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Abstract: Video forgery has recently emerged as a global problem due to the development 

of sophisticated and user-friendly video modification tools and software. This study 

introduces an end-to-end deep learning architecture for detecting the fabricated object in a 

video. The recent advancements in deep learning for semantic segmentation of images and 

videos served as inspiration for this architecture. To distinguish fake objects from 

background images, this research suggested a semantic segmentation technique. The 

suggested architecture, which combines the U-net and VGG19 architectures based on 

Convolutional Neural Networks (ConvNet), is capable of differentiating between a forged 

object and its background, even though the model was trained on a small sample size of data 

and decreased the number of channels in every network layer, which reduced the 

computational complexity of the suggested approach without compromising performance. 

On 10 videos, the chroma-key composition and splicing forgery methods were used to assess 

how well the proposed architecture performed. In lieu of traditional classification metrics, 

mean intersection over union (mIoU) was used to evaluate the performance of the proposed 

method. According to the experiment, the training and validation sets for the proposed 

method both scored 0.9343 for mIoU accuracy, which is the highest. 

Keywords: video forgery; semantic segmentation; convolutional neural network; VGG19; 

U-net 

1. Introduction 

In a variety of fields, including the military, medical imaging, surveillance systems, law 

enforcement, criminal investigations, and many more fields, digital video has been 

extensively used as historical records and supporting evidence. But with simple and user-

friendly video editing programs like Apple Final Cut Pro, Adobe After Effect, and Adobe 

Premiere Pro, altering a video sequence is now a simple task that only requires a few minutes 
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of work and no specialized high-end knowledge [1,2]. Therefore, developing a reliable 

method for detecting video forgery presents a significant challenge for digital forensic research. 

The paper is structured as follows: In Section 2, works in video semantic segmentation 

and video forgery detection will be explained briefly. The proposed architecture will follow 

Section 3's description of the U-net and VGG19 architectures. In Section 4, the experimental 

apparatus will be described. Section 5 will discuss the experimental results, followed by 

Section 6's summary and future directions. 

2. Related study on video semantic segmentation and forgery detection 

In this section, research that is related to this paper will be covered. It is worth mentioning 

that, based on the literature, there is no similar research in image and video forgery detection 

using semantic segmentation via deep learning. This section instead focused on the 

application of deep learning to semantic segmentation and video forgery detection. 

2.1. Segmentation of images and videos from a semantic perspective  

A technique for classifying images includes semantic segmentation. Semantic segmentation 

categorises each pixel within the image into its assigned class, in contrast to conventional 

image classification, which considers the entire image as a designated class. In areas of 

computer vision like medical imaging, autonomous vehicles, robotics, and many more, this 

new method opens up a new path towards complete scene understanding because it provides 

comprehensive information on every image or video [3]. Conventional machine learning 

techniques like Support Vector Machines (SVM) [4,5], Random Forests [6,7], and Markov 

Random Fields [8] were widely used before deep learning methods. However, in order to 

improve accuracy, these traditional machine learning approaches heavily rely on hand-

crafted domain knowledge and post-processing steps [9]. 

Researchers were motivated to evaluate ConvNet's ability to solve the semantic 

segmentation problem by leveraging the benefits of deep neural networks (or deep learning), 

specifically on ConvNet [10]. Fully convolutional neural networks (FCN) were initially used 

for semantic segmentation in 2015 by [11], who supplanted the fully connected layers with a 

deconvolutional layer to obtain feature maps as opposed to classification results. By winning 

the PASCAL VOC 2015 [12] challenge, FCN established a basis for the use of deep learning 

in semantic segmentation for years to come, outperforming traditional methods. FCN, 

however, has limitations when working with high-resolution and unstructured data because 

the deconvolutional process lacks global context information [3]. 

Researchers then improve the FCN by utilising cutting-edge methods like encoder-

decoder architecture. The same number of layers separate the encoding and decoding parts 

of the encoder-decoder architecture found in SegNet [13] and U-net [14], which uses max-

pooling to encode feature maps. By adding element-wise feature maps from the convolution 

process to the corresponding deconvolution feature maps, the encoder-decoder architecture 

takes global context information into account during the deconvolution feature maps. There 

are a few alternatives to the encoder-decoder architecture, such as the Conditional Random 
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Field (CRF) application as a post-processing step, which has been suggested by the FC-

RCCN [15], DeepLab [16], and improved by the CRFasRNN [17]. In order to improve the 

FCN semantic segmentation problem, dilated convolutions are another option. This method 

uses a generalised Kronecker-factored convolutional filter with an exponentially dilated rate 

l, as opposed to a conventional convolutional filter where l=1 [18]. Examples of this method 

include DeepLab (improvised version) [19] and Enet [20]. One of the suggested improvements 

is multi-scale CNN, which combines multiple CNN prediction models created from various input 

sizes to produce a single output [21]. The works of ParseNet [22] and SharpMask [23], which 

combine multiple features from different layers (within the same network) and combine them 

into one feature before passing them to the next layer or classifier [3], bring about another 

observable improvement. Processing video is different from processing still images; while 

using an image segmentation algorithm and processing the video frame by frame is possible, 

it is still not financially viable because it requires taking into account spatial-temporal 

dependencies. There aren't many works on segmenting videos semantically, but one is 

clockworkFCN [24], which builds multiple CNN layers based on the number of frames and 

combines them into one additional layer or classifier. A work using 3D ConvNet for video 

semantic segmentation is from [25]. In addition, 3D ConvNet is used in video semantic 

segmentation because it has the ability to add spatial-temporal correlation during the 

convolutional process. 

2.2. Video forgery detection 

There are two methods—passive and active—for detecting video forgeries. During the pre-

processing phase of an active approach, a digital signature, such as a watermark, is embedded 

during the construction of the video.Any changes to this digital signature are regarded as 

forged [26]. This method is not widely used in the community of digital forgery detection 

because it requires extremely complex software and has a tendency to lower the video quality. 

Unlike the active approach, the passive approach typically occurs during the post-processing 

stage, where it looks for any instances of the underlying statistical correlation being 

inconsistent for any given pixel or frame from a given video. Inter-frame forgery, 

double/multiple compression, and region tampering are three methods for detecting forged 

video. 

A new path has recently opened up for improving performance in spotting fake objects 

in videos thanks to the introduction of deep learning methodologies. ConvNet is a popular 

architecture for detecting video forgeries, and [27] uses ConvNet to find copied and moved 

fake objects in video frames. In addition, [1] combined LSTM and ConvNet to detect splicing 

forged objects, but this time taking spatio-temporal correlation into account. Convolutional 

3D Neural Networks (C3D) were used by [28] to detect frame dropping across many videos 

without affecting performance. To detect facial forgery, MesoNet [29] proposed a ConvNet-

based architecture that is not only highly accurate but also computationally light. Recently, 

by combining forensic-based filters as a pre-process before passing them into the 
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architectures for feature extraction and classification, Zampoglou et al. (2019) enhanced 

well-known architectures like GoogleNet and ResNet [30]. 

3. The architectures 

This section will start with brief explanation on the U-net and VGG19 architectures, which 

the proposed method inspired from. 

3.1. Passive approach 

2015 ISBI cell tracking challenge for cell segmentation in light microscopy images was won 

by Ronneberger’s U-net [14]. U-net architecture originates from FCN and Autoencoder 

architecture, and the architecture was modified and upgraded due to the limitations of the 

ISBI Challenge 2012 winner’s network architecture [31]. As depicted in Figure 1, U-net 

architecture is composed of three parts, the contracting part (left side), the bottleneck part 

(lower middle), and the expanding part (right side). U-net proved to be faster and more 

precise in segmentation tasks even with a few sample images. 

The contracting part uses a normal ConvNet network architecture with 4 convolutional 

blocks, where each block has 3x3 unpadded convolutions, followed by a 2x2 max pooling 

operation with stride 2. After each max pooling operation, they doubled the number of feature 

channels, starting with 64 and ending up with 512 channels. Every ConvNet layer in this part 

is followed by a Rectified Linear Unit (ReLU) activation function. ReLU can be defined as 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (1) 

where you can see that ReLU only take the positive values of input x while the negative value 

will be set as 0. Due to its low processing load and quick convergence, ReLU is the most 

commonly employed activation function in neural networks [32]. 

 

Figure 1. U-net architecture. 

The bottleneck part is in between the contracting and expanding parts and consists of 

only 2 ConvNet layers with dropout. The purpose of the expanding part is to enable precise 

localization combined with contextual information from the contracting part. Every step in 

the expanding section consists of two 3x3 convolutions with ReLU activation, followed by a 
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2x2 up-convolution that doubles the feature map's size. U-net then grows the number of 

channels by copying and concatenating the cropped feature map from the contracting path. 

Each of the 64 feature vectors from the final layer is mapped to the required number of classes 

using a 1x1 convolution. 

3.2. VGG-19 architecture (VGG19) 

VGG19 [33] was developed by the Visual Geometry Group at the University of Oxford; its 

architecture is inspired by [34] and [35] deep ConvNet architectures and employs the same 

underlying principles. The main idea of this architecture is with smaller kernel size, but 

deeper ConvNet layer can provide more accurate in object detection simultaneously improve 

the image classification and localization.  

3.3. Proposed architecture 

Due to the advantages shown by the U-net and VGG19 architectures (Figure 2), the proposed 

architecture adopted the U-net with the ConvNet layers constructed based on the VGG19. 

The main contribution is building a ConvNet based architecture that not just with decent 

depth, but the architecture also consisted of a small number of weights to deliver good results 

in discriminating between the forged object and background image. 

 

Figure 2. VGG19 architecture. 

As shown in Figure 3, the proposed architecture consists of 36 layers of ConvNet 

(including 1 x 1 convolution at the last layer), deeper than the original U-net architecture. For 

each ConvNet layer (except the last layer), the proposed method used a 3 x 3 kernel size with 

stride 1 and zero padding to keep the size of output feature map until it downsizes by the max 

pooling layer. The convolution process is followed by the ReLU activation function and 

normalisation process for every layer. 



Proc. Comput. Sci.  Article 

6 

 

Figure 3. Proposed architecture. 

Like U-net, the proposed architecture consisted of three parts. The contracting part 

follows typical VGG19 layers. It consisted of a total of 16 zero-padded ConvNet layers with 

stride 1, followed by ReLU activation and Batch normalisation for each layer. For feature 

map downsampling, five max-pooling layers are used, which follow some of the ConvNet 

layers (not all the ConvNet layers are followed by max-pooling; refer to Figure 3). Max-

pooling is performed over a 2 x 2 window with stride 2. This research doubles up the number 

of channels C after every max-pooling layer. The proposed architecture starts with 32 

channels and ends up with 512 channels for this contracting part. To make the VGG19 layers 

fit into the U-net architecture, this research converted all three fully connected layers from 

the original VGG19 into the ConvNet layers. All these 3 ConvNet layers are represented in the 

bottleneck layer, which makes the architecture have an extra ConvNet layer compared to U-net. 

For the expanding part, 3 x 3 and 2 x 2 kernel windows of Deconvolutional networks [12] 

were used to reconstruct the output feature map at the same size as the ground truth image. 

This research doubled the number of channels after the deconvolution process by copying 

and concatenating the channels from the expanding part, which assists the network in 

propagating context information to higher resolution layers [14]. For the last layer, this 

research used 1 x 1 convolution with a sigmoid function to classify each pixel into its 

designated class. This research chose the sigmoid function because of its superior 

performance in binary-class classification. Binomial cross-entropy to calculate the loss error 

between the predicted image and the ground truth image. Different than the original VGG19, 

this research halved the number of channels for every layer. This decision significantly 

reduced the number of weight parameters and decreased the training time (will be discussed 

in Section 5). 

4. Experiments 

In this section, the experimental setup including data preparation will be described, hyper-

parameters, evaluation metric, and training model in detail. This is for the purpose of research 

reproducibility. 
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4.1. Datasets  

 

All the experiments were conducted using 10 short videos that only involved slicing forged 

objects. The video datasets consisted of original videos taken by the [1] itself with different 

cameras for each video, forged videos (uncompressed AVI), YouTube upload/download 

quality versions of the forged videos, and the ground truth. The videos were created using 

Adobe After Effects CC software. All the details for the videos are explained in [1] and 

available for download at www.grip.unina.it. 

This research only focuses on uncompressed forged videos. All the videos were 

converted into picture frames, then pooled all the videos as training and validation sets with 

a 90:10 ratio and reserved the Girl video as a test set. This makes the total number of training 

sample images 2779, while validation images are 309, and 371 for the test set. The total 

number of frames and forged frames is as revealed in Table 1. 

Table 1. Number of frames for each video. 

No Video name No of frames No of forged frames 

1 Tank 335 191 

2 Man 399 207 

3 Cat 281 71* 

4 Helicopter 488 292 

5 Chicken 373 169 

6 Lion 294 228 

7 UFO 306 96 

8 Tree 302 240 

9 Girl 371 162 

10 Dog 310 186 

 Total frames 3459 1842 

* Represents a video with the lowest forged frames. This shows that the model can be trained to recognise 

forged frames even with low samples. 

Table 2. Arguments and values for data augmentation. 

Argument Value 

Shear range 0.5 

Rotation range 50 

Zoom range 0.2 

Width shift range 0.2 

Height shift range 0.2 

Fill mode Reflect 

Horizontal flip True 

Vertical flip True 

Seed 123 
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Data augmentation plays an important role in reducing the possibility of training models 

becoming overfit, especially in this research, which involved a low number of samples. For 

data augmentation, this research used the ImageDataGenerator class from Keras to provide 

real-time data augmentation for every sample image by batch. Table 2 shows the arguments 

and values used in this research for data augmentation. Figures 4 (c) and (d) show examples 

of the augmented image and ground truth, respectively. 

 

Figure 4. Example of data augmentation (a) Original image (b) Original ground truth 

(c) Augmented image (d) Augmented ground truth. 

For the evaluation metric, this research used mean Intersection over Union (mIoU) 

accuracy to evaluate the performance of the methods. IoU accuracy has been widely used in 

image and video semantic segmentation compared to by-pixel classification accuracy 

because it has been proven to avoid the bias in a class imbalance between the forged object 

(non-background) and the image background [21]. For example, let's say the forged object in 

the video consists of 10 percent compared to the background with 90 percent of total pixels. 

The by-pixel classification will easily achieve 90 percent accuracy when the classifier 

classifies all the pixels as image background.  

The IoU can surmount this limitation by measuring the similarity of the predicted forged 

object region with the actual forged object region in the ground truth image, which can be 

defined as the size (in pixels) of the intersection region between the predicted and actual 

objects divided by the union of both regions. Equations 2, 3, and 4 further explain the 

implementation of the mIoU. 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2) 

where TP, FP, FN denoted as true positive, false positive, and false negative respectively. 

Therefore, the calculation of IoU can be as 
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𝐼𝑜𝑈(𝑦, 𝑦′) =
|{𝑦 = 𝑐} ∩ {𝑦′ = 𝑐}|

|{𝑦 = 𝑐} ∪ {𝑦′ = 𝑐}|
 (3) 

with y and 𝑦′ is ground truth pixel and predicted pixel respectively with the class of 𝑐 =

{0,1}  which 0 is the background pixel and 1 is the forged object, which displays the 

intersection between the evaluated mask and the ground truth mask over their union as a ratio 

in [0, 1]. For the purpose of calculating the overall mean IoU (mIoU), the IoU score is 

calculated independently for each class as in Equation 4 below. 

𝑚𝐼𝑜𝑈 =
1

𝑐
∑

𝑐

𝑖=1

𝐼𝑜𝑈(𝑦, 𝑦′) 
(4) 

Since this research used binary classes (background and forged object). Rather than 

averaging the IoU with the number of classes, this research calculates the mIoU by setting 

certain thresholds for each IoU score on every sample image. From Equation 4, the formula 

for calculating mIoU is as follows: 

mIoU =
1

|t|
∑

t

IoU(y, y′) 
(5) 

where t is the number of thresholds with values that have a 0.05 step size and range from 0.5 

to 0.95. To put it another way, a predicted object is said to have "hit" status at a threshold of 

0.5 if its intersection over union with a ground truth object is bigger than 0.5. These thresholds 

are widely used in image semantic segmentation’s challenge such Microsoft COCO challenge. 

4.2. Environment and hyperparameters setup 

This research developed and trained the proposed method using Tensorflow v1.10 [33] with 

Keras v2.2.2 API [34]. For model training, Workstation with Intel i7-8700 CPU processor, 

32GB of RAM memory, and Nvidia GTX 1060ti GPU with 6GB of VRAM was used. The 

mid-range of GPU for training model was used, to show that the proposed method is using 

low memory and processing power. Table 3 provides a summary of the hyper-parameters 

used in this experiment. All methods run in this experiment were using the same 

hyperparameters. 

Table 3. Hyper-parameters setup. 

Hyper-parameter Value 

Number of epochs 1000 

Batch size 16 

Steps per epoch 97 (Number of samples/batch size) 

Learning rate initializer 0.099 

During model training, the model’s weight was validated on the validation set for every 

epoch. The best model with the highest validation mean IoU is saved for further evaluation 

using the testing set. To avoid the model learning become stagnate during training, this 
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research use ReduceLROnPlateau function from Keras where it will reduce the learning rate 

to the factor of 2 until it reaches the minimum rate 0.0001. 

5. Results and discussion 

The main research focus is to develop a ConvNet-based deep learning architecture that is 

fast, less computationally burdensome, and provides significant accuracy in the identification 

and segmentation of forged objects. As shown in Table 2, the proposed architecture achieved 

the lowest running time compared to other benchmark architectures. The proposed 

architecture has a smaller number of parameters compared to others, but it has been proven 

that it won’t jeopardise the performance since the architecture has enough depth in the 

ConvNet layer for the machine learning to learn. It can be proven by the proposed architecture 

that it achieved the highest mIoU accuracy and the second lowest loss error rate (Table 4). 

Table 4. mIoU performance on Training dataset. 

Methods Mean IoU Loss error Running time 

Unet Training: 0.9266 

Validation: 0.9266 

Training: 0.0094 

Validation: 0.0341 

12 hours 33 minutes 

Unet-VGG19 Training: 0.4921 

Validation: 0.4925 

Training: 0.1842 

Validation: 0.3251 

13 hours 21 minutes 

Unet-VGG19 

(batch normalization) 

Training: 0.9334 

Validation: 0.9334 

Training: 0.0094 

Validation: 0.0177 

15 hours 38 minutes 

Proposed method Training: 0.9343 

Validation: 0.9343 

Training: 0.0104 

Validation: 0.0184 

7 hours 22 minutes 

 

 

Figure 5. Predicted output for training data with the ground truth. 

Figure 5 shows that the proposed architecture successfully predicts the forged object, 

especially on tree video. Unet-VGG19 has the worst result because, without batch 
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normalisation, it can produce sparsity in feature output [36]. Figure 5 also shows that the only 

architecture comparable to the proposed method is the U-net. This is because the U-net 

architecture was developed to tackle regular foreground and background segmentation 

problems [5]. This is the reason why this research chose U-net as the backbone of the 

proposed method. 

 

Figure 6. Loss error and Mean IoU accuracy graphs for 1000 epochs 
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In Figure 6, the graph of the mean IoU for 1000 epochs shows that only U-net + VGG19 

suffers from a decline in accuracy, while the other 3 architectures show a constant 

improvement on every epoch. From the results, it shows none of the three architectures suffer 

from overfitting since they have similar IoU scores between the training set and validation 

set. The U-net and VGG19 have major overfitting from the large difference between the train 

error and the validation error, and the loss error also seems to increase over time. U-net shows 

some tendency to overfit where there is some slight difference between train and validation 

errors, and it happens after 500 epochs and can be avoided with an early stopping function. 

The proposed method and U-net + VGG19 with normalisation do not show any sign of 

overfitting from the loss error, but the proposed method is more stable. 

Applying the trained model to testing data and expecting a good result is not easy, even 

if it shows good performances over training and validation data during the training process. 

In Figure 6, the proposed method successfully predicts the forged area (Figure 7). It shows 

that the trained model has flexibility over different types of data with different distributions. Even 

though it is not smooth and accurate, a few improvements are still needed for the proposed 

method. 

 

Figure 7. Predicted output on test data. The white mark shows the predicted output. 

6. Conclusions 

 

This research successfully developed a ConvNet-based architecture for detecting forged 

objects in the video. The proposed architecture had shown its superiority in mIoU accuracy 

compared to other benchmark architectures. However, with some flaws in the test dataset, 

more improvements need to be made. Maybe by considering spatial-temporal correlation in 

processing the video. Besides that, with the limitation of public datasets, the proposed method 

only focuses on splicing-type forgery; it can be extended to other types of forgery such as 

copy-move or double/multiple compression. In the future, detecting forged videos can 

become more sophisticated and complex as people start using deep learning approaches to 

develop forged images or videos, such as the Generative Adversarial Network (GAN). This 

will bring new challenges to the image and video research communities. However, this 

research has built some foundations for detecting forged objects on video via semantic 

segmentation and can be further improved to tackle the stated problems. 
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