. The project’s ultimate objective is to provide a method for 

anticipating new COVID 19 scenarios utilizing a hybrid EEMD-LSTM model. In this 

scenario, a prediction is produced regarding the total amount of daily COVID-19 cases that 

were officially confirmed in Malaysia between March 13, 2020, and January 4, 2021. The 

Global Change Data Lab at Oxford University provided the dataset. 
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1. Introduction 

At the end of 2019, a lethal strain known as Corona-virus Disease 2019 (COVID-19) was 

found in Wuhan, China. Following the reporting of 118, 000 cases across 110 nations, on 

March 11th, 2020, the World Health Organization issued a pandemic announcement. 

Additional patient flows resulted in hospital bed shortages and high-stress circumstances 

around the country. It is essential to comprehend the trend and dissemination of this virus to 

support decision-makers [1-3]. Many modeling, estimation, and forecasting techniques are 

used to understand and control this epidemic. 

Other publications assessed and predicted patterns in the COVID-19 outbreak in several 

nations, involving Italy, China, and India [4-9], using time-series strategies include ARIMA 
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(Auto-Regressive Integrated Moving Average) and Exponential Smoothing. Interestingly, 

machine learning, as a leading line of science for a wide range of reasons, has led these studies 

to [1,10-12] have given promising solutions to proactively improve disease growth 

prognostication. In Canada, Italy, and the US, COVID-19 dissemination was investigated 

using long short-term memory (LSTM) [12]. 

In accordance with best practice, two practice to representing time series data are used: 

the deterministic approach and the stochastic relationship between observations. The 

deterministic approach considers dynamic architectures [13], and statistical models have 

been constructed to support stochastic influences [14]. In reality, actually, time series data is 

a combination of both factors. In other cases, the model exactness is affected when one of 

the two processes is considered, i.e., dynamical framework methods may produce distorted 

perturbations, while statistical models underestimate deterministic factors [15]. As a result 

of this limitation, our focus shifts to modelling time series based on deterministic and 

stochastic factors, employing various models for each component before combining the 

information for the final output with the goal of improving prediction performance. This 

situation necessitates a decomposition stage, which is accomplished in this study through the 

EEMD methodology [16].  

The development of a method for COVID 19 case predictions is the main objective of 

this research. The data for this study came from the Global Change Data Lab at Oxford 

University and was gathered between March 13, 2020, and January 4, 2021. Section 2 would 

offer a thorough analysis of the tools and procedures used.  

2. Description of data 

Forecasting COVID 19 and predicting the spread of infection are the main objectives of this 

effort. This research is based on typical information from confirmed instances that were 

reported to Malaysia between March 13, 2020, and January 4, 2021. The Global Change Lab 

at Oxford University has made the data available. (https://ourworldindata.org/coronavirus) 

The COVID-19 A data set has been separated into a training set and a testing set in an 80:20 

ratio to evaluate the model’s competitiveness. 

Figure 1 depicts the data graphically shown. Up until September 2022, this sickness has 

stayed well under control. Since its initial appearance, it has risen significantly, reaching a 

sizable total of 2525 verified cases on December 31, 2020. The data utilized in this analysis 

are described in Table 1. Here, we can infer that the dataset is non-Gaussian based on its 

Kurtosis value of more than 3, that the data is biased to the right of the positive Skewness 

value and that the data shows a wide variety of standard deviations. 
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Figure 1. Daily confirmed new cases of COVID-19 in Malaysia. 

Table 1. Summary of dataset. 

Min 1 

Max 2525 

STD 588.1898 

Q-0.25 16 

Q-0.5 404.9295 

Q-0.75 782.25 

Skew 1.531132 

Kurtosis 4.382176 

3. Framework of study 

The basic structure of the suggested methods for forecasting as seen in Figure 2. The time 

series was first broken down into several (k) Intrinsic Mode Functions (IMF) by the Ensemble 

Empirical Mode Decomposition. Premised on the autocorrelation graph, the partial graph, 

and the stationary Augmented Dickey-Fuller (ADF) graph, the best order of the ARIMA 

model is then specified for each IMF. 

Each data strain that has attained p > 1 of the ARMA(p,q) is called a stochastic 

component and will therefore be modeled on an individual basis using the LSTM. After 

which merge these other deterministic IMFs that satisfy this requirement p ≤ 1. As a result, 

the list of IMFs required is now (k – n + 1), where n represents the total of IMFs to be merged 

as a Deterministic Variable. The information collected will then be standardized, and an 

LSTM model would be created. Here, Adam optimizer was pre-selected to reduce the loss 

function during testing. Subsequently, pre-constructed models with chosen parameters will 

be used to predict possible IMF values. Finally, the predicted parts are assembled to arrive at 

the predicted COVID-19 occurrences. The RMSE would be used to evaluate the accuracy of 

the developed model. RMSE will be used to assess the precision of the model developed. 
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In this study, predicting accuracy from the EEMD-LSTM, ARIMA, and standalone 

LSTM models will be compared to that from COVID-19 confirmed cases. 

 

Figure 2. Framework of this study. 

4. Data modelling 

4.1. Ensemble Empirical Mode Decomposition (EEMD) 

The method [17], facilitate data processing to accommodate data robustness. Characteristics 

of white noise in this method is that the maxima dispersion is temporally uniform at all 

timescales and is simply a two-channel tank for white noise [18-20]. Consequently, the 

degradation becomes more stable and physically significant. 

Whilst using EEMD, the white noise magnitude and number of ensembles should be 

predetermined because they affect the decomposition process [21]. The EEMD technique 

used in this research is with a white noise magnitude of 0.2 times the standard divergence 

and a 100 ensemble. The work of [22] contains an in-depth examination of the ensemble 

amount and magnitude of noise. 

The EEMD procedure was implemented to confirmed incidents of COVID-19 in 

Malaysia. The time series has been broken down into 7 IMFs and one residual. Figure 3 

depicts the plots of all IMFs and residues that were autonomous. 
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As per Figure 3, IMF1, IMF2, and IMF3 have the maximum intensity biggest magnitude, 

and shortest wavelength. Following IMFs show the frequency and amplitude from highest to 

lowest, and vice versa for the wavelength. The penultimate residual variable provides the 

general pattern of the time series. The breakdown is extremely useful in converting non-linear 

and non-stationary time series into stationary series to increase predictive power [22]. 

 

Figure 3. Decomposition of dataset using EEMD. 

Table 2. Criteria for reconstruction of IMFs. 

IMFs ARIMA Model (p, d, q) 

1 ARIMA (0, 0, 4)* 

2 ARIMA (2, 0, 1) 

3 ARIMA (2, 0, 0) 

4 ARIMA (1, 0, 0) 

5 ARIMA (0, 1, 0)* 

6 ARIMA (0, 2, 0)* 

7 ARIMA (0, 2, 0)* 

*for p less than or equal to 1 

Previously, EEMD divided the initial time series into strand known as IMFs. Following 

that, the best ARIMA model order for each strand was determined. Table 2 summarizes the 

results. The ARIMA model parameters p for the first, fifth, and subsequent IMFs are less 

than or equal to one, as shown in Table 2. The condition p 1 is now satisfied. As a result of 

the proposed legislation, one of these IMFs is being merged for further research. The total 

number of IMFs to be used for further research is then four. 

4.2. Long-Short Term Memory (LSTM) network 

Because it can acclimate to the non-linearity of the COVID-19 data set, the recurrent version 

of this network is a good forecasting candidate. Each LSTM block runs at a separate time 
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step and passes the output to the following block before the last LSTM block provides a 

sequential output. Block RNNs (LSTMs) are analytic function for building a sequential time 

series model. Memory blocks, which have been configured to fix gradients decreasing by 

deciphering long-term network configuration, are the central aspect of LSTM networks. In 

digital technologies, the architecture is analogous to differential storage. Gates allow 

information to be managed using the activation function (Sigmoid) and output values ranging 

from 0 to 1. The sigmoid activation is used to achieve a straightforward result; we just need 

to transfer valid information to the next stage. The three gates of the LSTM network can be 

seen in the equations below: 

1( [ , ]t J t t JJ sigmoid w h k b−= +  
(2) 

1( [ , ]t G t t GG sigmoid w h k b−= +  
(3) 

1( [ , ]t P t t PP sigmoid w h k b−= +  
(4) 

Where:   
 Jt = input gate operation kt = input to the current operation at t time-

step 
 

 Gt = forget gate operation ht−1 = output of previous time step  
 Pt = output gate operation wx = coefficients of neurons at gate (x)  
  bx = bias of neurons at gate (x)  

In equation (2), the Input gate transmits messages to be stowed. The (3) equation 

coordinates the forget gate activation output, and the output of the forget gate at time step âtâ 

is then combined by the third equation to generate the throughput. Figure 4 depicts the 

underlying block diagram of the LSTM block implicated for the analysis. Self-loops were 

chosen to build a path in which gradients or weights can be traded over long periods of time. 

This is particularly useful when modelling profound learning models where the gradient of 

extinction is a common issue. Modifying the weights as self-locked gates would alter the time 

scale to track changing parameters. Figure 5 depicts the network topology used for this methodology. 

 

Figure 4. LSTM internal architecture. 
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Figure 5. LSTM architecture. 

Data from IMF 2, 3, 4 and Deterministic Component are fed into the LSTM model and 

forecasts are generated. The forecasted values are then summed up to produce the final 

forecast of confirmed new cases of COVID-19. 

4.3. Performance of model 

Figure 6 shows a comparison of forecasting capacity between the actual data (blue line), 

EEMD-LSTM (red line) model to basic ARIMA (grey line) and standalone LSTM model 

(yellow line). Table 3 on the other hand shows comparison of model between EEMD-LSTM, 

LSTM and ARIMA based on its RMSE. The EEMD-LSTM model was trained and tested on 

Malaysian dataset producing an RMSE error of 34.83 for short term predictions and about 

45.70 for long term predictions. It is evident that EEMD-LSTM is the best model to be used 

in forecasting daily cases of COVID-19. 

 

Figure 6. Modelling comparison of new COVID-19 cases in Malaysia. 
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Table 3. Comparison of RMSE. 

 Training Testing 

EEMD-LSTM 34.83 45.7 

LSTM 52.33 66.29 

ARIMA 68.77 85.89 

5. Conclusion  

Though our model outperformed other analysis methods in terms of effectiveness, 

Unfortunately, the distribution is getting wider. In the meantime, both the incidence and total 

number of infections are expanding dramatically. If Malaysians fully shoulder the burden, 

the frequency of new instances will quickly start to reduce. These forecasts' accuracy is 

reliant on a variety of outside variables. To recapitulate, this is the first study to use data 

decomposition and machine learning methods to predict the intensity of COVID-19 in Malaysia. 
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